September 12, 2012

Via Electronic and Overnight Mail

Federal Housing Finance Agency c/o Alfred M. Pollard, General Counsel
Eighth Floor, 400 Seventh Street, S.W.
Washington, D.C. 20024
(Comments/RIN 2590-AA53)

RE: Comments of the California Attorney General on the Federal Housing Finance Agency's Notice of Proposed Rulemaking re Property Assessed Clean Energy (RIN 2590-AA53)

This letter constitutes the comments of the California Attorney General's Office on the Notice of Proposed Rulemaking addressing whether and under what conditions the Federal National Mortgage Association ("Fannie Mae") and the Federal Home Loan Mortgage Corporation ("Freddie Mac") (collectively, the "Enterprises") will purchase mortgages for properties participating in Property Assessed Clean Energy (PACE) programs. ${ }^{1} 77$ Fed. Reg. 36086 (June 15, 2012). State PACE laws in California ${ }^{2}$ and across the nation allow local governments to use their long-standing powers of assessment to finance renewable energy systems and energy and water efficiency retrofits for their residents. Since Fannie Mae and Freddie Mac own or guarantee approximately half of all residential mortgages in the U.S., the direction that the Agency gives the Enterprises by this rule will largely determine the fate of residential PACE programs nationally.

[^0] Exhibit A.

In the Notice, the Agency sets out its Proposed Rule, which is simply to prohibit the Enterprises from "purchas[ing] any mortgage that is subject to a first-lien PACE obligation." 77 Fed. Reg. at 36107 (emphasis added). ${ }^{3}$ The Notice also states that the Agency will consider certain alternatives that would accommodate PACE under specifically prescribed circumstances. As we did at the Advance Notice stage of this rulemaking, ${ }^{4}$ we urge the Agency to follow the requirements of the Administrative Procedure Act (APA) and its own statute, the Safety and Soundness Act (12 U.S.C. $\S 4501$ et seq.), in devising its PACE rule. These requirements obligate the Agency to base its decision-making on data and analysis, and not bare assumptions that PACE poses risks to the Enterprises; to give full and fair consideration to alternatives to a flat ban on PACE; and to consider not only potential risk to the Enterprises, but also the larger public interest that PACE programs serve.

As set out below, the evidence, including the scholarly literature, establishes that efficiency and renewable energy improvements of the type financed by PACE programs increase home value and increase homeowner cash flow, thus reducing risk to the Enterprises. Expert analysis of the data from Sonoma County's successful PACE program further establishes that participating in PACE does not increase the probability of mortgage default. The Agency must consider this evidence in formulating a final rule and cannot rely on unsupported, contrary assumptions. The Agency must give full and fair consideration to alternatives that would adequately protect the Enterprises while still allowing PACE to proceed, especially in light of the important public interests served by accommodation. Accordingly, the Agency must judge the alternatives against a reasonable, achievable standard rather than the "no risk" standard it proposes in the Notice. Of the alternatives proffered that would accommodate PACE, only Alternative 3 is both practical and can be implemented in the near term. This alternative would adopt a set of set of uniform, nationwide standards for PACE programs. While we question whether the additional limits and restrictions in Alternative 3 are necessary, we note that local governments and other PACE supporters are willing to institute these program changes in order to ensure that this important program may continue. ${ }^{5}$

[^1]
COMMENTS

I. The Agency Must Take Into Account the Evidence and the Public Interest in Issuing Its Final Rule.

Section 706(2)(A) of the APA prohibits agency "action, findings, and conclusions" that are "arbitrary, capricious, an abuse of discretion, or otherwise not in accordance with law." 5 U.S.C. § 706(2). In order to satisfy the APA, an "agency must explain the evidence which is available, and must offer a 'rational connection between the facts found and the choice made." Motor Vehicle Mfrs. Ass'n of U.S., Inc. v. State Farm Mut. Auto. Ins. Co. ("State Farm"), 463 U.S. 29, 43 (1983) (quoting Burlington Truck Lines v. United States, 371 U.S. 156, 168 (1962)). Under this standard, the Agency cannot, as it has to date, simply rely on unsupported assumptions and conclusory assertions that PACE poses financial risks to the Enterprises. Rather, the Agency has an obligation to seek out evidence about PACE's potential financial risks, and the magnitude of those risks, and PACE's potential financial benefits, and to consider the evidence placed into the record on these issues during this rulemaking.

In addition, the APA requires the Agency to consider alternatives to flatly prohibiting Fannie Mae and Freddie Mac from purchasing any mortgages for properties participating in PACE. While an agency has considerable discretion to exercise its expert judgment, an agency does not have discretion to ignore apparently reasonable courses of action without offering an explanation and engaging in analysis. See State Farm, 463 U.S. at 46, 48 (holding that before National Highway Transportation Safety Administration could rescind passive restraint standards because of problems with automatic seatbelts, agency was required to give consideration to less drastic option of modifying standard to require airbag technology); see also Muckleshoot Indian Tribe v. U.S. Forest Service, 177 F.3d 800, 813-14 (9th Cir. 1999) (holding that agency's failure to consider adequate range of alternatives in environmental impact statement violated the National Environmental Policy Act (NEPA)). ${ }^{6}$

Under the rule of State Farm, 463 U.S. at 37-38, if the Agency determines that PACE poses risks to the safety and soundness of the Enterprises, it must evaluate whether those risks could be addressed by actions short of a complete prohibition on Fannie Mae and Freddie Mac purchasing mortgages for properties participating in PACE. The Agency itself, in its July 6, 2010 Directive, indicated that asserted risk could be reduced by imposition of "robust underwriting standards to protect homeowners" and "energy retrofit standards to assist

[^2]homeowners, appraisers, inspectors and lenders determine the value of retrofit products." ${ }^{7}$ (We note that this is the intent and purpose of Alternative 3, discussed in Section IV.D., below.)

In addition to the APA, the Safety and Soundness Act imposes additional requirements on this rulemaking. The Agency's supervisory and regulatory responsibilities under the Safety and Soundness Act are not limited to ensuring a return for Fannie Mae and Freddie Mac and their shareholders and executives. As stated in 12 U.S.C. section 4513(a)(1)(B)(v), one of the "principal duties of the Director" is to "ensure that . . . the activities of each regulated entity and the manner in which such regulated entity is operated are consistent with the public interest." (Emphasis added). In the case of PACE, the Agency must consider the public interest, which includes not only benefits to homeowners and the environment, but also the interest in working with the states to accommodate their PACE laws and respecting the long-standing power of local governments to tax and assess.

II. The Evidence Does Not Bear Out the Agency's Unsupported Assertions that PACE Poses Serious Risks to the Enterprises.

In the Notice, the Agency asserts that PACE presents three types of "risk" to Fannie Mae and Freddie Mac as mortgage holders: (1) in the event of foreclosure, the mortgage holder must pay any past-due PACE assessments; (2) in the event of foreclosure, the mortgage holder bears the risk of any diminution in home value resulting from the outstanding PACE lien or the PACE project itself, "which may or may not be attractive to potential purchasers"; and (3) the homeowner's obligation to pay PACE assessments "may itself increase the risk that the homeowner will become delinquent or default on other financial obligations, including any mortgage obligations." 77 Fed. Reg. 36088. The Agency restates these purported risks throughout the Notice, but does not support them with any specific evidence. As set forth below, the evidence establishes that PACE programs in fact present at most minimal and wholly manageable risk to the Enterprises. Accordingly, general assertions of risk cannot support a rule that would completely block PACE.

A. Escrow accounts can remove risks associated with past-due assessments.

When put into perspective, the Agency's first asserted risk - that the Enterprises must pay any past-due assessments at the time of any foreclosure - is not sufficiently substantial to justify shutting down PACE. The amount of the annual assessment would of course vary with the amount financed and the financing term, but, for example, a $\$ 15,000$ PACE project financed over 20 years would yield an annual PACE assessment of approximately $\$ 1,400$ in a

[^3]representative program. ${ }^{8}$ It is that single overdue assessment, and not the entire amount financed, that would be due at foreclosure. ${ }^{9}$

Moreover, the obligation to pay outstanding taxes and assessments in the event of foreclosure is not particular to PACE, but is true of any past-due taxes and assessments (e.g., for parks, sidewalks, roadway paving, or the undergrounding of utilities). The Enterprises have developed a very strong, reliable mechanism to ensure that there are funds available to pay taxes and assessments. Taking the Fannie Mae/Freddie Mac California Deed of Trust as an example, this model document provides that the lender may establish an escrow account to ensure that taxes and assessments are paid. (Cal. Deed of Trust at p. 4, 『 3.) ${ }^{10}$ If this asserted issue truly is a concern, establishing an escrow account for PACE assessments would ensure that the Enterprises would not be required to pay for any missed PACE assessments at the time of any foreclosure.

B. The data establish that renewable energy and efficiency improvements increase home values.

The Agency at various points quotes, and apparently adopts, the unsupported assertion that the existence of a PACE obligation at the time of foreclosure will likely reduce what the buyer is willing to pay for the property. See, e.g., 77 Fed. Reg. at $36093,36100,36105 .{ }^{11}$ At the same time, the Agency fails to acknowledge data and studies cited by commenters on the Advance Notice, including the California Energy Commission (CEC), establishing that energy efficiency and renewable energy projects reliably increase property values. ${ }^{12}$ To summarize some of the most recent and well supported studies:

- As set out in an April 2011 report by Lawrence Berkeley National Laboratory, investigators examined the residential selling prices across the State of California of approximately 2,000 homes with existing photovoltaic (PV) systems against a comparable set of approximately 70,000 non-PV homes. They found that California homes with PV systems have sold for a premium over comparable homes without PV systems of approximately $\$ 3.9$ to $\$ 6.4$ per installed watt of PV , with most coalescing
${ }^{8}$ See Sonoma County's annual payment calculator, available at http://www.sonomacountyenergy.org/lower.php?url=annual-payment-calculator.
${ }^{9}$ See letter from California Attorney General to Acting Agency Director Edward DeMarco, dated June 22, 2010, attached as Exhibit B.
${ }^{10}$ Available at http://www.freddiemac.com/uniform/doc/3005-CaliforniaDeedofTrust.doc and https://www.efanniemae.com/sf/formsdocs/documents/secinstruments/doc/3005w.doc.
${ }^{11}$ As the California Energy Commission stated in its comments on the Advance Notice, the Agency's position is at odds with the practices of Fannie Mae and Freddie Mac in allowing for Energy Efficient Mortgages (EEMs). See comment letter of California Energy Commission, dated March 28, 2012, at p. 3. EEMs are grounded in the assumption that energy efficiency improvements add value to the home.
${ }^{12}$ See comment letter of the CEC, dated March 26, 2012, at pp. 2-3.
near $\$ 5.5 /$ watt. This corresponds to a home sales price premium of approximately $\$ 17,000$ for a relatively new 3,100 watt PV system (the average size of PV systems in the study). The authors concluded that the sales price premiums appear to be comparable to the investment that homeowners have made to install PV systems in California, which from 2001 through 2009 averaged approximately $\$ 5 /$ watt. ${ }^{13}$
- Case studies across the U.S. (e.g., in Colorado, Oregon, Washington and North Carolina) spanning 2009 to 2011 confirm that ENERGY STAR and other greenlabeled homes routinely sell for a percentage-of-sales-price and per-square-foot premium. ${ }^{14}$
- After the date of the publication of the Advance Notice, Nils Kok, Maastricht University, Netherlands and University of California, Berkeley, and Matthew E. Kahn, University of California, Los Angeles, published the results of their analysis of 1.6 million homes sold in California between 2007 and 2012, controlling for other variables known to influence home prices in order to isolate the added value of green home labels. They found that California homes labeled ENERGY STAR, LEED for Homes and GreenPoint Rated sold for 9 percent more ($\pm 4 \%$) than comparable, nonlabeled homes. Given that the average sales price of a non-labeled home in California is $\$ 400,000$, the price premium for a certified green home translates into some $\$ 34,800$ more than the value of a comparable, non-labeled home. ${ }^{15}$

[^4]In light of the evidence that efficiency and renewable energy improvements increase home values, the Agency cannot, consistent with its obligation under the APA, proceed from the assumption that these improvements have a neutral or negative value.
C. PACE improvements, unlike virtually any other assessed improvement, can improve a homeowner's monthly cash flow, and therefore should decrease risk.

In a well designed PACE program, total energy savings to the homeowner that will be realized by the suite of PACE improvements exceed the total cost of the PACE assessments. Nonetheless, the Agency makes various unsupported assertions to reach the counter-intuitive conclusion that the impact of PACE improvements may not in practice improve the monthly cash flow of the participating homeowner. None bear scrutiny.

For example, the Agency states that future value depends on energy prices; in the Agency's view, "[e]nergy prices are variable and unpredictable, and therefore any forwardlooking estimate of utility-cost savings is inherently speculative." 77 Fed. Reg. 36100, see also $i d$. at 36092 . Contrary to FHFA's assertion, other federal agencies, such as the U.S. Department of Energy (DOE), routinely make informed predictions about future residential energy costs to support their rulemaking efforts. ${ }^{16}$ FHFA should be able to do the same, perhaps with assistance from DOE. Moreover, the fact that the Agency may need to rely on energy price models does not make such an endeavor speculative. ${ }^{17}$

The Agency also asserts summarily that "some homeowners may choose to consume rather than monetize energy efficiency gains, as by adjusting their thermostat to realize efficiency gains as comfort rather than as monetary savings." 77 Fed. Reg. 36101. The potential

(...continued)

California Housing Market / An Economic Analysis of the Impact of Green Labeling on the Sales Price of a Home (July 2012), available at http://www.corporateengagement.com/files/publication/KK_Green_Homes_071912.pdf.
${ }^{16}$ Under the Energy Policy and Conservation Act, DOE must establish efficiency standards for certain types of residential products to "achieve the maximum improvement in energy efficiency . . . which the Secretary determines is technologically feasible and economically justified." 42 U.S.C. § $6295(\mathrm{o})(2)(\mathrm{A})$. This analysis requires DOE to consider, among other things, "the savings in operating costs throughout the estimated average life of the covered product42 U.S.C. § 6295(o)(2)(B)(i)(II).
${ }^{17}$ See Sierra Club v. Costle, 657 F.3d 298, 333-34 (D.C. Cir. 1981) (agency entitled to rely on model as substantial evidence supporting its decision); see also Am. Pub. Gas Ass'n v. Fed. Power Comm'n, 567 F.2d 1016, 1036-37 (D.C. Cir. 1977) ("Reasoned decisionmaking can use an economic model to provide useful information about economic realities, provided there is a conscientious effort to take into account what is known as to past experience and what is reasonably predictable about the future.")
for such "rebound" does not mean that efficiency projects are not worthy of investment. ${ }^{18}$ Rather, this phenomenon is simply a caution that one cannot assume in every instance that all possible efficiency gains will be realized in practice.

In any event, the rebound effect is irrelevant to the Agency's PACE rulemaking. Where an agency is charged with quantifying reduced energy use, as DOE is under the Energy Policy and Conservation Act, the rebound effect may require the agency to consider reducing projected energy savings by some percentage. ${ }^{19}$ Here, however, the Agency's asserted concern is about risks to Fannie Mae and Freddie Mac tied to a homeowner's ability to make timely mortgage payments. The fact that a homeowner may choose to spend some small percentage of energy bill savings resulting from PACE improvements on purchasing more energy is not relevant to this concern. What is relevant is that a portion of the homeowner's household budget that previously was dedicated to paying an energy bill is now freed-up to spend in the way that the homeowner sees fit. This new elasticity in the household budget may lead to spending on comforts (including additional heating or cooling) when the household financial situation is strong, and on necessities (such as mortgage payments) should the household financial situation come under stress. In sum, the increase in household discretionary funds resulting from PACE improvements can only increase the likelihood that a PACE participant will stay current on his or her mortgage. There is no reasonable basis for the Agency to conclude otherwise.

III. Expert Analysis of Sonoma County's Operating PACE Program Establishes that Participation in PACE Does Not Increase the Risk of Default.

In response to the Agency's request for empirical data and analysis related to financial risk (77 Fed. Reg. 36104), the California Attorney General's office retained an expert economist, Dr. Joseph Janczyk of Empire Economics, to evaluate Sonoma County's Energy Independence Program, one of the longest running and largest PACE programs in the nation. ${ }^{20}$ The expert

[^5]produced two reports - one on the default rate among PACE participants as compared to the County as a whole, and one examining the causes of default - which we have submitted to the Agency under separate cover. ${ }^{21}$ We summarize the results of the expert's analyses below.

PACE Default Rate: We asked the expert to examine the mortgage default rate in the Sonoma County PACE program. For purposes of the expert's research, "default" exists where (1) the borrower has missed one or more mortgage payments, and (2) the lender has filed a Notice of Default with the County Recorder. Default includes properties that are in foreclosure or bank-owned at the time the expert gathered the data. In Sonoma County, only 13 residential properties participating in PACE were in default, out of a pool of 1,536 residential properties with mortgages participating in PACE, for a default rate of 0.85%. The default rate for properties participating in PACE is less than half the 2.19% default rate for the County's nonPACE residential properties with mortgages. (Default Rate Report at p. 5.) The expert determined that the substantially lower default rate for PACE participants is statistically significant, meaning it is not the result of chance. (Default Rate Report at pp. 6-7.)

Causes of Default: The expert also conducted a more focused case study of residential properties with mortgages in five of the County's $80+$ Zip Codes. The expert chose these areas for further study because each had a substantial number of residential properties participating in PACE, thus providing sufficient data points about PACE properties to draw statistically significant conclusions. Selecting five Zip Codes also ensured a substantial total pool for analysis; the five selected Zip Codes collectively contain more than 19,000 residential properties. (Default Factors Report at pp. 1, 3, 7.)

The expert first conducted a qualitative comparative economic analysis, meaning that he examined whether and how certain relevant characteristics of residential properties participating in PACE were similar to, or differed from, those of non-participating properties. The residential properties in the five Zip Codes were divided into four groups: Non-PACE Timely (not in default); Non-PACE Default; PACE Timely; and PACE Default. Because the PACE Default group contained only six properties, the expert could not conduct any further comparative analysis for this group. (Default Factors Report at pp. 7, 9.)

The analysis showed that for the Non-PACE Timely and Non-PACE Default groups, tax burdens were the same; the latter group was in default even though it did not have a higher
(...continued)
contractors and that the program has created 700 jobs. See
http://www.sonomacountyenergy.org/.
${ }^{21}$ Empire Economics, Economic Analysis of Mortgage Loan Default Rates, Sonoma County Energy Independence Program (SCEIP) (June 28, 2012) ("Default Rate Report"); Empire Economics, Comprehensive Economic Analysis of the Factors Underlying Default, Sonoma County Energy Independence Program (SCEIP) (August 24, 2012) ("Default Factors Report").
average tax burden than the former group. ${ }^{22}$ In addition, the tax burden for the PACE Timely group was higher than for both Non-PACE groups; the higher tax burden (which took into account PACE assessments) did not cause this set of properties to go into default. ${ }^{23}$ This indicates that something other than taxes and assessments led to default in these groups. (Default Factors Report at pp. 11.) The results of the expert's comparative analysis are set out in detail in the report. (Id. at pp. 9-14.)

The expert next conducted a quantitative analysis to answer FHFA's request for a cross comparison that would allow for examination of factors that might affect default. See 77 Fed. Reg. 36104. The analysis revealed that there was a highly statistically significant, positive relationship between default and the following characteristics that are not related to PACE but rather are related to general mortgage lending practices and the housing market: initial loan-tovalue (LTV) ratios ${ }^{24}$ (the higher the LTV, the higher the likelihood of default); conventional loans (i.e., not FHA or VA loans); and sale during the peak of the housing market price bubble. Thus, these characteristics were strong predictors of mortgage default in the Zip Codes studied. (Default Factors Report at pp. 16-19.)

If FHFA's theory that PACE assessments increase the risk of default by placing an extra annual payment burden on the mortgage holder is correct, one would expect to see increases in default in any situation where taxes and assessments are relatively high, whatever the reason for the tax or assessment. The regression analysis established, however, that higher tax burdens (burdens which include PACE assessments) had no statistically significant impact on the probability of mortgage default. (Default Factors Report at pp. 16.)

The expert's analyses of the data from one of the nation's largest and longest-running PACE programs thus confirm that participation in PACE does not increase risk of default. Accordingly, the Agency must give serious consideration to an alternative that would accommodate, rather than obstruct, the program.

[^6]
IV. The Agency Must Give Serious Consideration to an Alternative That Would Manage Any Risk to the Enterprises and Serve the Public Interest in Accommodating PACE.

The Agency's Proposed Rule - to block PACE - thwarts the public interests that flow from accommodating PACE. FHFA presents three alternatives to its Proposed Rule that would in theory accommodate PACE and further these public interests. The Agency refers to these as (1) the "Guarantee/Insurance" Alternative; (2) the "Protective Standards" Alternative; and (3) the "Underwriting Standards" Alternative. As set forth below, only Alternative 3 is practical and capable of implementation in the near term. Where the record establishes that this alternative would protect the Enterprises from risk, and, at the same time, serve the larger public interest in accommodating PACE, selecting the Proposed Rule over this alternative would be arbitrary and in violation of the Safety and Soundness Act.
A. The Agency must judge the alternatives against a reasonable, achievable standard
that both protects against risk to the Enterprises and acknowledges the public
interest.

As noted above and in the Attorney General's comments on the Advance Notice, the APA requires that FHFA consider reasonable alternatives to a flat prohibition on the purchase of mortgages for properties participating in PACE. See State Farm, 463 U.S. at 46, 48; see also Muckleshoot Indian Tribe, 177 F.3d at 813-14. While the Notice of Proposed Rulemaking sets out three alternatives, it also implies that any viable alternative "must provide mortgage holders with equivalent protection from financial risk to that of the Proposed Rule [to ban PACE], and could be implemented as readily and enforced as reliably as" a flat ban. 77 Fed. Reg. 36107. This is not a proper standard against which to judge the alternatives, because no alternative that would accommodate PACE, no matter how well designed, could guarantee absolutely no risk. Application of this standard will virtually guarantee that the Agency will not give serious consideration to the alternatives it has devised, in violation of the APA.

Failure to consider alternatives that would accommodate PACE would, in addition, violate the Agency's governing statute, the Safety and Soundness Act, 12 U.S.C. sections 45014642. As we stated in our comments on the Advance Notice, one of the "principal duties of the Director" is to "ensure that . . . the activities of each regulated entity and the manner in which such regulated entity is operated are consistent with the public interest." (Emphasis added). In the case of PACE, the public interest favors working with the states to accommodate their PACE laws and respecting the long-standing power of local governments to tax and assess. In addition, the public interest is advanced by allowing PACE programs to proceed in order to obtain the benefits of energy efficiency, consumer savings, pollution reduction, and green jobs and industries. The Agency must consider these benefits in determining whether the accommodation of PACE by Fannie Mae and Freddie Mac, with or without additional restrictions or conditions, is in the public interest.
B. The First Risk-Mitigation Alternative - Guarantee/Insurance - does not appear to be market-ready.

The Agency's first alternative to a flat ban on PACE, the "Guarantee/Insurance" alternative, would require either insurance or a PACE program-sponsored reserve fund that benefits mortgage holders and protects them against risk of loss in the event of foreclosure. This alternative is, however, currently impracticable. Governments, and in particular local governments, are not in a position to create reserve funds that run to the benefit of mortgage holders. In addition, to our knowledge, no insurance product similar to that described in the Notice of Proposed Rulemaking exists. We believe that as PACE programs gain a track history, and as their low risk becomes even more evident based on real-world experience, viable insurance products may well emerge in the market place. For this reason, FHFA should leave open the possibility that future insurance products may satisfy the Agency's concerns about PACE, but the Agency should focus this rulemaking on alternatives that are currently viable.

C. The Second Risk-Mitigation Alternative - Protective Standards - is inconsistent with the assessment financing mechanism and will unnecessarily and substantially curtail participation in PACE.

The Agency's second alternative is referred to as the "Protective Standards" alternative. The primary focus of this alternative is "the imposition of a substantial equity cushion." 77 Fed. Reg. 36108. In this alternative, the Agency ignores that PACE operates through a lien on the property and special assessments and continues to characterize the PACE obligation as a loan. Under this alternative, in the Agency's words: "[c]urrent combined loan-to-value ratio (reflecting all obligations secured by the underlying property, including the putative PACE obligation, and based on a current qualified appraisal would be no greater than $65 \%[$.$] " Id. (footnote omitted).$

This provision alone makes the alternative unworkable. Equity is commonly defined as the difference between the fair market value of a home and the amount the homeowner owes on the mortgage or mortgages. Alternative 2 would require more than 35% equity for a homeowner to participate in PACE. Where obligations such as special assessments, including PACE assessments, total 10% of the value of the home, as they do under many operating PACE programs, the effective required equity rises to 45%. ${ }^{25}$ Applying this requirement to the Sonoma County program, which, as discussed, has a very low rate of default, shows its drastic results. Sonoma County reported to us that as of August 1,2012, there were 1,684 residential properties participating in Sonoma County's PACE program. A 35\% equity requirement would decrease participation by 64% (to 603); a 45% equity requirement would decrease participation by 73% (to 461).

Alternative 2 seems designed only to substantially and unnecessarily restrict participation in PACE. We therefore urge the Agency to reject this alternative.

[^7]
D. The Third Risk-Mitigation Alternative - H.R. 2599 Underwriting Standards -

 protects the Enterprises and advances the public interest.The Agency's third alternative, entitled "H.R. 2599 Underwriting Standards," is the only alternative that addresses the Agency's concerns about risk and is, at the same time, practical and capable of implementation in the near term. Alternative 3 imposes a set of uniform requirements on all PACE programs nationwide addressing such things as: lien recording; exclusion of participants who are in arrears on mortgage payments or have declared bankruptcy; required energy audits; minimum savings-to-cost ratio for the improvements; and caps on the amount financed as measured against the estimated value of the property.

As set out below, Alternative 3 places additional requirements on even the most stringent and successful programs and thus can only further reduce risk in what are already low-risk programs. ${ }^{26}$ We acknowledge there are some details concerning Alternative 3 that remain to be worked out concerning costs, savings, and the useful life of improvements. These details are not a sufficient basis for the Agency to reject Alternative 3, however; expert agencies and entities already have created tools to address these areas, and they stand ready to assist the FHFA in areas that may be beyond its current expertise.

1. Alternative 3 will further reduce risk in what are already low-risk programs.

Alternative 3, the "Underwriting Standards" alternative, proposes to require for all PACE programs the standards set out in H.R. 2599, a bill introduced by Representative Nan Hayworth (R-NY) on July 20, 2011, with 54 bipartisan co-sponsors ${ }^{27}$ (the "Underwriting Standards" Alternative). As the bill states,

It is the purpose of this Act to ensure that those PACE programs which incorporate prudent programmatic safeguards to protect the interest of mortgage holders and property owners remain viable as a potential avenue for States and local governments to achieve the many public benefits associated with energy efficiency, water efficiency, and renewable energy retrofits. In addition, it is essential that the power and authority of State and local governments to exercise their longstanding and traditional powers to levy taxes for public purposes not be impeded.

[^8]H.R. 2599, 112th Cong. § 2 (2011).

The "prudent programmatic safeguards" in this alternative include certain standards that many operating PACE programs already require, in whole or in part. Some examples follow. In California, a PACE lien, like other liens for special assessments, is "recorded in the relevant jurisdiction's public land-title records" and the "PACE obligation is embodied in a written agreement expressing all material terms[.]" 77 Fed. Reg. 36108. Both Sonoma County's and Palm Desert's PACE programs exclude participants who have a Notice of Default showing on title, though they do not currently look back for a three-year period as this alternative would require. (Id.) Sonoma County already excludes participants who have filed for bankruptcy in the previous three years, and Palm Desert excludes those who are involved in a bankruptcy at the time of application; Alternative 3 would extend the bankruptcy look-back period to seven years. $I d$. Both Sonoma County and Palm Desert require that PACE improvements be installed by qualified contractors. (Id. at 36109.) ${ }^{28}$

The standards that local governments have included in their PACE programs have been sufficiently stringent that they have not resulted in any documented risk to Fannie Mae, Freddie Mac, or other mortgage holders. Still, local governments across California and the nation have stated their support for Alternative 3, which goes well beyond even the most stringent and rigorous of the operating PACE programs. Again taking the Sonoma County and Palm Desert PACE programs as examples, Alternative 3 will not only strengthen some existing provisions (such as lengthening the period for disqualifying default or bankruptcy), but will also add new, substantive provisions. For example, Alternative 3 requires these programs to perform audits to ensure that the savings resulting from improvements will exceed costs, and to conduct appraisals to ensure that PACE assessments do not exceed 10 percent of the property value. 77 Fed. Reg. 36109. Altogether, the standards in Alternative 3 will set a high, uniform bar for all existing and new PACE programs.

While PACE program experience to date suggests that these new standards are not necessary to address risk, nonetheless, local governments believe that PACE is sufficiently important that they are willing to invest substantial time and resources to include these additional standards to address FHFA's concerns. ${ }^{29}$

[^9]
2. Documenting Alternative 3's process would help to ensure that PACE improvements are reflected in home values.

As discussed in Section II, where the market is aware of efficiency and renewable energy improvements, for example, through green-labeling, home values reliably increase. To maximize opportunities for increasing PACE home values, it is essential that the market is aware of PACE improvements and that appraisals accurately reflect these improvements at the time of sale. See Victoria Doyle, Building Industry Research Alliance, The Role of Appraisals in Energy Efficiency Financing (May 2012) (prepared for Office of Energy Efficiency and Renewable Energy, DOE). ${ }^{30}$

Accordingly, we propose an additional documentation requirement that could easily be incorporated into Alternative 3. As a part of the PACE process, the required "certificate of completion" for the project, and the "total energy and water cost savings" and the "total cost to the property owner" reflected in the required "audit or feasibility study" (see 77 Fed. Reg. 36109) should be packaged into a document that could be referred to as a "PACE Certification." The certificate of completion for the project should contain the type of information and level of detail that would assist appraisers in valuing the improvements. The Appraisal Institute Residential Green and Energy Efficient Addendum provides a general template for the certificate, which could be filled out by the contractor on project completion. ${ }^{31}$ The property owner would be required to complete a simple form provided by the local government that would require as attachments the certificate of completion and, in addition, the cost/savings portion of the audit or feasibility study.

The local government would note the existence of a "PACE Certification" in the recorded lien and would make the PACE Certification available in the property records or in a publicly accessible database searchable by Assessor's Parcel Number. PACE programs could inform participants that their properties may be referred as "PACE Certified" (thereby creating a type of green label) until the PACE lien is extinguished. This label could be used, for example, in marketing the home in Multiple Listing Services. Appraisers, real estate agents, and prospective buyers would all have access to the PACE Certification document.
(...continued)
consent will be obtained so that it does not create an unnecessary barrier to PACE, e.g., by providing that mortgage holders are deemed to consent if a PACE program complies with FHFA's requirements.
${ }^{30}$ Available at www.nrel.gov/docs/fy12osti/54329.pdf. The author notes, among other things, that there is a need to improve and increase communication between "stakeholders," including homeowners, financing entities, and appraisers, concerning energy efficiency measures, and to provide evidence of the measures to the appropriate point of contact. $I d$. at pp. 14-15.
${ }^{31}$ See http://www.appraisalinstitute.org/education/green energy addendum.aspx. A copy of the current version of the Green Addendum is attached as Exhibit C.

This additional documentation step would further protect the Enterprises in the rare event of foreclosure on a property participating in PACE by ensuring that detailed information relevant to the value the PACE improvements is available in the marketplace.

3. Expert agencies, entities, and resources are available to assist FHFA in filling in any remaining program details.

The Agency states that it has "reservations" about Alternative 3 that relate to program details, specifically, the methodology to be used in computing costs and savings for the required audit or feasibility study and how the "useful life" of the improvement would be determined for purposes of setting the assessment term. 77 Fed. Reg. 36109. In fact, a quick internet search reveals that there are a number of tools currently and readily available that can be used to calculate cost, savings, and useful life. These include, but are not limited to, the Solar Advantage Value Estimator created by the CEC as part of its "Go Solar" program; ${ }^{32}$ the PV Value ${ }^{\text {TM }}$ Photovoltaic Energy Valuation Model recently developed by Sandia National Laboratory ${ }^{33}$ (in consultation with Solar Power Electric Power and the Appraisal Institute); ${ }^{34}$ the National Renewable Energy Laboratory's PVWatts ${ }^{\text {TM }}$ calculator, ${ }^{35}$ various location-specific solar value calculators; ${ }^{36}$ DOE's solar water heater calculator, ${ }^{37}$ DOE's suite of Energy and Cost Savings Calculators for Energy-Efficient Products; ${ }^{38}$ and the Database for Energy Efficient Resources, developed by the CEC and the California Public Utilities Commission, which contains well-documented estimates of energy and peak demand savings values, measure costs, and effective useful life in one data source. ${ }^{39}$ These are merely a sampling of the many diverse resources available.

Moreover, we note that DOE and the CEC have extensive expertise in complex program design and regulation related to efficiency and renewable energy, expertise that extends to efficiency and renewable energy cost, savings, and useful life. DOE, the CEC, and other expert agencies and entities, have indicated in their comments at the Advance Notice and Proposed
${ }^{32}$ Available at http://www.gosolarcalifornia.org/tools/save.php.
${ }^{33}$ Available at http://energy.sandia.gov/?page id=8047. The website notes that "[f]or appraisers, the inputs specific to PV in the Residential Green and Energy Efficient Addendum can be used as inputs"
${ }^{34}$ See http://spefl.com/pvvalue.
${ }^{35}$ Available at http://www.nrel.gov/rredc/pvwatts/.
${ }^{36}$ See, e.g., the New Orleans Solar Calculator, available at http://www4.eere.energy.gov/solar/sunshot/resource center/resources/new orleans solar calcul ator.
${ }^{37}$ Available at http://energy.gov/energysaver/articles/estimating-cost-and-energy-efficiency-solar-water-heater.
${ }^{38}$ Available at http://www1.eere.energy.gov/femp/technologies/eep eccalculators.html.
${ }^{39}$ Available at http://www.deeresources.com/.

Rule stages of this rulemaking their willingness to assist FHFA in filling in program details. ${ }^{40}$ While adopting Alternative 3 would be more challenging than simply saying "no" to PACE, the record establishes that every standard articulated in Alternative 3 can be formulated based on data, analysis, and reasonable and supported assumptions.

As its final "reservation," FHFA states that "a clear method for enforcing standards would be beneficial." 77 Fed. Reg. 36109. The method for enforcing the standards is plain: local government commitment. Those local governments with operating residential PACE programs have successfully undertaken such diverse tasks as creating experienced contractor lists and contractor criteria, checking participant eligibility, ensuring consumer protection, verifying project completion, recording necessary documents, and controlling risks to the program and to mortgage holders. Local governments have as great an interest - if not a greater interest - than does FHFA in making sure that PACE succeeds for all interested parties.

In sum, none of the Agency's stated concerns about Alternative 3 is a sufficient reason to reject this reasonable and considered alternative.

CONCLUSION

We appreciate the opportunity to comment on the Notice of Proposed Rulemaking and trust that the Agency will give serious consideration to Alternative 3, which would accommodate PACE and serve the public interest.

Sincerely,
/s/
JANILL RICHARDS
Supervising Deputy Attorney General JASON MALINSKY Deputy Attorney General
For KAMALA D. HARRIS
Attorney General

Attachments [Note: additional materials cited have been submitted under separate cover]

[^10]
EXHIBIT A

Assembly Bill No. 811

CHAPTER 159

An act to amend Sections 5898.12, 5898.20, 5898.22, and 5898.30 of, and to add Sections 5898.14 and 5898.21 to, the Streets and Highways Code, relating to contractual assessments, and declaring the urgency thereof, to take effect immediately.
[Approved by Governor July 21, 2008. Filed with
Secretary of State July 21, 2008.]

LEGISLATIVE COUNSEL'S DIGEST
AB 811, Levine. Contractual assessments: energy efficiency improvements.

Existing law authorizes the legislative body of any city, as defined, to determine that it would be convenient and advantageous to designate an area within which authorized city officials and free and willing property owners may enter into contractual assessments and make arrangements to finance public improvements to specified lots or parcels under certain circumstances. Existing law requires the legislative body to make these determinations by adopting a resolution indicating its intention to do so and requires the resolution to include certain information, including, but not limited to, identification of the kinds of public works that may be financed, a description of the boundaries of the area within which contractual assessments may be entered into, and a description of the proposed arrangements for financing the program. Existing law also directs an appropriate city official to prepare a report to include, among other things, the terms and conditions that would be agreed to by a property owner within the contractual assessment area and the city and identification of the types of facilities that may be financed through the use of contractual assessments.

This bill would additionally authorize a legislative body of any city, as defined, to determine that it would be in the public interest to designate an area within which authorized city officials and free and willing property owners may enter into contractual assessments to finance the installation of distributed generation renewable energy sources or energy efficiency improvements that are permanently fixed to real property, as specified. The bill would require the resolution of intention to include, among other things, the kinds of distributed generation renewable energy sources or energy efficiency improvements that may be financed as well as a statement specifying that it is in the public interest to finance those distributed generation renewable energy sources or energy efficiency improvements. The bill would further require the report to include, among other things, the types of distributed generation renewable energy sources or energy efficiency improvements that may be financed through the use of contractual
assessments. The bill would authorize a property owner, upon written consent of an authorized city official, to purchase directly the related equipment and materials for the installation of distributed generation renewable energy sources or energy efficiency improvements and to contract directly for the installation of those sources or improvements. The bill would make findings and a declaration in this regard.

This bill would declare that it is to take effect immediately as an urgency statute.

The people of the State of California do enact as follows:

SECTION 1. Section 5898.12 of the Streets and Highways Code is amended to read:
5898.12. (a) It is the intent of the Legislature that this chapter should be used to finance public improvements to lots or parcels which are developed and where the costs and time delays involved in creating an assessment district pursuant to other provisions of this division or any other law would be prohibitively large relative to the cost of the public improvements to be financed.
(b) It is also the intent of the Legislature that this chapter should be used to finance the installation of distributed generation renewable energy sources or energy efficiency improvements that are permanently fixed to residential, commercial, industrial, or other real property.
(c) This chapter shall not be used to finance facilities for parcels which are undergoing development.
(d) This chapter shall not be used to finance the purchase or installation of appliances that are not permanently fixed to residential, commercial, industrial, or other real property.
(e) Assessments may be levied pursuant to this chapter only with the free and willing consent of the owner of each lot or parcel on which an assessment is levied at the time the assessment is levied.

SEC. 2. Section 5898.14 is added to the Streets and Highways Code, to read:
5898.14. (a) The Legislature finds all of the following:
(1) Energy conservation efforts, including the promotion of energy efficiency improvements to residential, commercial, industrial, or other real property are necessary to address the issue of global climate change.
(2) The upfront cost of making residential, commercial, industrial, or other real property more energy efficient prevents many property owners from making those improvements. To make those improvements more affordable and to promote the installation of those improvements, it is necessary to authorize an alternative procedure for authorizing assessments to finance the cost of energy efficiency improvements.
(b) The Legislature declares that a public purpose will be served by a contractual assessment program that provides the legislative body of any city with the authority to finance the installation of distributed generation
renewable energy sources and energy efficiency improvements that are permanently fixed to residential, commercial, industrial, or other real property.

SEC. 3. Section 5898.20 of the Streets and Highways Code is amended to read:
5898.20. (a) (1) The legislative body of any city may determine that it would be convenient and advantageous to designate an area within the city, which may encompass the entire city or a lesser portion, within which authorized city officials and property owners may enter into contractual assessments for public improvements and to make financing arrangements pursuant to this chapter.
(2) The legislative body of any city may also determine that it would be convenient, advantageous, and in the public interest to designate an area within the city, which may encompass the entire city or a lesser portion, within which authorized city officials and property owners may enter into contractual assessments to finance the installation of distributed generation renewable energy sources or energy efficiency improvements that are permanently fixed to real property pursuant to this chapter.
(b) The legislative body shall make these determinations by adopting a resolution indicating its intention to do so. The resolution of intention shall include a statement that the city proposes to make contractual assessment financing available to property owners, shall identify the kinds of public works, distributed generation renewable energy sources, or energy efficiency improvements that may be financed, shall describe the boundaries of the area within which contractual assessments may be entered into, and shall briefly describe the proposed arrangements for financing the program. The resolution of intention shall state that it is in the public interest to finance the installation of distributed generation renewable energy sources or energy efficiency improvements, or both, pursuant to paragraph (2) of subdivision (a), if applicable. The resolution shall state that a public hearing should be held at which interested persons may object to or inquire about the proposed program or any of its particulars, and shall state the time and place of the hearing. The resolution shall direct an appropriate city official to prepare a report pursuant to Section 5898.22 and to enter into consultations with the county auditor's office or county controller's office in order to reach agreement on what additional fees, if any, will be charged to the city or county for incorporating the proposed contractual assessments into the assessments of the general taxes of the city or county on real property.
(c) As used in this chapter, each of the following terms has the following meaning:
(1) Notwithstanding Section 5005, "city" means a city, county, or city and county.
(2) "Legislative body" has the same meaning as defined in Section 5006.

SEC. 4. Section 5898.21 is added to the Streets and Highways Code, to read:
5898.21. Notwithstanding any other provision of this chapter, upon the written consent of an authorized city official, the proposed arrangements
for financing the program pertaining to the installation of distributed generation renewable energy sources or energy efficiency improvements that are permanently fixed to real property may authorize the property owner to purchase directly the related equipment and materials for the installation of distributed generation renewable energy sources or energy efficiency improvements and to contract directly for the installation of distributed generation renewable energy sources or energy efficiency improvements that are permanently fixed to the property owner's residential, commercial, industrial, or other real property.

SEC. 5. Section 5898.22 of the Streets and Highways Code is amended to read:
5898.22. The report shall contain all of the following:
(a) A map showing the boundaries of the territory within which contractual assessments are proposed to be offered.
(b) A draft contract specifying the terms and conditions that would be agreed to by a property owner within the contractual assessment area and the city.
(c) A statement of city policies concerning contractual assessments including all of the following:
(1) Identification of types of facilities, distributed generation renewable energy sources, or energy efficiency improvements that may be financed through the use of contractual assessments.
(2) Identification of a city official authorized to enter into contractual assessments on behalf of the city.
(3) A maximum aggregate dollar amount of contractual assessments.
(4) A method for setting requests from property owners for financing through contractual assessments in priority order in the event that requests appear likely to exceed the authorization amount.
(d) A plan for raising a capital amount required to pay for work performed pursuant to contractual assessments. The plan may include amounts to be advanced by the city through funds available to it from any source. The plan may include the sale of a bond or bonds or other financing relationship pursuant to Section 5898.28. The plan shall include a statement of or method for determining the interest rate and time period during which contracting property owners would pay any assessment. The plan shall provide for any reserve fund or funds. The plan shall provide for the apportionment of all or any portion of the costs incidental to financing, administration, and collection of the contractual assessment program among the consenting property owners and the city.
(e) A report on the results of the consultations with the county auditor's office or county controller's office concerning the additional fees, if any, that will be charged to the city or county for incorporating the proposed contractual assessments into the assessments of the general taxes of the city or county on real property, and a plan for financing the payment of those fees.

SEC. 6. Section 5898.30 of the Streets and Highways Code is amended to read:
5898.30. Assessments levied pursuant to this chapter, and the interest and any penalties thereon shall constitute a lien against the lots and parcels of land on which they are made, until they are paid. Division 10 (commencing with Section 8500) applies to the levy and collection of assessments levied pursuant to this chapter, insofar as those provisions are not in conflict with the provisions of this chapter, including, but not limited to, the collection of assessments in the same manner and at the same time as the general taxes of the city on real property are payable and any penalties and remedies and lien priorities in the event of delinquency and default.

SEC. 7. This act is an urgency statute necessary for the immediate preservation of the public peace, health, or safety within the meaning of Article IV of the Constitution and shall go into immediate effect. The facts constituting the necessity are:

In order for legislative bodies of cities and free and willing property owners to enter into contractual assessments to finance the installation of distributed generation renewable energy sources or energy efficiency improvements and for the state to begin to experience the effects of these contractual assessments, such as saving millions of kilowatthours, as early as this summer when usage is the highest, it is necessary that this act take effect immediately.

EXHIBIT B

1515 CLAY STREET, 20TH FLOOR
P.O. BOX 70550

OAKLAND, CA 94612-0550
Public: (510) 622-2100
Telephone: (510) 622-2137
Facsimile: (510) 622-2270
E-Mail: Ken.Alex@doj.ca.gov
June 22, 2010
Edward DeMarco, Acting Director
Federal Housing Finance Agency
1700 G. Street, N.W.
Washington, D.C. 20552-0003
FAX: (202) 4143823

RE: Energy Efficiency and Renewable Energy Assessments (PACE) and Lien Priority

Dear Acting Director DeMarco:
On May 17, 2010, we sent you a letter expressing concern about lender and industry advice letters issued by Fannie Mae and Freddie Mac on May 5, 2010. These advice letters equated financing under Property Assessed Clean Energy (PACE) programs with "loans," and strongly suggested that such "loans," because they have lien priority, would preclude sale of mortgages to Fannie and Freddie. As we have repeatedly made clear to FHFA General Counsel, Alfred Pollard, under California law, PACE financing is achieved through special assessments, not loans. The distinction is key. Like other special assessments, such as those used by California's local governments since the beginning of the last century to finance road paving and sidewalk improvements, unpaid PACE assessments take priority over mortgages. Fannie Mae's and Freddie Mac's own standardized documents recognize the priority of assessment liens.

While the advice letters are ambiguous, the effect they have had in this state is not. The letters have had a devastating impact on PACE programs in California, placing at risk hundreds of millions of dollars of federal stimulus funding, hundreds of millions of dollars of state, local and private funding, and impacting California's efforts to promote green jobs and greenhouse gas emission reductions. Despite requests from the California Attorney General, the Governor, the Vice President, Members of Congress, the Department of Energy, the private lending community, and the Council on Environmental Quality, your agency has taken no action to resolve the situation or even identify a process by which the matter will be resolved.

The FHFA has raised a potentially serious issue - that PACE programs may increase the risk of default by increasing homeowner debt. As the attached hypothetical establishes, however, the practical effect on Fannie Mae's and Freddie Mac's portfolios is minimal, given the relatively small liens that may result from missed PACE assessments and the default rate that reasonably can be expected in PACE communities. Nonetheless, California and the local governments that are attempting to move forward with PACE programs are prepared immediately - to discuss with you how those risks have already been addressed and minimized through detailed program requirements and "best practices." Depending on what further
concerns the FHFA may have, we commit to working with you to identify and implement further actions as needed. We cannot, however, afford your agency's continued silence. The time to act on this matter is at hand.

There is a great deal at stake here for California and for the nation's economy. We take seriously the FHFA's concerns about mortgage security and are prepared to address those concerns. We ask you to take seriously the need to move forward immediately with California's PACE programs, with energy efficiency and renewable energy retrofit efforts, with federal stimulus funding, and with California's determined efforts to create jobs and economic momentum.

We would like to set up a meeting as soon as possible in order to resolve this matter. We believe that the meeting would benefit from the participation of the Vice President's Office, the Governor's Office, and other officials who have been working extensively on this matter. Please contact me at your earliest convenience by the end of this month so that we can move forward in the most constructive manner possible.

Thank you for your immediate attention.

Senior Assistant Attorney General

For EDMUND G. BROWN JR. Attorney General

Attachments
cc: Joseph R. Biden Jr., Vice President
Dianne Feinstein, U.S. Senator
Barbara Boxer, U.S. Senator
Steven Chu, Secretary, U.S. Department of Energy
Shaun Donovan, Secretary, U.S. Department of Housing and Urban Development
Timothy Geithner, Secretary, U.S. Department of the Treasury
Carol Browner, Director, White House Office of Energy and Climate Change
Nancy Sutley, Chair, Council on Environmental Quality
Michael J. Williams, President and Chief Executive Officer, Fannie Mae
Charles E. Haldeman, Jr., Chief Executive Officer, Freddie Mac
Arnold Schwarzenegger, Governor, State of California
Bill Lockyer, State Treasurer and Chair, CAEATFA
Karen Douglas, Chair, California Energy Commission

Hypothetical Exploring Risk Associated with PACE Liens Averaged Over a Portfolio of Mortgages

The impact of the PACE financing on the risk borne by mortgage lenders is minimal. The following mortgage foreclosure scenario shows why:

A homeowner of a house valued at $\$ 300,000$ with a $\$ 250,000$ mortgage seeks $\$ 15,000$ in PACE financing, reflecting the costs of a renewable energy system and energy efficiency upgrades, less all available rebates and incentives. (Some large solar projects may cost more; efficiency-only upgrades will be substantially less.)

With a 7\% interest rate (which is on the high side) and a 20-year payback period, the estimated annual PACE assessment would be $\$ 1,470 .{ }^{1}$

The homeowner stops paying the mortgage and property taxes, including assessments. Delinquency on the mortgage occurs when the home owner is less than three monthly payments behind in the mortgage, and default when the homeowner is three or more monthly payments behind; default triggers foreclosure. ${ }^{2}$

At the time of foreclosure for failing to pay the mortgage, it is likely that at most, one PACE assessment of $\sim \$ 1,500$ would have achieved priority lien status. (This is because under California law, there is no acceleration of the entire amount financed for failure to pay an assessment, including a PACE assessment; rather, the new owner assumes the continuing obligation to pay the assessments as they become due.)

If we run the same hypothetical with PACE financing of $\$ 20,000$, the PACE lien consisting of one missed annual assessment would be $\$ 1,960$.

This exercise suggests that with a "portfolio" of Fannie/Freddie mortgages that have PACE liens, assuming a high foreclosure rate of 10%, PACE seniority would average $\$ 150$ per home ($10 \% \times \$ 1,500$). Using a more reasonable foreclosure rate of 5%, average PACE seniority per home would be a mere $\$ 75$.

[^11]
EXHIBIT C

[^12]| Client: | | Client File \#: | |
| :--- | :--- | :--- | :--- |
| Subject Property: | | Appraisal File \#: | |

Solar Panels
The following items are considered within the appraised value of the subject property:

Description	Array \#1	\square Leased \square Owned	Array \#2	\square Leased \square Owned	Array \#3	\square Leased \square Owned	Array \#4	\square Leased \square Owned
KW								
Age of Panels								
Energy Production Kwh per Array								
Source for Production								
Location (Roof, Ground, Etc.)								
If Roof/Slope for Array								
Azimuth per Array								
Age of Inverter(s)								
Name of Utility Company:			Cost per Kwh charged by Company: \$ /Kwh					
Comments (Discuss incentives available for new panels, condition of current panels, and any maintenance issues)								

Green Features

The following items are considered within the appraised value of the subject property:

Certification	Year Certified:	Certifying Organization:	\square Reviewed on site	\square Certification attached to this report
Rating	Score:	\square LEED® Certified: \square Silver \square Gold $\quad \square$ Platinum \square Other:		
		\square ICC-700 National Green Building Standard Certified: \square Bronze		\square Silver \square Gold $\quad \square$ Emerald
		Certifying Organizations Green Score Range - High Score: Low Score:		
Additions	Explain any additions or changes made to the structure since it was certified:			
	Do changes require recertification to verify rating is still applicable? \square Yes \square No			
Comments				

[^13]| Client: | | Client File \#: | |
| :--- | :--- | :--- | :--- |
| Subject Property: | | Appraisal File \#: | |

Location - Site
The following items are considered within the appraised value of the subject property:

Walk Score	Score:	Source:				
Public Transportation	\square Bus - Distance:	Blocks	\square Train - Distance:	Blocks	\square Subway - Distance:	Blocks
Site	Orientation - front faces:East/West North/South		Landscaping:\square Xeriscaped $\quad \square$ Zero Impact $\quad \square$ Natural			
Comments						

Incentives - Amount of Incentive and Terms

The following items are considered within the appraised value of the subject property:

| Federal | |
| :--- | :--- | :--- |

*NOTICE: The Appraisal Institute publishes this form for use by appraisers where the appraiser deems use of the form appropriate. Depending on the assignment, the appraiser may need to provide additional data, analysis and work product not called for in this form. The Appraisal Institute plays no role in completing the form and disclaims any responsibility for the data, analysis or any other work product provided by the individual appraiser(s).

September 12, 2012

Via Electronic and Overnight Mail

Federal Housing Finance Agency
c/o Alfred M. Pollard, General Counsel
Eighth Floor, 400 Seventh Street, S.W.
Washington, D.C. 20024
(Comments/RIN 2590-AA53)

RE: Expert Reports in Support of the Comments of the California Attorney General on the Federal Housing Finance Agency's Notice of Proposed Rulemaking re Property Assessed Clean Energy (RIN 2590-AA53)

The California Attorney General's Office retained the services of Joseph T. Janczyk, Ph.D., and his firm Empire Economics, to conduct a case-study economic analysis of the Sonoma County Energy Independence Program, one of the largest and longest-running Property Assessed Clean Energy (PACE) programs in the nation. We anticipate that the case study will assist the Federal Housing Finance Agency in its pending rulemaking on PACE.

We have attached the two reports prepared by Dr. Janczyk:

- Empire Economics, Economic Analysis of Mortgage Loan Default Rates, Sonoma County Energy Independence Program (SCEIP) (June 28, 2012) ("Default Rate Report") (Exhibit 1)
- Empire Economics, Comprehensive Economic Analysis of the Factors Underlying Default, Sonoma County Energy Independence Program (SCEIP) (August 24, 2012) ("Default Factors Report") (Exhibit 2)

Following these reports is a biography for Dr. Janczyk and a firm résumé for Empire Economics (Exhibit 3).

Federal Housing Finance Agency
September 12, 2012
Page 2

We would appreciate it if you would ensure that these reports are placed into the rulemaking record.

Sincerely,
/s/
JANILL RICHARDS
Supervising Deputy Attorney General
For KAMALA D. HARRIS
Attorney General

Attachments

EXHIBIT 1

ECONOMIC ANALYSIS OF RESIDENTIAL MORTGAGE LOAN DEFAULT RATES

SONOMA COUNTY ENERGY INDEPENDENCE PROGRAM (SCEIP)

SONOMA COUNTY, CALIFORNIA

PREPARED BY:
EMPIRE ECONOMICS, INC. JOSEPH T. JANCZYK, PH.D.

JUNE 28, 2012

OVERVIEW OF CONTENTS

1. Introduction

Definition of a Mortgage Default
Description of Statistically Significant
2. Economic Analysis of Residential Mortgage Loan Default Rates
A. Methodology Underlying the Statistical Analysis
B. Number of Total and Residential Mortgage Defaults: Sonoma County and SCEIP
C. Number of Residential Properties with Mortgages: Sonoma County and SCEIP
D. Mortgage Loan Default Rates for Residential Properties with Mortgages: Sonoma County and SCEIP
E. Statistical Significance of the Differences in Mortgage Loan Default Rates for Residential Property: Sonoma County and SCEIP
3. Conclusions on Residential Mortgage Defaults for Sonoma County and SCEIP
4. Number of SCEIP Residential Properties in Mortgage Default Not Sufficient for a Cross Comparison Analysis of Mortgage Loan Characteristics

Appendix: Detailed Information on SCEIP Default Properties

1. INTRODUCTION

The purpose of this report is to perform an economic analysis of the Mortgage Default Rates for the residential properties (owner occupied homes with mortgages) that are in the Sonoma County Energy Independence Program (SCEIP).

Specifically, this involves an analysis of the Mortgage Default Rates for residential properties with mortgages for both Sonoma County and SCEIP, and then a comparison of these Default Rates, to determine if the difference between them is statistically significant.

This analysis demonstrates that the residential properties in SCEIP have a substantially lower Mortgage Default Rate than for Sonoma County, and this difference is statistically significant at the $99 \%+$ level, effectively ruling out that this difference occurs just by chance.

Definition of "Mortgage Default"

A "Mortgage Default" is defined herein as a borrower missing one or more mortgage payments, and then the lender taking action by filing a Notice of Default in the property records.
> If the default is not cured by the borrower, then the next step would be for the lender to take the property to Auction for bids in a public forum; if a bid is sufficient to cover the amount of the mortgage debt, then the sale may be consummated.
> However, if bids are not satisfactory to the lender, typically because they are below mortgage balance, then the property becomes Bank Owned - Real Estate Owned (REO).

For purposes of this Study, "Mortgage Default" includes any property which received a Notice of Default and has not cured the default, and so this includes properties that are "scheduled for auction" as well as properties that are "bank owned".

Note: The above discussion is meant to be a general description of the foreclosure process, and, as such, should not be regarded as being a precise technical legal description of the foreclosure process.

Description of "Statistically Significant"

The term "statistically significant" means that based upon a consideration of the average rates of Mortgage Defaults for properties in SCEIP and Sonoma County, and then taking into consideration their respective standard deviations which allows for variations from their averages, the differences in their average Default Rates are significantly different from each other. An informal way of characterizing statistically significant is that the difference in the Default Rates between SCEIP and Sonoma County is not due to chance.

2. ECONOMIC ANALYSIS OF RESIDENTIAL MORTGAGE LOAN DEFAULT RATES

2-A. METHODOLOGY UNDERLYING THE STATISTICAL ANALYSIS

The types of data that are required for the analysis, along with the relevant formulas for the analysis of these data, are as follows:

Statistical Significance of Difference in Default Rates: Sonoma County vs. SCEIP

The statistical significance of the difference in the Mortgage Default Rates for the residential properties in SCEIP and Sonoma County is determined by using a standardized t-test.
$>$ The first step is to calculate the average Default Rates for properties in SCEIP and Sonoma County.
$>$ The next step is to calculate the standard deviation for the properties in SCEIP and Sonoma County; this measures the degrees of variation around their respective averages.
$>$ Third, the differences in the Default Rates for SCEIP and Sonoma County, after taking into account their standard deviations from their averages, are compared.

Finally, if the Default Rates for properties in SCEIP and Sonoma County, after allowing for the standard deviation variations from their averages do not overlap, then the difference between them is considered to be statistically significant.

Therefore, the use of the relevant empirical data, along with the statistical formula, will determine if Mortgage Default Rates for residential properties with mortgages for SCEIP are different than those for Sonoma County in a statistically significant manner.

2-B. NUMBER OF TOTAL AND RESIDENTIAL MORTGAGE DEFAULTS: SONOMA COUNTY AND SCEIP

The Mortgage Default Data were compiled on May 28, 2012 from Foreclosure Radar, a respectable and well-recognized firm that specializes in gathering Mortgage Default Information for properties that are located in California.

Accordingly, for Sonoma County and SCEIP, the total number of residential and non-residential properties that have Mortgage Defaults, along with only the residential properties that have Mortgage Defaults, are as follows:

Sonoma County:
Total Default Properties: $\quad 2,081$-Residential and Non-Residential*
Residential Default Properties: 1,834-Residential Only
SCEIP:
Total Default Properties: $\quad 14$-Residential and Non-Residential
Residential Default Properties: 13 -Residential Only**

[^14]
2-C. NUMBER OF RESIDENTIAL PROPERTIES WITH MORTGAGES: SONOMA COUNTY AND SCEIP

To determine the percentage shares of properties in Mortgage Default, it is critical to accurately identify the TOTAL number of residential properties with mortgages in Sonoma County and SCEIP; accordingly, these are as follows:

Sonoma County: Source of Data: 2010 Census
Number of Owner Occupied Homes: 112,280
Number of Homes with Mortgages:
83,732
SCEIP: Source of Data: Sonoma County, Auditor-Controller Treasurer-Tax Collector

Number of Homes: 1,648
Number of Homes with Mortgages: 1,536
(Based upon an analysis performed by Sonoma County in October 2011, 93.2\% of the homes in SCEIP had mortgage loans.)

2-D. MORTGAGE LOAN DEFAULT RATES FOR RESIDENTIAL PROPERTIES WITH MORTGAGES: SONOMA COUNTY AND SCEIP

The shares of properties in Mortgage Default are now calculated, based upon the number of residential properties in Mortgage Default as compared to the total number of residential properties with mortgages, for both Sonoma County and SCEIP:

Sonoma County: Share of Residential Homes in Default: 2.19\%
Number of Residential Mortgage Defaults:
1,834
Number of Homes with Mortgages:
83,732

SCEIP: Share of Residential Homes in Default:

 0.85\%Number of Residential Mortgage Defaults:
13
Number of Homes with Mortgages:
1,536

2-E. STATISTICAL SIGNIFICANCE OF THE DIFFERENCES IN MORTGAGE LOAN DEFAULT RATES FOR RESIDENTIAL PROPERTY: SONOMA COUNTY AND SCEIP

The difference in the Mortgage Default Rates for Sonoma County and SCEIP appears to be substantial, 2.19% versus 0.85%, respectively, but it is necessary to perform a statistical test to identify the significance of this differential.

The statistical test that is relevant is called the "t-test" and this takes into account the "average" Mortgage Default Rates, as set-forth above, as well as their variability, which is measured by their standard deviations.

Accordingly, the relevant data for performing this t-test is as follows:
Sonoma County: Total Number of Residential Mortgage Properties: 83,732

$$
\begin{array}{ll}
\text { Average Default Rate: } & 2.19 \% \\
\text { Standard Deviation: } & 0.15 \%
\end{array}
$$

Three Standard Deviations Below the Average: 1.75\%
SCEIP: Total Number of Residential Mortgage Properties: 1,536 Average Default Rate: 0.85% Standard Deviation: 0.09\%

Three Standard Deviations Above the Average: 1.12\%
So, based upon a standard t-test, which considers the Default Rate Averages as well as their Standard Deviations, the Default Rates for Sonoma County (1.75% lower bound) and SCEIP (1.12% upper bound) do not overlap, and so the difference is highly statistically significant, at the $99 \%+$ level.

3. CONCLUSIONS ON RESIDENTIAL MORTGAGE DEFAULTS FOR SONOMA COUNTY AND SCEIP

The economic analysis of the Mortgage Default Rates for the residential properties that are in the Sonoma County Energy Independence Program (SCEIP) demonstrated the following:
> The Mortgage Default rates for the residential properties with mortgages is only 0.85% (less than 1\%) for SCEIP and 2.19\% (more than 2\%) for Sonoma County.
$>$ From a statistical perspective, this Mortgage Default differential of 1.34% between SCEIP and Sonoma County, taking into account their respective standard deviations, is highly significant, at the $99 \%+$ level, effectively ruling out that this difference occurs just by chance.

Therefore, based upon the empirical data along with the statistical analysis, the properties in SCEIP have a substantially lower Mortgage Default Rate than for Sonoma County, and this difference is statistically significant at the $99 \%+$ level.

For additional information on the SCEIP Mortgage Default properties, refer to the Appendix.

4. NUMBER OF SCEIP RESIDENTIAL PROPERTIES IN MORTGAGE DEFAULT NOT SUFFICIENT FOR A CROSS-COMPARISON ANALYSIS OF MORTGAGE LOAN CHARACTERISTICS

Sonoma County California was chosen as a strategic area to conduct research, since it is regarded as having the largest number of properties in a PACE program, as compared to other public entities.

However, due to the minimal number of Mortgage Defaults for SCEIP, a level that is significantly statistically lower than for Sonoma County as a whole, there are NOT a sufficient number of SCEIP Properties in Mortgage Default to conduct various types of cross-comparison analysis of the mortgage loan characteristics for PACE vs. non-PACE properties.

Specifically, since there are only 13 Mortgage Default residential properties in SCEIP, there is NOT a sufficient number of such properties to perform a reliable statistical analysis of cross comparisons of their mortgage loan characteristics.

DISCLAIMER REGARDING USE OF STUDY

The State of California Department of Justice engaged Empire Economics to perform a study of the Sonoma County Energy Independence Program, a Property Assessed Clean Energy (PACE) program.

The stated purpose of the study is to inform the public rulemaking of the Federal Housing Finance Agency (FHFA) on PACE, which was instituted on January 26, 2012. Use of this Study, or parts thereof, for any other purpose is an unauthorized use of this Study.

Empire Economics hereby disclaims any and all responsibility or liability resulting from the FHFA's rulemaking, the FHFA's final PACE rule, or from any unauthorized uses.

APPENDIX

DETAILED INFORMATION ON THE SCEIP MORTGAGE DEFAULT PROPERTIES

The following data on the 14 SCEIP Default Properties (residential and agricultural) was compiled from Core Logic Real Quest, which obtains its information from public records as well as other sources.

Personal information appearing on these records has been redacted.

This data is being provided for informational purposes only;
Empire Economics makes no warranty regarding its accuracy/reliability.

Property Detail Report
 For Property Located At

CoreLogic
RealQuest Professional

Record \#: 1
Owner Information:

Owner Name:		
Mailing Address:		
Phone Number:	Vesting Codes:	HW / / JT
Location Information:		
Legal Description: MAP E5 74		
County. SONOMA, CA	APN:	
Census Tract/Block: 1539.03/4	Alternate APN:	
Township-Range-Sect:	Subdivision:	
Legal Book/Page:	Map Reference:	74-F5 / 322-H2
Legal Lot: 4	Tract\#:	
Legal Block:	School District:	HEALDSBURG
Market Area:	Munic/Township:	
Neighbor Code:		
Owner Transfer Information:		
Recording/Sale Date: 10/03/2006 /09/26/2006	Deed Type:	GRANT DEED
Sale Price:	1st Mtg Document\#:	
Document \#:		
Last Market Sale Information:		
Recording/Sale Date: I	1st Mtg Amount/Type:	1
Sale Price:	1st Mtg Int. Rate/Type:	I
Sale Type:	1st Mitg Document\#:	
Document \#:	2nd Mtg Amount/Type:	I
Deed Type:	2nd Mtg Int. Rate/Type:	I
Transfer Document\#:	Price Per SqFt:	
New Construction:	Multi/Split Sale:	

New Construction:
Title Company:
Lender:
Seller Name:
Prior Sale Information:
Prior Rec/Sale Date: \quad Prior Lender:

| Prior Sale Price: \quad Prior 1st Mtg Amt/Type: $\quad I$ |
| :--- | :--- |

Prior Doc Number: Prior 1st Mitg Rate/Type: I
Prior Deed Type:
Property Characteristics:

Gross Area:		Parking Type:	GARAGE	Construction:	WOOD FRAMEICB
Living Area:	1,770	Garage Area:	864	Heat Type:	FLOOR FURNACE
Tot Adj Area:		Garage Capacity.	3	Exterior wall:	WOOD
Above Grade:		Parking Spaces:	3	Porch Type:	
Total Rooms:	6	Basement Area:		Patio Type:	
Bedrooms:	2	Finish Bsmnt Area:		Pool:	
Bath(F/H):	$1 /$	Basement Type:		Air Cond:	YES
Year Built/Eff:	1934 /	Roof Type:		Style:	L-SHAPE
Fireplace:	Y/1	Foundation:	RAISED	Quality.	AVERAGE
\# of Stories:	1.00	Roof Material:	WOOD SHAKE	Condition:	
Other Improver Site Informa	LAUND				

pro.realquest.com/jsp/report.jsp?\&ccient=\&action=confirm\&type=getreportcs\&reportoptions=83be5126-...

RealQuest.com (18) - Report

Zoning:	CITYHE	Acres:	$\mathbf{0 . 2 2}$	County Use:	DWELLING (0010)
Lot Area:	$\mathbf{9 , 5 8 3}$	Lot Width/Depth:	$\mathbf{7 2 \times 1 3 7}$	State Use:	
Land Use:	$\mathbf{S F R}$	Res/Comm Units:	$\mathbf{1 / f}$	Water Type:	PUBLIC PUBLIC
Site Influence:				Sewer Type:	SERVICE
Tax Information:					
Total Value:	$\mathbf{\$ 1 7 7 , 0 3 9}$	Assessed Year:	$\mathbf{2 0 1 1}$	Property Tax	$\mathbf{\$ 6 , 2 8 7 . 1 6}$
Land Value:	$\mathbf{\$ 5 3 , 3 6 4}$	Improved \%:	$\mathbf{7 0 \%}$	TaxArea:	$\mathbf{0 0 2 0 1 6}$
Improvement Value: $\mathbf{\$ 1 2 3 , 6 7 5}$	TaxYear:	$\mathbf{2 0 1 1}$	Tax Exemption:		
Total Taxable Value: $\mathbf{\$ 1 7 7 , 0 3 9 ~}$					

Property Detail Report
For Property Located At

CoreLogic'
RealQuest Professional

Record \#: 2

Owner Information:				¢	
Owner Name:					
Mailing Address:					
Phone Number:		Vesting Codes:		HW	JT
Location Information:					
Legal Description:	MAP D3 00183				
County.	SONOMA, CA	APN:			
Census Tract/Block: Township-Range-Sect:	1509.01/5	Alternate A			
	Township-Range-Sect:	Subdivision:		LBE	RTY MDWS
Legal Book/Page: Legal Lot:		Map Reference:		183	/ $365-\mathrm{C5}$
	13	Tract \#:			
Legal Block:		School District:		PET	LUMA
Market Area:		Munic/Township:			
Neighbor Code:					
Owner Transfer Information:					
Recording/Sale Date:	I	Deed Type			
Sale Price:		1stMtg Document\#:			
Document\#:					
Last Market Sale Information:					
Recording/Sale Date:	12/31/2008 /12/28/2008	1st Mtg Amount/Type:		\$294,364 / FHA	
Sale Price:	\$298,500	1st Mtg Int. Rate/Type:		5.38 /	
Sale Type:	FULL	1st Mtg Document\#:			
Document\#:		2nd Mitg Amount/ype:		1	
Deed Type:	GRANT DEED	2nd Mtg Int. Rate/Type:		1	
Transfer Document\#:		Price Per SqFt:		\$170.96	
New Construction:		Multi/Split Sale:			
Title Company:	FIDELITY NATIONAL TITLE COPLAZA HM MTG INC				
Lender:					
Seller Name:					
Prior Sale Information:					
Prior Rec/Sale Date:	11/05/1999 /11/03/1999	Prior Lender:		FTM MTG CO \$148,750/CONV IFX	
Prior Sale Price:	\$212,500	Prior 1st Mtg AmtType:			
Prior Doc Number:		Prior 1st Mtg Rate/Type:			
Prior Deed Type: GRANT DEED					
Property Characteristics:					
Gross Area:	Parking Type:	GARAGE	Construction:		WOOD FRAMEICB
Living Area: $\quad 1$,	1,746 Garage Area:	264	Heat Typ		
Tot Adj Area:	Garage Capacity.		Exterior		
Above Grade:	Parking Spaces:	1	Porch Ty		

pro.realquest.com/jsp/report.jsp?\&client=\&action=confirm\&type=getreportcs\&reportoptions=83be5126-...

Total Rooms:	4	Basement Area:	480	Patio Type:	PATIO
Bedrooms:	2	Finish Bsmnt Area:		Pool:	
Bath(F/H):	31	Basement Type:	BASEMENT	Air Cond:	YES
Year Built/Eff.	1984 /	Roof Type:		Style:	L-SHAPE
Fireplace:	Y/1	Foundation:		Quality.	GOOD
\# of Stories:	3.00	Roof Material:		Condition:	
Other Improvements: OPEN DECKSite Information:					
Zoning:	CITYPE	Acres:	0.02	County Use:	PLANNED UNIT RESID (0015)
Lot Area:	873	Lot Width/Depth:	\mathbf{x}	State Use:	
Land Use:	PUD	Res/Comm Units:	$1 /$	Water Type:	
Site Influence:				Sewer Type:	
Tax Information:					
Total Value:	\$299,782	Assessed Year:	2011	Property Tax	\$4,294.76
Land Value:	\$120,616	Improved \%:	60\%	Tax Area:	003000
Improvement Value:	\$179,166	Tax Year:	2011	Tax Exemption:	
Total Taxable Value:	\$299,782				

Property Detail Report
 For Property Located At

CoreLogic RealQuest Professional

Record\#:3
Owner Information:

Owner Name: Mailing Address:			
Phone Number:		Vesting Codes:	HW //JT
Location Information:			
Legal Description:	LOT 1		
County:	SONOMA, CA	APN:	
Census Tract/Block:	1530.01/2	Alternate APN:	
Township-Range-Sect:		Subdivision:	PAGE COUNTRY ESTATES PH 01
Legal Book/Page:		Map Reference:	129-A4 /384-D4
Legal Lot:	1	Tract\#:	
Legal Block:		School District:	SANTAROSA CITY
Market Area:		Munic/Township:	
Neighbor Code:			
Owner Transfer Information:			
Recording/Sale Date:	1	Deed Type:	
Sale Price:		1st Mtg Document\#:	
Document\#:			
Last Market Sale Information:			
Recording/Sale Date:	04/15/2002 / 04/05/2002	1st Mtg Amount/Type:	\$264,000 / CONV
Sale Price:	\$335,000	1st Mtg Int. Rate/Type:	7.25 / ADJ
Sale Type:	FULL	1st Mtg Document\#:	
Document\#:		2nd Mtg Amount/Type:	\$66,000 / CONV
Deed Type:	GRANT DEED	2nd Mtg Int. Rate/Type:	1 FIXED
Transfer Document\#:		Price Per SqFt:	\$197.99
New Construction:		Multi/Split Sale:	
Title Company.	FIRST AMERICAN TITLE		
Lender:	CHAPEL MTG		
Seller Name:			
Prior Sale Information:			
Prior Rec/Sale Date:	07/16/1996	Prior Lender:	

Property Detail Report
 For Property Located At

Record \#: 4

Owner Information:

Owner Name:			
Mailing Address:			
Phone Number:		Vesting Codes:	SW II
Location Information:			
Legal Description:	PARCEl MAPS 194 PG5 UNTT 25 LOT 1,2		
County:	SONOMA, CA	APN:	
Census Tract/Block:	$1515.02 / 1$	Alternate APN:	
Township-Range-Sect:		Subdivision:	
Legal Book/Page:		Map Reference:	130-A6/384-J7
Legal Lot:	1	Tract\#:	
Legal Block:		School District:	SANTA ROSA CITY
Market Area:		Munic/Township:	
Neighbor Code:			
Owner Transfer Information:			
Recording/Sale Date:	I	Deed Type:	
Sale Price:		1st Mtg Document\#:	
Document\#:			
Last Market Sale Information:			
Recording/Sale Date:	04/10/2012 / 04/02/2012	1st Mtg Amount/Type:	\$98,400 / CONV
Sale Price:	\$123,000	1st Mtg Int. Rate/Type:	1
Sale Type:	FULL	1st Mtg Document\#:	
Document\#:		2nd Mtg Amount/ype:	1

[^15]| Deed Type: | GRANT DEED 2 | | 2nd Mtg Int. Rate/Type: Price Per SqFt: | | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Transfer Document\#: P | | | | | | | |
| New Construction: | | | | | | | |
| Title Company. | FIRST AMERICAN TITLE | | | | |
| Lender: | LAND HM FIN'L SVCS | | | | |
| Seller Name: | | | | | |
| Prior Sale Information: | | | | | |
| Prior Rec/Sale Date: | 04/26/2005 / 04/20/2005 | | Prior Lender: | | FINANCE AMERICA |
| Prior Sale Price: | \$300,000 | | Prior 1st Mtg Amt/Type: Prior 1st Mtg Rate/Type: | | \$269,910 / CONV
 6.49 / ADJ |
| Prior Doc Number: | CRANT | | | | |
| Prior Deed Type: | GRANT DEED | | Prior 1st Mtg Rate/Type: | | |
| Property Characteristics: | | | | | |
| Gross Area: | | Parking Type: | | Construction: | WOOD RAMEICB |
| Living Area: | 1,255 | Garage Area: | | Heat Type: | |
| Tot Adj Area: | | Garage Capacity. | | Exterior wall: | |
| Above Grade: | | Parking Spaces: | | Porch Type: | |
| Total Rooms: | 3 | Basement Area: | | Patio Type: | PATIO |
| Bedrooms: | 2 | Finish Bsmnt Area: | | Pool: | |
| Bath(F/H): | 21 | Basement Type: | | Air Cond: | YES |
| Year Built / Eff. | 1975 I | Roof Type: | | Style: | U-SHAPE |
| Fireplace: | 1 F | Foundation: | | Quality: | GOOD |
| \# of Stories: | 1.00 | Roof Material: | | Condition: | |
| Other Improvements: OPEN DECK | | | | | |
| Site Information: | | | | | |
| Zoning: | CITYSR | Acres: | 0.03 | County Use: | CONDOMINIUM
 UNIT (0011) |
| Lot Area: | 1,210 | Lot Width/Depth: | x | State Use: | |
| Land Use: | CONDOMINIUM | Res/Comm Units: | 241 | Water Type: | |
| Site Influence: | | | | Sewer Type: | |
| Tax Information: | | | | | |
| Total Value: | \$146,000 | Assessed Year: | 2011 | Property Tax | \$2,271.28 |
| Land Value: | \$58,000 | Improved \%: | 60\% | TaxArea: | 004002 |
| Improvement Value: | \$88,000 | Tax Year: | 2011 | Tax Exemption: | |
| Total Taxable Value: | \$139,000 | | | | |

Property Detail Report
 For Property Located At

CoreLogic
RealQuest Professional

Record\#: 5

Owner Information:

Owner Name:
Mailing Address:

Phone Number:
Vesting Codes:
MM//SE
Location Information:
Legal Description:

County.
SONOMA, CA
APN:
Alternate APN:
Subdivision:
Map Reference: 118-D5/365-C6
Township-Range-Sect:
Legal Book/Page:
Tract\#:
School District: SANTA ROSA CITY
Munic/Township:
Legal Block:
Market Area:
Neighbor Code:
Owner Transfer Information:

[^16]

Property Detail Report

For Property Located At

Record \#: 6

Owner Information:

Owner Name:
Mailing Address:
Phone Number:
Location Information:
Vesting Codes:
HW/U/
pro.realquest.com/jsp/report.jsp?\&client=\&action=confirm\&type=getreportcs\&reportoptions=83be5126-...

Legal Description:	LOT 28					
County:	SONOMA, CA		APN:			
Census Tract/Block:	1528.01/4		Alternate APN:			
Township-Range-Sect			Subdivision:		SAN MIGUEL	
Legal Book/Page:			Map Refere		128	$=1 / 384-B 1$
Legal Lot:	28		Tract \#:			
Legal Block:			School District:		SANTAROSA CITY	
Market Area:			Munic/Township:			
Neighbor Code:						
Owner Transfer Information:						
Recording/Sale Date:			Deed Type:			
Sale Price:			1st Mtg Document\#:			
Document\#:						
Last Market Sale Information:						
Recording/Sale Date:	06/30/1995 ।		1st Mtg Amount/Type:		\$139,800 / CONV	
Sale Price:	\$175,000		1st Mtg Int. Rate/Type:		/ FIX	
Sale Type:	FULL		1st Mtg Document\#:			
Document\#:			2nd Mtg Amount/Type:		1	
Deed Type:	GRANT DEED		2nd Mtg Int. Rate/Type:		1	
Transfer Document\#:			Price Per SqFt:		\$122.55	
New Construction:			Mult/Split Sale:			
Title Company.	NORTHBAY TITLE CO.					
Lender:	CROSSLAND MTG CORP					
Seller Name:						
Prior Sale Information:						
Prior Rec/Sale Date:	10/05/1983 /		Prior Lender:			
Prior Sale Price:	\$95,000		Prior 1st Mtg Amt/Type:		1	
Prior Doc Number:	-		Prior 1st Mitg Rate/Type:		1	
Prior Deed Type:	DEED (
Property Characteristics:						
Gross Area:		Parking Type:	GARAGE	Construc		WOOD FRAMECB
Living Area:	1,428	Garage Area:	460	Heat Type		
Tot Adj Area:		Garage Capacity.		Exterior w		
Above Grade:		Parking Spaces:	1	Porch Typ		
Total Rooms:	5	Basement Area:		Patio Typ		
Bedrooms:	3	Finish Bsmnt Area:		Pool:		
Bath(F/H):	21	Basement Type:		Air Cond:		YES
Year Built/Eff:	1983 /	Roof Type:		Style:		L-SHAPE
Fireplace:	Y/1	Foundation:		Quality:		AVERAGE
\# of Stories:	1.00	Roof Material:		Condition		
Other Improvements:						
Site Information:						
						SINGLEFAM
Zoning:	CITYSR	Acres:	0.25	County U		dWeling (0010)
Lot Area:	10,890	Lot Width/Depth:	\mathbf{x}	State Use		
Land Use: S	SFR	Res/Comm Units:	$1 /$	Water Typ		
Site Influence:				Sewer Ty		
Tax Information:						
Total Value:	\$226,985	Assessed Year:	2011	Property		\$5,743.52
Land Value:	\$90,896	Improved \%:	60\%	Tax Area:		004027
Improvement Value:	\$136,089	Tax Year:	2011	Tax Exem	tion:	HOMEOWNER
Total Taxable Value:	\$219,985					

Property Detail Report

For Property Located At

pro.realquest.com/jsp/report.jsp?\&client=\&action=confirm\&type=getreportcs\&reportoptions=83be5126-...

Property Detail Report
For Property Located At

CoreLogic
RealQuest Professional

Record \#: 8

Location Information:
Legal Description: OFFCIAL RECS 420 PG 8 LOT 106

County.	SONOMA
Census Tract/Block:	1513.11/

Township-Range-Sect
Legal BookPage:
Legal Lot: 106
Legal Block:
Market Area:
Neighbor Code:
Owner Transfer Information:
Recording/Sale Date: 01/31/2002 /01/22/2002
Sale Price:
Document\#:
-
Last Market Sale Information:

Recording/Sale Date: Sale Price:	07/21/1989 / 00/1989 $\mathbf{\$ 1 8 6 , 5 0 0}$	1st Mtg Amount/Type: 1st Mitg Int. Rate/Type:	\$138,000 / CONV I
Sale Type:	FULL	1st Mitg Document\#:	
Document\#:		2nd Mtg AmountType:	1
Deed Type:	GRANT DEED	2nd Mitg Int. Rate/Type:	1
Transfer Document\#:		Price Per SqFt:	\$91.51
New Construction:		Multi/Split Sale:	

New Construction:
Title Company: NORTH BAY TitLE Lender: WESTERN BK
Seller Name:

Prior Sale Information:

Prior Rec/Sale Date: I
Prior Sale Price:
Prior Doc Number:
Prior Deed Type:
Property Characteristics:

Gross Area:	倍	Parking Type:	GARAGE	Construction:	WOOD
Living Area:	2,038	Garage Area:	442	Heat Type:	
Tot Adj Area:		Garage Capacity		Exterior wall:	
Above Grade:		Parking Spaces:	1	Porch Type:	
Total Rooms:	8	Basement Area:		Patio Type:	
Bedrooms:	4	Finish Bsmnt Area:		Pool:	
Bath(F/H):	31	Basement Type:		Air Cond:	YES
Year Built/Eff:	1989 /	Roof Type:		Stye:	U-SHAPE
Fireplace:	Y/1	Foundation:		Quality.	AVERAGE
\# of Stories:	2.00	Roof Material:		Condition:	
Other Improvements: Site Information:					

pro.realquest.com/jsp/report.jsp?\&client=\&action=confirm\&type=getreportcs\&reportoptions=83be5126-...

RealQuest.com (18) - Report

RealQuest.com (1)-Report					
Zoning:	CITYRP	Acres:	0.10	County Use:	SINGLEFAM DWELLING (0010)
Lot Area:	4,356	Lot Width/Depth:	x	State Use:	
Land Use:	SFR	Res/Comm Units:	$1 /$	Water Type:	
Site Influence:				Sewer Type:	
Tax Information:					
Total Value:	\$267,497	Assessed Year:	2011	Property Tax	\$4,328.62
Land Value:	\$79,097	Improved \%:	70\%	TaxArea:	007003
Improvement Value:	\$188,400	TaxYear:	2011	Tax Exemption:	HOMEOWNER
Total Taxable Value:	\$260,497				

Property Detail Report
For Property Located At
CoreLogic'
RealQuest Professional

Record \#: 9

[^17]RealQuest.com (2)-Report

Total Rooms:	6	Basement Area:		Patio Type:	PATIO
Bedrooms:	3	Finish Bsmnt Area:		Pool:	
Bath(F/H):	21	Basement Type:		Air Cond:	YES
Year Built / Eff.	1962 I	Roof Type:		Style:	L-SHAPE
Fireplace:	Y/1	Foundation:		Quality:	GOOD
\# of Stories:	1.00	Roof Material:		Condition:	
Other Improvements: OPEN DECK					
Site Information:					
Zoning:	R15UA	Acres:	0.26	County Use:	SINGLEFAM DWELING (0010)
Lot Area:	11,326	Lot Width/Depth:	\mathbf{x}	State Use:	
Land Use:	SFR	Res/Comm Units:	$1 /$	Water Type:	
Site Influence:				Sewer Type:	
Tax Information:					
Total Value:	\$372,000	Assessed Year:	2011	Property Tax	\$6,626.68
Land Value:	\$122,000	Improved \%:	67\%	TaxArea:	120036
Improvement Value:	\$250,000	Tax Year:	2011	Tax Exemption:	HOMEOWNER
Total Taxable Value:	\$365,000				

Record \#: 10
Owner Information:

Owner Name:			
Phone Number:		Vesting Codes:	HW //JT
Location Information:			
Legal Description:	MAP C6 104		
County:	SONOMA, CA	APN:	
Census Tract/Block:	1527.01/1	Alternate APN:	
Township-Range-Sect:		Subdivision:	56401
Legal Book/Page:		Map Reference:	117-C2 / 364-F2
Legal Lot:	2	Tract \#:	
Legal Block:		School District:	SANTA ROSA CITY
Market Area:		Munic/Township:	
Neighbor Code:			
Owner Transfer Information:			
Recording/Sale Date:	I	Deed Type:	
Sale Price:		1st Mtg Document\#:	
Document\#:			
Last Market Sale Information:			
Recording/Sale Date:	02/24/2012 / 02/22/2012	1st Mtg Amount/Type:	\$292,000 / CONV
Sale Price:	\$365,000	1st Mtg Int. Rate/Type:	1
Sale Type:	FULL	1st Mtg Document\#:	
Document\#:		2nd Mtg Amount/Type:	1
Deed Type:	GRANT DEED	2nd Mtg Int. Rate/Type:	
Transfer Document\#:		Price Per SqFt:	\$177.79
New Construction:		Multi/Split Sale:	
Title Company.	FIDELTTY NATIONAL TITLE		
Lender:	PEOPLES BK		
Seller Name:			
Prior Sale Information:			
Prior Rec/Sale Date:	03/29/2004 / 03/22/2004	Prior Lender:	CALIFORNIA RN'L GRP

[^18]

[^19]| RealQuest.com (1) - Report | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | (0010) |
| Lot Area: | 4,792 | Lot Width/Depth: | \mathbf{x} | State Use: | |
| Land Use: | SFR | Res/Comm Units: | $1 /$ | Water Type: | |
| Site Influence: | | | | Sewer Type: | |
| Tax Information: | | | | | |
| Total Value: | \$225,000 | Assessed Year: | 2011 | Property Tax | \$6,348.60 |
| Land Value: | \$87,000 | Improved \%: | 61\% | TaxArea: | 093049 |
| Improvement Value: | \$138,000 | Tax Year: | 2011 | Tax Exemption: | |
| Total Taxable Value: | \$225,000 | | | | |

Property Detail Report

For Property Located At
CoreLogic
RealQuest Professional

Record\#: 2

pro.realquest.com/jsp/report.jsp?\&client=\&action=confirm\&type=getreportcs\&reportoptions=83be5126-...

RealQuest.com (2) - Report

Bedrooms:	3	Finish Bsmnt Area:		Pool:	
Bath(F/H):	21	Basement Type:		Alr Cond:	YES
Year Built / Eff:	1981 /	Roof Type:		Style:	U-SHAPE
Fireplace:	Y/1	Foundation:		Quality.	AVERAGE
\# of Stories:	1.00	Roof Material:	COMPOSTION SHINGLE	Condition:	GOOD
Other Improvements: FENCESite Information:					
Zoning:	CITYSR	Acres:	0.13	County Use:	SINGLE FAM DWELIING (0010)
Lot Area:	5,663	Lot Width/Depth:	70×86	State Use:	
Land Use:	SFR	Res/Comm Units:	$1 /$	Water Type:	PUBLIC
Site Influence:				Sewer Type:	PUBLIC SERVICE
Tax Information:					
Total Value:	\$199,405	Assessed Year:	2011	Property Tax	\$4,012.84
Land Value:	\$74,775	Improved \%:	63\%	Tax Area:	004004
Improvement Value:	\$124,630	TaxYear:	2011	Tax Exemption:	HOMEOWNER
Total Taxable Value:	\$192,405				

Property Detail Report
For Property Located At

CoreLogic'
RealQuest Professional

Record\#:3

Owner information:		\emptyset
Owner Name:		
Mailing Address:		
Phone Number:	Vesting Codes:	$\|A\|$
Location Information:		
Legal Description:		
County: SONOMA, CA	APN:	
Census Tract/Block: 1538.09 /1	Alternate APN:	
Township-Range-Sect	Subdivision:	OAK CRK 507
Legal Book/Page:	Map Reference:	103-C5 /343-H7
Legal Lot: 21	Tract\#:	
Legal Block:	School District:	WINDSOR
Market Area:	Munic/Township:	
Neighbor Code:		
Owner Transfer Information:		
Recording/Sale Date: $01 / 20 / 2005 / 01 / 11 / 2005$	Deed Type:	GRANT DEED
Sale Price:	1st Mtg Document\#:	
Document\#:		
Last Market Sale Information:		
Recording/Sale Date: 09/17/2002 /09/05/2002	1st Mtg Amount/Type:	\$320,000 / CONV
Sale Price: $\quad \$ 400,000$	1st Mtg Int. Rate/Type:	5.62 / ADJ
Sale Type: FULL	1st Mtg Document\#:	
Document\#:	2nd Mtg Amount/Type:	\$40,000 / CONV
Deed Type: GRANT DEED	2nd Mtg Int. Rate/Type:	1 FIXED
Transfer Document \#:	Price Per SqFt	\$230.95
New Construction:	Multi/Split Sale:	
Title Company: FIRST AMERICAN TITLE		
Lender: GREENPOINT MTG FNDG		
Seller Name:		
Prior Sale Information:		
Prior Rec/Sale Date: 06/20/1984 I	Prior Lender:	

[^20]

Property Detail Report

For Property Located At
CoreLogic
RealQuest Professional
Record \#: 4

Owner Information:

Owner Name:			
Phone Number:		Vesting Codes:	UW II
Location Information:			
Legal Description:	COURTYARDS EAST LOT 000047 MAP 00033800045		
County.	SONOMA, CA	APN:	
Census Tract/Block:	1538.08/2	Alternate APN:	
Township-Range-Sect:		Subdivision:	COURTYARD EAST
Legal Book/Page:		Map Reference:	102-F3 / 343-E5
Legal Lot:	47	Tract \#:	
Legal Block:		School District:	WINDSOR
Market Area:		Munic/Township:	
Neighbor Code:			
Owner Transfer Information:			
Recording/Sale Date:	I	Deed Type:	
Sale Price:		1st Mtg Document\#:	
Document\#:			
Last Market Sale Information:			
Recording/Sale Date:	07/17/2009 / 05/28/2009	1st Mtg Amount/Type:	\$142,373 / FHA
Sale Price:	\$145,000	1st Mtg Int. Rate/Type:	5.001
Sale Type:	FULL	1st Mtg Document\#:	
Document\#:		2nd Mtg Amount/ype:	1

[^21]| Deed Type: | GRANT DEED | | 2nd Mtg Int. Rate/Type: Price Per SqFt: | | $\$ 157.61$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Transfer Document\#: | | | | | |
| New Construction: | | | Mulu/Spint | | |
| Title Company. | FIRST AMERICAN TITLE | | | | | |
| Lender: | BANK OF AMERICA | | | | |
| Seller Name: | | | | | |
| Prior Sale Information: | | | | | |
| Prior Rec/Sale Date: | 02/28/2005 / 02/25/2005 | | Prior Lender: | | OWNT MTG |
| Pror Rec/Sale Date. | | | TIONS INC | |
| Prior Sale Price: | \$320,000 | | | | Prior 1st Mtg Amt/Type: Prior 1st Mtg Rate/Type: | | $\$ 248,000 / \text { CONV }$$5.88 / \operatorname{ADJ}$ |
| Prior Doc Number: | | | | | | | |
| Prior Deed Type: | GRANT DEED | | | | | |
| Property Characteristics: | | | | | | |
| Gross Area: | | Parking Type: | GARAGE | Construction: | WOOD | |
| Living Area: | 920 | Garage Area: | 200 | Heat Type: | | |
| Tot Adj Area: | | Garage Capacity. | | Exterior wall: | | |
| Above Grade: | | Parking Spaces: | | Porch Type: | | |
| Total Rooms: | 3 | Basement Area: | | Patio Type: | | |
| Bedrooms: | 2 | Finish Bsmnt Area: | | Pool: | | |
| Bath(F/H): | 21 | Basement Type: | | Ar Cond: | YES | |
| Year Built / Eff. | 1983 / | Roof Type: | | Stye: | U-SHAPE | |
| Fireplace: | Y/1 | Foundation: | | Quality: | AVERAGE | |
| \# of Stories: | 2.00 | Roof Material: | | Condition: | | |
| Other Improvements: Site Information: | | | | | | |
| | | | | | | | | | | | | |
| Zoning: | CITYWI | Acres: | 0.02 | County Use: | PLANNED UNIT | |
| | 871 | Lot Width/Depth: | | State Use: | RESIL (0015) | |
| Lot Area: | | | x | | | |
| Land Use: | PUD | Res/Comm Units: | $1 /$ | Water Type: | | |
| Site Influence: | | | | Sewer Type: | | |
| Tax Information: | | | | | | |
| Total Value: | \$116,000 | Assessed Year: | 2011 | Property Tax | \$2,335.64 | |
| Land Value: | \$48,000 | Improved \%: | 59\% | TaxArea: | 009004 | |
| Improvement Value: | \$68,000 | TaxYear: | 2011 | Tax Exemption: | HOMEOWNER | |
| Total Taxable Value: | \$109,000 | | | | | |

EXHIBIT 2

COMPREHENSIVE ANALYSIS OF ECONOMIC AND FINANCIAL CHARACTERISTICS UNDERLYING MORTGAGE LOAN DEFAULTS

SONOMA COUNTY ENERGY INDEPENDENCE PROGRAM (SCEIP)
SONOMA COUNTY, CALIFORNIA

PREPARED BY

EMPIRE ECONOMICS, INC. JOSEPH T. JANCZYK, PH.D.

OUTLINE OF CONTENTS

1. Introduction
2. Selection of Geographic Areas within Sonoma County
3. Categorization of Homeowners by Groups
4. Description of Mortgage Loan and Related Metrics
A. Basic Metrics
B. Constructed Metrics
C. Compilation of Data
5. Methodology Underlying the Mortgage Comparison and Mortgage Default Analysis
6. Qualitative Comparative Economic Analysis
A. Comparative Analysis of Loan-to-Value (LTV) Ratios
B. Comparative Analysis of Tax Burdens
C. Comparative Analysis of Other Characteristics
7. Quantitative Statistical Economic Analysis
A. Regression Analysis Results: Specific Impact of LTV Ratio
B. Regression Analysis Results: Specific Impact of Time of Sale
C. Regression Analysis Results: Specific Impact of Type of Loan
8. Conclusions Regarding the Specific Characteristics that Impact Mortgage Defaults

Appendix A: Quantitative Regression Results
Appendix B: Background Information on Regression Analysis
Appendix C: Database Underlying Regression Analysis

1. INTRODUCTION

The purpose of this study is to perform a comprehensive economic analysis of the mortgage loan characteristics of the residential properties in Sonoma County, California, that are participating in the Sonoma County Energy Independence Program (SCEIP properties) and properties outside of the program (Non-SCEIP properties), in order to identify their similarities and differences. SCEIP is a Property Assessment Clean Energy (PACE) program.

In addition, this study examines whether these characteristics are causally related to mortgage default. As used in this report, mortgage default occurs when the borrower has missed one or more mortgage payments and the lender has filed a Notice of Default in the property records. If not cured, a Notice of Default can lead to a property being scheduled for auction and then either being sold to a successful bidder or becoming bankowned.

The methodology underlying this analysis has been carefully formulated to respond to various statements made by the Federal Housing Finance Agency (FHFA) regarding the types of empirical evidence that in the view of the FHFA would help determine whether homeowners in a PACE program, by placing additional assessment obligations upon their property, have a higher probability of mortgage default.

In the Notice of Proposed Rulemaking, the FHFA set forth various concepts describing their ideal methodology for the desired mortgage analysis (see Notice at p. 36104) but acknowledged that achieving this would be constrained by various factors, such as the limited number of homes in PACE programs and also limitations on empirical data.

Nevertheless, Empire Economics (Empire) strived to achieve the FHFA’s ideal methodology, based upon selecting Sonoma County which has the largest number of PACE program participants and also a substantial amount of empirical data on mortgage loans and related characteristics. Consequently the analysis herein is regarded as effectively achieving the desired FHFA objectives within the context of the data limitations that FHFA acknowledges.

To identify the specific characteristics underlying mortgage defaults, this study discusses the identification of the study areas, how the homeowners are grouped, the compilation of the relevant data, and the formulation of the methodology and then builds upon these to perform various types of qualitative and quantitative analysis:
> First, the specific Zip Codes that are most suitable for the analysis are selected utilizing, as the criterion, those that had the highest number of residential properties in SCEIP; there were five Zip Codes that had between 63 to 92 such properties.
> Then, these residential properties are categorized by the relevant groups, such as SCEIP and NonSCEIP as well as for the latter, Timely (not in mortgage default) and Default.
$>$ Third, the mortgage loan and other related metrics utilized in the analysis are described, along with a discussion of the various sources for the empirical data.
$>$ Fourth, the methodology underlying the statistical analysis for evaluating mortgage defaults for SCEIP and Non-SCEIP properties is formulated.
$>$ Fifth, the qualitative statistics are presented, comparing the SCEIP and Non-SCEIP properties with regards to a multiplicity of mortgage and other related characteristics.
> Sixth, the quantitative statistics are presented, to identify the specific impacts of the various characteristics, followed by a discussion of whether the characteristics are positively or negatively related to default and the strength of that relationship.

Finally, based upon the qualitative and quantitative economic analysis of the mortgage default rates, the specific characteristics that contribute to mortgage defaults are presented and discussed.

2. SELECTION OF GEOGRAPHIC AREAS WITHIN SONOMA COUNTY

For purposes of the mortgage analysis in this report, it is critical to perform the comparative analysis between the SCEIP and Non-SCEIP properties within areas that have relatively similar socioeconomic and economic characteristics. This will ensure that differences in such characteristics do not inadvertently impair the results of the analysis.

For this reason, Sonoma County as a whole could not be examined since it covers such a large and diverse geographical area. The County's various neighborhoods vary greatly in their degrees of development, the nature of development (rural, suburban and urban), as well as their accessibility to transportation corridors. However, residential properties in the same general area (e.g., in the same Zip Code) will share a greater number of socioeconomic and economic characteristics. Thus, Zip Codes were used as a general control for socioeconomic and economic characteristics.

In addition, to answer FHFA's questions, it was important to select Zip Codes that contained a sufficient number of properties participating in SCEIP such that a valid comparative analysis between SCEIP and NonSCEIP properties could be conducted. Accordingly, the number of SCEIP residential properties in each of the 80+ Zip Codes of Sonoma County was identified, and then, from these, Zip Codes that had the highest number of SCEIP homeowners were selected. Accordingly, the analysis focuses upon the five Zip Codes that contain the largest number of SCEIP properties.

Specifically, the selected Zip Codes, along with their general geographic locations and the number of residential properties in SCEIP, are as follows:

Zip Code: 95401: Santa Rosa: Westerly of the 101, Southerly portion of City; 63 SCEIP
Zip Code: 95403: Santa Rosa: Northwesterly of 101 and Windsor, Most of City; 81 SCEIP
Zip Code: 95404: Santa Rosa: Easterly of the 101, Northerly portion of City; 92 SCEIP
Zip Code: 94928: Rohnert Park: Most of the City; 70 SCEIP
Zip Code: 95472: Sebastopol: Most of the City/Nearby Area; 84 SCEIP
(The Zip Code with the next highest number of residential properties in SCEIP was 95492 (Windsor), which contained a substantially lower number of SCEIP residential properties. This Zip Code thus was not included in the analysis.)

For each of the five Zip Codes, the data thresholds for including a parcel in the statistical analysis are as follows:
> Residential property with a single-family home or condo, thereby excluding apartment properties.
$>$ Minimum sales price of $\$ 25,000$, used as a threshold to ensure that the parcel has a reported price.
$>$ Minimum mortgage loan of $\$ 10,000$, used as a threshold to ensure there is a mortgage loan.

3. CATEGORIZATION OF HOMEOWNERS BY GROUPS

To perform a comparative analysis of the mortgage loan characteristics, the qualified properties in the five Zip Codes have been divided into those that are not participating in Sonoma County's PACE program (Non-SCEIP) and those that are participating in the program (SCEIP).

Non-SCEIP Group: Those homeowners that are not in SCEIP have been further partitioned into two subgroups:

Non-SCEIP-Timely: Not in SCEIP and not under mortgage default.

Non-SCEIP-Default: Not in SCEIP and under mortgage default which includes
Notice of Default, scheduled for auction or bank-owned.

SCEIP-Timely Group: Those homeowners that are in SCEIP and not under mortgage default.
The SCEIP Group could not be further partitioned into Timely and Default sub-groups because there are only 13 SCEIP residential properties in default in Sonoma County as a whole, and just 6 of these are in the relevant Zip Codes. This is too few for a meaningful type of statistical comparison, because the inadequate sample size does not provide a sufficient number of observations to accurately identify underlying patterns.

Therefore, the comparative analysis focuses upon the three key groups, since each of them has a sufficient number of homeowners to perform a reliable statistical analysis of the characteristics underlying mortgage defaults.

4. DESCRIPTION OF MORTGAGE LOAN AND RELATED METRICS

This section describes the types of mortgage and other related data utilized in the comparative analysis. First, the Basic Metrics are set forth, which are taken directly from the data sources (see Section 4C). Second, the Constructed Metrics are formulated, which consist of data/metrics that are processed in some fashion (for example, by creating a ratio).

4A. Basic Metrics: These represent the basic types of data that are available:

Geographic Identifiers
Zip Code
Assessor Parcel Number (APN)

Mortgage Data
Amount of $1^{\text {st }}$-Mortgage Loan
Amount of $2^{\text {nd }}$-Mortgage Loan
Type of Loan: FHA/VA or Other (Conventional, Private Party)

Current Mortgage Default

Properties with a Notice of Default, Scheduled for Auction or Bank Owned
Only properties currently under default are utilized

Sales Data
Sales Price of Home
Sale Date: Month/Year

Housing Characteristics
Size of Living Area
Lot Size
Year Built

Other Indicators
Most Recent Assessed Value, for the 2011/2012 Fiscal Year
Total Taxes Levied: Property Taxes and Special Taxes/Assessments (including SCEIP) for the 2011/2012 Fiscal Year.

4B. Constructed Metrics: These represent various combinations of the basic metrics.

Loan-to-Value (LTV) Ratio: Sum of All Mortgage Loans divided by Sales Price
The term "All Mortgage Loans" refers to all of the reported loans (including the $1^{\text {st }}$-Mortgage and $2^{\text {nd }}$-Mortgage) at the time of the most recent sale and so this does not include subsequent loans.

Loan-to-Value Cohorts: The LTVs for the parcels were also partitioned into specific cohorts to allow for refined comparisons:

Below 70\%
70\% - 79\%
79\% - 81\% (Benchmark Category - Averages for all properties)
81\% - 90\%
Above 90\%

Price Patterns: The data observations cover the 1985-2012 time period. Since prices fluctuated significantly during this time period, it is useful to partition this time span into various time segments. The partitions are based upon price patterns as measured by the Case-Shiller Price Index for the nearby San Francisco area as well as a Price Index that was constructed specifically for Sonoma County.

Prior 2000: Pre Housing Price Bubble Years
2000-2003: Substantial Housing Price Increases
(Benchmark Category - Average for all properties)
2004-2007: Peak Housing Price Bubble Years
2008-2012: Post Housing Price Bubble Years

Geographic Areas: The five Zip Codes represent different geographic areas, each with their own socioeconomic and economic characteristics, and so these need to be treated distinctively.

95401 (Benchmark - Used as the base Zip Code to which others are compared)
95403
95404
95472
94928

Tax Burden: Total Tax Levied for the Current Fiscal Year divided by Assessed Value (as reflected in the most recent property records).

So, the Basic Metrics and Constructed Metrics are compiled and calculated for each of the parcels. These are then aggregated for each of the three groups, using total and averages as well as other statistical measures.

4C. Compilation of Data: The mortgage and other related data were compiled from the following sources:
$>$ Real Quest Core Logic, a major provider of real estate data; this was the source for all of the data metrics, except for properties under default and properties in SCEIP.
$>$ Radar Foreclosure, a major provider of data for properties that are under mortgage default.
$>$ Sonoma County's records for properties in its SCEIP program.
The five Zip Codes in this study cover a total of 19,138 residential properties. The number of properties in each of the groups is as follows:

Non-SCEIP-Timely: $\quad 18,348$ or 95.9%
Non-SCEIP-Default: $\quad 394$ or 2.06%
SCEIP-Timely:
390 or 2.04%
SCEIP-Default:
6 or 0.03% (a fraction of 1%)
The SCEIP Default group is not included in the Comparative Analysis (Section 6) or the Statistical Analysis (Section 7) since there are only 6 such parcels in the Zip Codes selected (out of the total of 13 such parcels for all of Sonoma County), and this is too few for a meaningful type of statistical comparison, because the inadequate sample size does not provide a sufficient number of observations to accurately identify underlying patterns.

5. METHODOLOGY UNDERLYING THE MORTGAGE COMPARISON AND MORTGAGE DEFAULT ANALYSIS

FHFA asserts that the additional PACE lien placed on the property and its associated annual assessment payments place a burden on homeowners that may increase the probability of a default on the original mortgage loan(s); however, FHFA does not provide any supporting empirical data.

Accordingly, the purpose of this economic analysis is to test this assertion by using empirical data.

The focal point of this analysis is the mortgage default rate, and how defaults are related to the mortgage loans and other relevant characteristics.

Mortgage defaults are difficult to predict, since some of the main contributing characteristics are personal to the borrower and may change over time (e.g., changes in employment status affecting income, adverse changes in investments, and unexpected significant expenses). These are characteristics for which data are NOT readily available, due primarily to personal privacy restrictions.

Alternative ways of measuring mortgage stress that may lead to mortgage default include the following:
$>$ The Loan-to-Value (LTV) ratio. LTV is the amount of all of the initial mortgage loans divided by the sales price of the home. The higher the LTV, the smaller the cushion of protective equity. Homeowners with a high LTV may be more vulnerable to default due to unexpected declines in income, i.e. unemployment or other such adverse financial conditions.
> Time of Purchase, such as purchase pre-bubble versus during the price bubble. Homeowners who purchased during the peak of the bubble often used creative financing structures, such as low down payments and negative amortization. Such homeowners may be more vulnerable to default when the bubble implodes and prices decline substantially.

In the sections that follow, characteristics that include participation in PACE, Tax Burden (including PACE assessments), LTV, and Time of Purchase are analyzed qualitatively and quantitatively.

6. QUALITATIVE COMPARATIVE ECONOMIC ANALYSIS

As discussed above, there are three groups for which there are sufficient properties for further analysis: SCEIP-Timely; Non-SCEIP-Timely; and Non-SCEIP-Default. This section analyzes the similarities and differences in the mortgage loan characteristics among these three groups.

The five selected Zip Codes in Sonoma County, after applying the critical filters which included residential land-use parcels that have a minimum sales price of $\$ 25,000$ and also a mortgage loan of at least $\$ 10,000$, produced a total of 19,132 homes in the three groups that fulfill the criteria for this analysis.

For the five Zip Codes, the composition of these three groups is shown below:

6A. Comparative Analysis of LTV Ratios

Again, the Loan-to-Value ratio or LTV is the sum of all loans at the time of most recent sale divided by the Sales Price. A high LTV ratio means that a homeowner that has a low level of equity in a home, and as such, may be vulnerable to a mortgage default as a result of a loss of employment/income and/or a decline in the value of financial investments.

The comparative analysis reveals that the average LTV for the various groups is as follows:
$>$ Non-SCEIP-Timely: 79\% LTV
$>$ SCEIP-Timely: 82% LTV (similar to the Non-SCEIP-Timely)
> Non-SCEIP-Default: 87% LTV (significantly above the SCEIP-Timely)
The LTV pattern among the groups is as follows: Non-SCEIP Timely is the lowest, the next closest is SCEIP-Timely and then the highest is Non-SCEIP-Default.

Furthermore, this pattern is consistent for all of the five Zip Codes, reflecting the strength of this relationship.

6B. Comparative Analysis of Tax Burdens

As discussed above, Tax Burden is defined as total taxes and assessments (including PACE assessments) levied in the 2011-2012 fiscal year divided by the Assessed Value for that fiscal year, as reflected in the most recent property records.

The tax burdens for the properties in the various groups are as follows:

$$
\begin{array}{ll}
\text { Non-SCEIP-Timely: } & 1.156 \% \\
\text { Non-SCEIP-Default: } & 1.163 \% \\
\text { SCEIP-Timely: } & 1.692 \%
\end{array}
$$

So, the Non-SCEIP properties, both Timely and Default, have similar Tax Burdens, about 1.16%, while the SCEIP-Timely properties have a higher tax burden, 1.69%.

The lower Tax Burden for the Non-SCEIP-Default properties is clearly NOT related to their having a lower default rate, since these properties are in fact actually in mortgage default. Consequently, higher default rates appear to be related to characteristics other than high tax burdens.

This pattern is consistent among the five different Zip Codes, demonstrating the strength of this relationship.

6C. Comparative Analysis of Other Characteristics

Further information on the mortgage loan and other related characteristics for the homeowners in the Non-SCEIP-Timely and SCEIP-Timely as well as the Non-SCEIP-Default appears on the following graphs:

7. QUANTITATIVE STATISTICAL ECONOMIC ANALYSIS

This section performs a quantitative statistical analysis of the relationship between mortgage loan characteristics and other related characteristics to the probability of a parcel currently being in mortgage default. As discussed, "Mortgage Default" includes any property which received a Notice of Default and has not cured the default, and so this includes properties that are "scheduled for auction" as well as properties that are "bank-owned".

The statistical technique chosen herein was selected based upon comments made by FHFA that there is a need for a cross comparison analysis of the mortgage and other related characteristics between SCEIP and NonSCEIP properties. Accordingly, the statistical technique utilized is referred to as "regression" analysis, which allows for a systematic comparison of the mortgage loan and related characteristics between the two groups. This technique allows for the analysis of the impact of the specific characteristics discussed in Section 6, such as the LTV, while holding all other characteristics constant, in order to identify the particular impact of that specific characteristic by itself.

Since FHFA stated that it is concerned with mortgage defaults, the probability of a mortgage default is chosen as what is referred to as the dependent variable, the metric that is to be explained by other related characteristics.

The variables that may be related to the probability of a default, referred to as independent variables, include the following:
$>$ Participation in Sonoma County's PACE program (SCEIP).
> LTV: The ratio of the mortgage loan amounts to the sales prices at the time of the sale, expressed as a percentage.
> Time of Sale: Date of sale relative to the recent housing market bubble (Prior 2000; Pre-Bubble 2000-2003; Bubble 2004-2007; and Post-Bubble 2008+).
> Tax Burden: Total taxes and assessments, including PACE, levied in the 2011-2012 fiscal year, divided by the Assessed Value for the 2011-2012 fiscal year, as reflected in the most recent official property records.
> Zip Code: The unique code assigned to a specific geographic area by the U.S. Postal Service.
> Type of Loan: Conventional as compared to FHA/VA.
$>$ Lot Size: Square footage of the lot.
$>$ Adjusted Sales Price: Sales prices adjusted to their 2012 levels, based on a price index.

The statistical regression analysis used 17,615 of the 19,138 parcels, since this was the number that had information available for all of the mortgage loan and other related characteristics set-forth above; the other 1,523 parcels were missing one or more of the key data metrics so they were not able to be included. Of the relevant 17,615 parcels, 374 (2.12\%) are in the SCEIP program and another 358 (2.03\%) are Non-SCEIP properties under Mortgage Default.

The regression analysis reveals the statistical significance of the various characteristics as measured by their tstatistics. Specifically, the t-statistics show the relationship between each of the specific independent variables and the dependent variable, the probability of a mortgage default. The higher the absolute value of the t statistic, the greater the significance as a characteristic related to mortgage defaults. Accordingly, a summary of the results of the statistical analysis, with regards to the significance of the various characteristics for predicting the probability of a mortgage default, is as follows:

Highly Significant: T-Stats of above +2.0 or below -2.0

LTV Ratio
As the LTV increases above the average value, the probability of a mortgage default rises.
As the LTV decreases below the average value, the probability of a mortgage default declines.

Time of Sale

Positive Impact for homes sold DURING the price bubble; a higher probability of default.
Negative Impact for homes sold BEFORE/AFTER the price bubble; a lower default rate.
Type of Loan
Conventional (non-FHA/VA): Positive Impact, higher probability of mortgage default.

Moderately Significant: T-Stats between +1.5 to +2.0 or between -1.5 to -2.0

Zip Code
Benchmark Zip Code is 95401; all other Zip Codes have somewhat lower default probabilities, due to differences in their geographic and socioeconomic characteristics.

Not Significant: T-Stats between 0 and +1.0 or 0 and -1.0

Participation in SCEIP Program: No significant impact on the probability of a mortgage default.
Tax Burden: No significant impact on the probability of a mortgage default.
Lot Size: No significant impact on the probability of a mortgage default.
Adjusted Sales: No significant impact on the probability of a mortgage default.
Therefore, the highly significant characteristics are LTV ratio, Time of Sale and Type of Loan which will be analyzed in further detail hereafter. However, with regards to characteristics that are NOT significant, the two that are especially noteworthy are Participation in SCEIP Program and Tax Burden.

For detailed information on the statistical regression analysis conducted for this report, see Appendix A. For general background information on regression analysis, see Appendix B.
For the data underlying the regression analysis, see Appendix C. (Separate PDF file).

7 A. Regression Analysis Results: Specific Impact of LTV Ratio

For all of the parcels as a whole, the probability of a current mortgage default is 2.03%, on the average; additionally, for all of the parcels, the LTV ratio is 79.3%, on the average.

The LTV Ratio has a significant impact on the probability of a mortgage default.

Specifically, holding all other independent variables constant, and focusing in only on changes in the LTV ratio, reveals the following:
$>$ For parcels with a very low LTV ratio, less than 70%, the incremental decrease in the probability of a mortgage default is -1.42%, for a total probability of 0.61%. Stated another way, when the LTV is less than 70%, the likelihood of default decreases by -1.42% as compared to the likelihood of default for properties with the average LTV in the $79-81 \%$ range.
$>$ For parcels with a very high LTV ratio, above 90%, the specific incremental increase in the probability of a mortgage default is $+1.34 \%$, for a total probability of 3.37%. Stated another way, where the LTV is above than 90%, the likelihood of default increases by $+1.34 \%$ as compared to the likelihood of default for properties with the average LTV in the $79-81 \%$ range.

So, effectively, the LTV ratio, which is based upon the sales price and mortgage loans at the time of sale, is a very strong predictor of mortgage defaults.

7 B. Regression Analysis Results: Specific Impact of Time of Sale

For all of the parcels as a whole, the probability of a current mortgage default is 2.03%, on the average; additionally, for all of the parcels the time of sales is the year 2002, on the average.

The Time of Sale has a significant impact on the probability of a mortgage default. Specifically, holding all other independent variables constant, and focusing in only on changes in the time of sale reveals the following:
$>$ For homes sold during 2004-2007 (the peak years of the housing market price bubble), the specific incremental probability of a mortgage default is high, $+2.31 \%$, for a total probability of 4.34%. Stated another way, for residential properties sold during the 2004 to 2007 time period, the likelihood of default increases by $+2.31 \%$ as compared to homes sold during 2000-2003, the benchmark time period. This can be attributed to the following characteristics:

- During this time period, mortgage structures were characterized by creative financing structures, which included minimum down payment and negative amortization, among other characteristics.
- Housing prices have declined significantly since the price bubble, and so this has resulted in substantial declines in equity levels for these homeowners.
$>$ For parcels sold during the Prior 2000 and 2008-2012 time periods, the probability of a specific incremental impact of a mortgage default is lower, as compared to the 2000-2003 benchmark time period. For properties sold during this post-bubble period, 2008-2012, the likelihood of default decreases by -1.73%, for a total probability of 0.30%.

Time of Sale is a strong predictor of mortgage defaults, with the highest likelihood of default being during the price bubble and the lowest being in recent years.

7 C. Regression Analysis Results: Specific Impact of Type of Loan, Conventional

For all of the parcels as a whole, the probability of a current mortgage default is 2.03%, on the average; additionally, 89% of the homeowners had conventional, as compared to FHA/VA loans, on the average.

The probability of a mortgage default has a strong relationship to conventional types of loans.

Specifically, holding all other independent variables constant, and focusing in only on changes in the type of mortgage loan reveals the following:
$>$ Homeowners with a conventional loan have $\mathrm{a}+0.85 \%$ increase in having a mortgage default.
Homeowners with a conventional loan have a significantly higher probability of having a mortgage default, as compared to homeowners with a FHA/VA loan.

8. CONCLUSIONS ON THE SPECIFIC CHARACTERISTICS THAT IMPACT MORTGAGE DEFAULTS

The methodology underlying the analysis has been carefully formulated to respond to various statements made by the Federal Housing Finance Agency (FHFA) regarding the types of empirical evidence that could be used to determine if homeowners in a Property Assessment Clean Energy (PACE) program, by placing additional assessment obligations upon their property, have a higher probability of a mortgage default.

The analysis covered a substantial number of homeowners in Sonoma County, which has a very large number of PACE homeowners; the primary conclusions are as follows:

Specific characteristics which INCREASE the probability of a mortgage default:

Mortgage Default Rates are strongly related to the LTV ratio at the time of the housing sale
Mortgage Default Rates are strongly related to the TIME of the housing sale
Mortgage Default Rates are higher for homeowners using Conventional Loans vs. FHA/VA loans.

Specific characteristics which do NOT INCREASE the probability of a mortgage default:
Participation in SCEIP does NOT increase the probability of a mortgage default
Higher Tax Burdens (where the burden includes SCEIP assessments) does NOT increase the probability of a mortgage default.

Therefore, the pattern that emerges from the empirical analysis is that there is a confluence of characteristics at the time of purchase of the property that are strong indicators of the potential for a mortgage default: these include a high LTV Ratio, the sale of a property during the recent price bubble when creative financing structures were utilized and also a conventional as compared to FHA/VA loan structure. Conversely, the participation of a homeowner in SCEIP, even though this places a higher tax burden on the property, does NOT increase the probability of a mortgage default.

So, the empirical evidence strongly suggests that mortgage loan defaults are due to the characteristics of the mortgage loans at the time that the property is purchased, and NOT the PACE assessment that is subsequently placed on the property.

DISCLAIMER REGARDING USE OF STUDY

The State of California Department of Justice engaged Empire Economics to perform a study of the Sonoma County Energy Independence Program, a Property Assessed Clean Energy (PACE) program.

The stated purpose of the study is to inform the public rulemaking of the Federal Housing Finance Agency (FHFA) on PACE, which was instituted on January 26, 2012. Use of this Study, or parts thereof, for any other purpose is an unauthorized use of this Study.

Empire Economics hereby disclaims any and all responsibility or liability resulting from the FHFA's rulemaking, the FHFA's final PACE rule, or from any unauthorized uses.

APPENDIX A QUANTITATIVE REGRESSION RESULTS

The statistical regression analysis was performed using the traditional technique of Ordinary Least Squares, and the results are set forth below:

SUMMARY OUTPUT

Regression Statistics				
Multiple R	0.13			
R Square	0.02			
Adjusted R Square	0.02			
Standard Error	0.14			
Observations	17,615			
ANOVA				
	df	SS	MS	F
Regression	16.00	6.14	0.38	19.59
Residual	17598.00	344.59	0.02	
Total	17614.00	350.72		

	Coefficients	Standard Error	\boldsymbol{t} Stat	\boldsymbol{P}-value
Intercept	0.0140	0.0112	1.25	0.2109
LTV: Above 90\%	0.0134	0.0031	$\mathbf{4 . 3 1}$	0.0000
LTV: 81\% - 90\%	0.0069	0.0043	$\mathbf{1 . 5 9}$	0.1108
LTV: 70\%-78\%	-0.0044	0.0035	$\mathbf{- 1 . 2 5}$	0.2119
LTV: Below 70\%	-0.0142	0.0031	$-\mathbf{4 . 6 3}$	0.0000
Tax Burden	0.5736	0.8457	0.68	0.4976
Participation in SCEIP	-0.0072	0.0087	-0.82	0.4097
Loan Type: FHA/VA	0.0085	0.0042	$\mathbf{2 . 0 3}$	0.0425
Lot Size	0.0000	0.0000	-0.49	0.6210
Sold Prior 2000	-0.0127	0.0033	$\mathbf{- 3 . 8 0}$	0.0001
Sold-Bubble, 2004-2007	0.0231	0.0043	$\mathbf{5 . 3 8}$	0.0000
Sold After Bubble: 2008+	-0.0173	0.0032	-5.39	0.0000
Sales Price; Adjusted 2012	0.0000	0.0000	-0.18	0.8587
Zip Code 95403	-0.0043	0.0034	-1.28	0.2019
Zip Code 95404	-0.0067	0.0035	-1.89	0.0583
Zip Code 95472	-0.0072	0.0042	-1.74	0.0827
Zip Code 94928	-0.0052	0.0034	-1.53	0.1251

APPENDIX B
 BACKGROUND INFORMATION ON REGRESSION ANALYSIS

Guidelines for Interpreting the Results

The t-statistic is the estimated coefficient divided by its own standard error. Thus, it measures "how many standard deviations from zero" the estimated coefficient is, and it is used to test the hypothesis that the true value of the coefficient is non-zero, in order to confirm that the independent variable really belongs in the model.

The p-value is the probability of observing a t-statistic that large or larger in magnitude given the null hypothesis that the true coefficient value is zero. If the p-value is less than 0.05 - which occurs roughly when the t-statistic is greater than 2.0 in absolute value - this means that the coefficient is significant.

Type of Regression Analysis: Ordinary Least Squares vs. Logit

As a cross-check to the Ordinary Least Squares (OLS) method utilized for the statistical analysis, another statistical technique referred to as Logit was also performed as well. Specifically, the Logit analysis was performed because the dependent variable, whether a property is currently in mortgage default, is dichotomous (either a property is in default or it is not in default; two outcomes only) rather than continuous (multiple outcomes).

A comparison of the OLS and Logit results revealed that the statistical significance of the various variables was similar for both of them. Additionally, supporting this outcome was the large number of observations in the database, which also met the criteria for the OLS technique to provide valid results. Consequently, although the dependent variable is dichotomous, the OLS method is appropriate.

Appendix C

	筫。。
\％	
䓘	

osservation	PROPERTY DURESS $=1$	LTV_9\%	LTV 81\%-90\%	LTV 70\% 78%	$\begin{aligned} & \text { LTV beLow } \\ & \text { 70\% } \end{aligned}$	total tax burden	parcel in SCEIP $=1$	conventional LOAN $=1$	Lot SILE	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	sold during 2004_2007	Sold 2008-2012	PRICE ADJUSt. to 2012	ZIP CODE 295403	ZIP CODE 95404	ZIP CODE 95472	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
1771		1	0	0	\%	1.12\%	-	1	6098	-	-	,	\$639460				
1172	0	1	0	0	0	1.10\%	0	1	5663	0	0	1	\$191784	0	0	0	0
1173	0	0	0	1	1	1.10\%	0		6970	0	0	1	5238226	0	0	0	0
1174	0	1	0	0	0	1.06\%	0	1	6534	1	0	0	\$107409	0	0	0	0
1175	0	0	0	0	1	1.06\%	0	1	6970	1	0	0	\$104084	0	0	0	0
1176	0	0	0	0	0	1.10\%	0	1	6970	0	0	0	5307288	0	0	0	0
1177	0	1	0	0	0	1.10\%	0	0	5663	0	0	1	5260386	0	0	0	0
1178	0	0	1	0	0	1.06\%		1	5663	0		1	S229428	0	0	0	0
1179	0	1	0	0	0	1.11\%	0	1	24829	0	0	0	5239728	0	0	0	0
1180	0	0	0	0	0	1.07\%	0	1	6534	0	0		5222509	0	0	0	0
1181	0	1	0	0	0	1.07\%	0	0	6534	0	0	1	\$241594	0	0	0	
1182 1183 188	0	1	0	0	0	1.10\%	0	0	${ }_{6}^{6098}$	1	0	0	S139273 $\$ 20331$	0	0		0
1183	0	1	0	0	0	1.05\%		0	6098		0	1	\$203331	0	0	0	0
1184 1185	\bigcirc	1	\bigcirc	\bigcirc	0	${ }^{1.10 \%}$	\bigcirc	1	6100 5663	0	\bigcirc	0 1	S446311 S241594	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1186	0	0	0	1	0	1.10\%	0	1	7405		0	1	\$374576	0	0	0	0
1187	0	1			0	1.10\%	0	0	6534	0	0	1	\$284000	0	0	0	0
1188	0	1	-	0	0	1.16\%	0	0	43560	1	0	0	\$114804	0	0	0	0
1189	0	1	0	0	0	1.10\%	0	1	5663	0	0	0	\$299374	0	0	0	0
1190	0	0	0	0	0	1.10\%	0	1	5663	0	0	1	S234 110	0	0	0	0
1191	0	1	0	0	0	1.10\%	0	1	6098	0	0	0	\$333917	0	-	-	0
1192 1193	0	1	0	0	0	${ }^{1.06 \%}$	0	1	5663 7700	0	\bigcirc	0 1	5289853 S280	0	\bigcirc	\bigcirc	0
1193 1194 1	${ }_{0}$	1	0	0		${ }^{1.1 .13 \%}$	0	${ }_{0}$	7841	0		1	\$339460	0	0	0	\bigcirc
1195	0	1	O	-	-	1.13\%	0	1	7841	0	1	0	S631662	0	0	0	0
1196	0	1		0	0	1.06\%	0	0	6970	0	0	0	\$186352	0	0	0	0
1197	0	1	0	0	0	${ }^{1.09 \%}$	0	1	3920 5663	\bigcirc	1	\bigcirc	S662855 $\$ 887960$	\bigcirc	0	\bigcirc	\bigcirc
1198 1199	0	1	\bigcirc	\bigcirc	0	1.10% 1.10%	\bigcirc	${ }_{0}^{1}$	${ }_{5663}^{5663}$	${ }_{1}$	${ }_{0}^{1}$	0	$\$ 847960$ $\$ 158846$	0	\bigcirc	\bigcirc	${ }_{0}$
1200	0		O	0	0	1.10\%	0	1	5663	0	0	0	\$213238	0	0	0	0
1201	0	1	0	0	0	1.06\%	0	0	5663	-	0	1	5261994	0	0	-	0
1202	0	1	0	0	0	1.07\%	0	1	6098	1	0	0	\$103674	0	0	0	0
1203 1204 1	\bigcirc	1	0	0	0	${ }_{1}^{1.07 \%}$	0	1	5663 6970	1	0	0	\$104306 $\$ 213238$	0	0	\bigcirc	0
1204 1205	0	0	0	${ }_{1}$	${ }_{0}^{0}$	1.07\% 1.07%	0	${ }_{1}^{1}$	6970 6420	0	0	0	5213238 5448876	。	0	\bigcirc	0
1206	0	1	O		0	1.07\%	0	1	6098	O	0	0	\$415 531	0	0	0	0
1207	0	0	0	1	0	1.07\%	0	1	5663	1	0	0	\$105332	0	0	0	0
1208	0	1	0		0	1.06\%	0	1	6098	1	0	0	\$140 026	0	0	0	0
1209	0	0	0	0	${ }_{0}^{1}$	1.10\%	0	1	6098 5663	1	0	0	\$882136	0	0	\bigcirc	\bigcirc
1210 1211	\bigcirc	1	${ }_{1}$	\bigcirc	\bigcirc	${ }^{1.1 .10 \%}$	\bigcirc	${ }_{1}^{1}$	5663 7405	0	\bigcirc	1	\$269 227 $\$ 4888$	\bigcirc	0	\bigcirc	\bigcirc
1212	0	0	0	1	0	1.09\%	0	1	8250	0	0	0	5467472	0	0	0	0
1213	0	0	0	1	0	1.08\%	0	1	4792	1	0	0	\$66491	0	0	0	0
1214	0		0	1	0	1.13\%	0	1	6534	1	0	0	\$112064	0	0	0	0
1215 1216 1215	\bigcirc	1	\bigcirc	\bigcirc	0	1.09\%	0	0	6098 6098	\bigcirc	0	1	S2797176 $\mathbf{S 1 4 5 7 0 5}$	0	0	\bigcirc	0
1216 1217	0	1	\bigcirc	0	0	1.13% 1.12% 1	${ }_{0}$	1	6098 6098	0	${ }_{1}$	${ }_{0}^{1}$	\$145 705 $\$ 631662$	\bigcirc	\bigcirc	\bigcirc	0
1218		1	0	0		${ }_{\text {1.13\% }}^{1.12 \%}$	0	${ }_{0}^{1}$	${ }_{6}^{6998}$	0	0	1	¢	${ }_{0}$	0	${ }_{0}$	${ }_{0}$
1219	-	0	0	1	0	1.10\%	0	1	5663	-	0	0	\$368460	0	0		0
1220	0		0	1	0	1.12\%	0	1	5500		0	1	\$345312	0	0	0	0
${ }_{1}^{1221}$	0	1	0	0	0	1.35\%	\bigcirc	1	6534 5663	0	\bigcirc	0	$\begin{array}{r}\$ 376520 \\ \$ 29974 \\ \hline\end{array}$	0	0	0	0
1222 1223	${ }_{1}^{0}$	1	0	0	\bigcirc	${ }^{1.1 .12 \%}$	\bigcirc	1	5663 8712	0	${ }_{1}$	0	$\underset{\substack{\text { S299374 } \\ \$ 62067}}{\text { S }}$	0	\bigcirc	\bigcirc	\bigcirc
1224	0	1	0	0	0	1.13\%	0	0	10454	0	0	1	\$198110	0	0	0	0
1225	0	0	0	0	1	1.10\%	0	1	6098	-	0	1	\$254846	0	0	-	0
1226	0	0	0	0	0	1.12\%	0	1	6970		1	0	\$831333	0	0	0	0
1227 1228 122	0	0	\bigcirc	1	0	1.12\%	\bigcirc	1	8000 5663	\bigcirc	\bigcirc	0	5448876 S48038	0	\bigcirc	\bigcirc	0
1228 1229	${ }_{1}^{0}$	1	0	0	\bigcirc	1.07\% 1.10%	\bigcirc	1	5663 10454	0	${ }_{1}^{0}$	0	\$480938 $\$ 717443$	0	0	0	\bigcirc
1230	0	0	0	0	1	1.07\%	0	1	5663	0	1	0	\$688589	0		0	0
1231	-	0	0	1		1.10\%	0	1	5663	0	0	0	\$299660	0	0	0	0
1232	0	0	0	1	0	1.10\%	0	1	5663	0	0	1	5342386	0	0	0	0
1233 1234 123	0	0	0	1	0	1.10\%	\bigcirc	1	6534 9583 958	1	\bigcirc	0	$\begin{array}{r}578225 \\ \$ 29923 \\ \hline\end{array}$	0	0	0	0
1234 1235	0	${ }_{0}^{1}$	0	0	0	1.1.10\% 1.10%	0	${ }_{1}^{1}$	9583 6534	0	\bigcirc	1	${ }_{\substack{\text { ¢2923 } \\ \$ 223 \\ \hline 554}}$	\bigcirc	\bigcirc	\bigcirc	0
1236		0	0	0	1	1.10\%	0	1	6970	0	1	0	\$685942	0	0	0	0
1237	-	1	0	0	0	1.10\%	0	1	7405	0	0	0	\$210 010	0	0	0	0
1238 1239 1239	0	1	0	0	\bigcirc	1.10% 1.107% 1	0	0	7005 6534	0	0	1	S265926 S281323	0	0	\bigcirc	\bigcirc
1239 1240	0	1	\bigcirc	0	0	1.07\% 1.10%	\bigcirc	${ }_{1}^{0}$	6534 6970	$\stackrel{0}{0}$	\bigcirc	1	S281323 $\$ 180000$	0	\bigcirc	\bigcirc	\bigcirc
1241	0	0	1	0	0	1.10\%	0	1	6098	0	0	0	\$352 162	0	0	0	0
1242	-	0	0	0	0	1.10\%	0	1	${ }^{6000}$	0	0	0	\$461701	0	0	0	0
1243	0	0	0	0	0	1.10\%	0	1	5663	0	0	1	5351165	0	0		0
1244 1245 124	0	0	${ }_{0}^{1}$	\bigcirc	0	1.10% 1.07% 1	\bigcirc	1	6970 6534	\bigcirc	\bigcirc	1	S327 754 S254846	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1246		0	0	0	0	1.07\%	0	1	6098	0	1	0	\$871864	0	0	0	0
1247	0	0	0	1	0	1.10\%	0	1	5663	0	0	0	${ }_{5}^{545431}$	0	-	\bigcirc	0
1248	0	1	0	0	\bigcirc	- 1.10%	0	1	6900 5655	0	0	0	5442463 S84265	0	\bigcirc	\bigcirc	\bigcirc
1249 1250 120	${ }_{0}^{1}$	1	\bigcirc	\bigcirc	\bigcirc	${ }^{1.1 .10 \%}$	\bigcirc	1	5665 5663	\bigcirc	${ }_{0}^{1}$	0 1	S844265 S345	\bigcirc	\bigcirc	${ }_{0}^{0}$	0
1251		1	0		0	1.10\%	0	0	7405	0	0	1	\$300651	0	0	0	0
1252	0	,	0	0	0	1.12\%	0	1	5663	1	0	0	\$49415	0	0	0	
1253 1254 12	0	1	${ }_{0}$	\bigcirc	\bigcirc	- ${ }_{\text {1.1.10\% }}^{1.10 \%}$	${ }_{0}$	${ }_{1}$	7841 6534	0	\bigcirc	1	5300651 5412034	${ }_{0}$	0	\bigcirc	\bigcirc
1255	0	1	0	0	0	${ }^{1.09 \%}$	0	1	${ }_{6}^{6534}$	1	0	${ }_{0}$	\$4124882	0	0	0	0
1256	0	1	0	0		1.12\%	0	1	6534	0	0	1	\$257521	0	0	0	0
1257 1258 1258	0	0	0	0	0	1.10\%	0	1	5663 6970	1		0	S180302 S102592		0	0	0
1258 1259	0	\bigcirc	\bigcirc	${ }_{0}^{1}$	\bigcirc	- ${ }_{\text {1.1.10\% }}$	0	1	6970 6375	1	\bigcirc	0	$\$ 102592$ $\$ 29693$	0	0	\bigcirc	\bigcirc
1260	0	0	0	O	1	1.07\%	0	1	7841	0	-	1	\$348970	0	0	0	0
1261	0	0	-	0		1.10\%	0	1	6970		0	0	\$106549	0	0	0	0
1262 1263 12						1.10\%			6098 10454				\$315463		\bigcirc	\bigcirc	
1263 1264 126	\bigcirc	${ }_{0}^{1}$	\bigcirc	\bigcirc	\bigcirc	${ }^{1.07 \%}$ 1.07\%	\bigcirc	1	10454 6534	\bigcirc	\bigcirc	0	\$545064 $\$ 259131$	0	\bigcirc	\bigcirc	\bigcirc
1265 1265 126	0	1	0	0	0	1.10\%	0	1	6534 8712	0	0	1		0	0	0	0
1266 1267 126	\bigcirc	0	0	0	0	1.07\%	0	1	8712 6534	0	0	1		0	0	0	\bigcirc
1267 1268 1	0	${ }_{1}^{0}$	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }^{1.00 \%}$ 1.07\%	${ }_{0}$	1	6534 7405	\bigcirc	0	1	($\begin{array}{r}5337948 \\ \$ 322126\end{array}$	0	\bigcirc	\bigcirc	0
1269	0	0	0	0	0	1.07\%	0	1	8712	0	0	0	\$273501	0	0	0	0
1270	0	0	-	-	0	1.07\%	0	1	6970	1	0	0	\$116949	0	0	0	
1271 1272 122	\bigcirc	${ }_{0}$	0	0	0 1	1.10\%	\bigcirc	1	6534 6534	0 1	0	1	\$269602 $\$ 116900$	0	\bigcirc	\bigcirc	0
${ }_{1273}^{1272}$	${ }_{0}$	0	-	0	${ }_{0}$	${ }^{1.07 \%}$	${ }_{0}$	1	${ }_{6534}^{6534}$	1	0	${ }_{0}$	\$148307	0	${ }_{0}$	${ }_{0}$	${ }_{0}$
1274	0	0	0	0	0	1.16\%	0	1	41818	0	0	1	\$508500	0	0	0	0
1275 1275 127	\bigcirc	1	0	1	0	1.1.8\%	0	1	43560 8000	0	1	0		0		0	0
1276 1277	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	1.07\% 1.13%	\bigcirc	1	8000 6534	0	${ }_{1}$	0	\$499535 $\$ 96988$	0	\bigcirc	\bigcirc	\bigcirc
1278	0	1	O			1.09\%	0	0	6098	0	0	1	\$268438	0	0	0	-
1279	0	0	0	0	-	1.09\%	0	1	${ }^{6} 098$	1	0	0	\$99243	-	0	0	0
1280 1281	0	1	\bigcirc	${ }_{0}$	${ }_{0}$	- ${ }_{\text {1.1.12\% }}$	${ }_{0}$	${ }_{0}^{1}$	14810 6970	1	\bigcirc	0	$\$ 155835$ $\$ 215000$	\bigcirc	\bigcirc	\bigcirc	0
1282	0	0				${ }^{1.1 .9 \%}$	0	1	5663	1	0	${ }_{0}$	S15 $\mathbf{5 1 5 8 0 9 4}$	\bigcirc		${ }_{0}$	0
1283	-	1	0	0	0	1.13\%	0	1	7405		1	-	\$645798	0	0	0	0
1284 1285 1285	0	0 1	\bigcirc	0	${ }_{0}^{1}$		\bigcirc	1	5663 5663	0	\bigcirc	1	5213372 $\$ 351165$	0	\bigcirc	\bigcirc	\bigcirc
1285 1286	${ }_{0}$	1	${ }_{0}$	${ }_{0}$	\bigcirc	${ }_{\text {1.09\% }}^{2.35 \%}$	${ }_{0}$	1	5663 9148	0	0	1	\$351165 $\$ 96808$	0	\bigcirc	\bigcirc	0
1287	0	1		O	0	1.07\%	0	1	6534	0	0	O	\$168899	。	0	-	
1288	,	1	0	0	0	1.10\%	0	1	10019	1	-	0	\$163740	0	0	0	0
1289 1290	${ }_{0}^{1}$	1	${ }_{0}$	\bigcirc	${ }_{1}$	${ }_{\substack{1.12 \% \\ 1.12 \%}}^{1.28}$	${ }_{0}$	1	4602 5663	${ }_{1}$	${ }_{0}^{1}$	\bigcirc	5655057 $\$ 88813$	${ }_{0}$	${ }_{0}$	${ }_{0}$	\bigcirc
1291	0	0	0			1.12\%		1	6098	0		1	\$284544	0	0	0	0
1292	0	0	0	0	1	1.12\%	0	1	6970	0	0	0	586222	0	0	0	
1293	0	1			0	1.10\%			6098 5663								
1294 1295	0	1	0	0	0	1.1.12\%	\bigcirc	0	5663 5663	1	0	0	S108074 $\$ 311647$	0	0	\bigcirc	0
1296	0	1	0	0	0	1.09\%	0		${ }^{23625}$	0			S 577714 $\$ 50013$	-		0	
1297 1298	${ }_{1}$	1	\bigcirc	${ }_{0}$	${ }_{0}$	- 1.10%	0	1	10890 1009	0	0	0	S513011 S1016074	0	0	\bigcirc	0
1299 1300			${ }_{0}$	-	${ }_{0}$	${ }^{1.08 \%}$	0	1	6534 4356	${ }_{0}^{1}$	O	${ }_{0}$	$\$ 74314$ S402706	${ }_{0}$	0	-	0

observation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％－90\％	LTV 70\％－78\％	ltv below 70\%	total tax bURDEN	parcel in SCEIP $=1$	CONVENTIONAL LOAN＝ 1	Lot SIIE	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	SOLD DURING 2004＿2007	Sold 2008－2012	PRICE ADJUST．TO 2012	$\begin{aligned} & \text { ZIP CODE } \\ & \text { Z95403 } \end{aligned}$	$\begin{aligned} & \text { ZIP CODE } \\ & 95404 \end{aligned}$	$\begin{aligned} & \text { ZIP CODE } \\ & 95472 \end{aligned}$	$\begin{aligned} & \text { ZIP COD } \\ & \hline 99928 \end{aligned}$
2081	Sess	0	1	0	\％\％	1．09\％			3920	${ }^{\text {conez }}$	${ }^{2004}$	1	\＄310 196	2503	Sta		
2082	。	1	0	0	。	1．09\％	0	。	4320	0	。	1	\＄339460	。	。	。	。
2083	0	0	0	1	0	1．13\％	0	1	4792	1	。	0	\＄46955	0	0	0	0
2084	0	0	0	0	0	1．12\％	0	1	4356	1	0	0	\＄55 228	0	0	0	0
2085	0	0	0	1	0	1．12\％	0	1	4356		0	1	5268438	0	0	0	
2086	0	0	0	0	0	1．09\％	0	1	6098	0	0	0	\＄374217	0	0		0
2087	0	1	0	0	0	1．09\％	0	，	6098	0	0	1	\＄252332	0	0	O	0
2088	0	，		0	1	1．12\％	0	1	6098	1	0		\＄109 189	0	0	0	0
2089	0	1	0	0	0	1．12\％	0	1	6098	0		0	\＄766571	0	0	0	0
2090	0	0	1	0	0	1．10\％	0	1	6098		0	1	5297429	0	0	0	0
2091	0	1	－	0	0	1．09\％	0	0	${ }_{6098}$	${ }^{0}$	0	1	5288087 $\$ 15689$	0	0	0	0
2092	0	1	0	0		1．09\％	0	1	6098	1	0	0	\＄156588	0	0	0	0
2093	0	0	0	0	0	1．09\％	0	1	6098	－	0	0	5391489	0	0	0	0
2094	0	0	0	0	1	1．12\％	0	1	6098	0	0	1	\＄230944	0	0	0	0
2095	0	1	0	0	${ }^{1}$	1．09\％	0	0	6098 6098	1	\bigcirc	0	S124368 $\mathbf{S 1 1 9 7 9 4}$	0	0	0	0
2096 2097	0	0	\bigcirc	${ }_{1}$	1	－	0	1	6098 6534	1	。	。	\＄119794 $\$ 99958$	\bigcirc	0	\bigcirc	0
2098	0	1	0	1	0	${ }_{1.13 \%}^{1.12 \%}$	0	1	${ }_{5663}^{653}$	1	－		－ 5487748	0	0	0	0
2099	0	0	0	1	0	1．12\％	0	1	6534		1	0	\＄762055	－	0	0	0
2100	0	0	1	0	0	1．08\％	0	0	9148	0	0	1	\＄241550	0	0	0	0
2101	0	1	0	0	0	1．09\％	0	0	3920			1	\＄256508	0	0	0	0
2102	0	0	0	1	0	1．12\％	0	1	${ }^{4356}$	0	0	1	5339460	0	0	0	
2103	0	1	0	0	0	${ }^{1.12 \%}$	0	0	3920	0	0	1	\＄270104	0	0	0	0
2104	0	1	0	0	0	${ }^{1.12 \%}$	0	1	${ }^{4320}$	0	0	0	S423226 S28541	0	0	0	0
2105	0	1	0	0	0	1．12\％	0	1	${ }^{6} 098$	0	0	1	${ }_{\text {S }} 5288541$	0	0	－	0
2106 2107	0	${ }_{1}$	0	0	1	退1．01\％	0	${ }_{0}^{1}$	6534 6970	0	${ }_{0}^{1}$	，	S647258 501232	0	0	0	0
2107 2108	${ }_{0}^{0}$	1	0	0	\bigcirc	1．09\％	${ }_{0}$	1 1	6970 6534	${ }_{1}^{0}$	\bigcirc	${ }_{0}$	$\$ 301232$ $\$ 14288$	0	0	\bigcirc	0
2109		0		0	1	1．10\％	0	1	${ }_{9} 148$	${ }_{0}$	1	0	\＄568 495	。	0	0	0
2110	0	0	0	1	0	1．10\％	0	1	10890	0	0	1	5392134	0	0	0	－
2111	0	1	0	0	0	1．12\％	0	1	6098	1	0	0	\＄153953	0	0	0	0
2112	0	1	－	0	0	1．12\％	0	0	5663	0	0	1	\＄268438	0	0	0	0
2113	0	1	0	0	0	${ }^{1.12 \%}$	0	1	${ }_{6}^{6880}$	0	0	0	5486068 $\$ 474526$	0	0	0	0
2114 2115	\bigcirc	0	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	（1．12\％	0	1	6800 7405	${ }_{1}$	\bigcirc	0	\＄474426 S104 487	0	0	0	0
${ }_{2116}^{2115}$	${ }_{0}$	1	0	0	${ }_{0}$	${ }_{1.12 \%}^{1.09 \%}$	0	1	6098	1	\bigcirc	1	\＄365649	${ }_{0}$	0	0	${ }_{0}$
2117	0	0	－	－	0	1．12\％	0	1	6400	0	1	0	\＄956237	0	0	0	－
2118	0	1	0	0	0	1．09\％	0	0	6534	0	0	1	\＄357667	0	0	0	0
2119	0	0	0	1	0	${ }^{1.08 \%}$	0	1	4792	0	0	1	\＄207850	0	0	\bigcirc	0
2120 2121	${ }_{1}^{0}$	1	0	0	${ }_{0}^{1}$	${ }_{\text {1．1．2\％}}^{1.12 \%}$	0	1	4336 4792	${ }_{0}$	${ }_{1}^{1}$	\bigcirc	$\$ 895992$ $\$ 712894$	${ }_{0}$	\bigcirc	\bigcirc	${ }_{0}^{\circ}$
2122	0	1	0	0	0	1．88\％	0	1	4792	1	0	0	\＄109737		0	0	0
2123	0	1		－	0	1．07\％	0	1	4792	0	0	1	\＄259059	0	0	0	0
2124	0	0	0	0	1	1．12\％	0	1	4555	0	0	0	\＄457853	0	0	0	0
2125	0	0	0	0	0	1．12\％	0	1	${ }_{4}^{4356}$	0	0	1	\＄392 134	0	0	0	0
2126 2127	0	1	\bigcirc	0	0	－	0	1	4792 4356	1	${ }_{0}$	${ }_{0}$	\＄108985 $\$ 133250$	0	0	0	${ }_{0}$
${ }_{2128} 12$	${ }_{0}$	${ }_{0}$	0	1	0	${ }_{\text {1．12\％}}$	0	1	${ }_{4}^{4356}$	${ }_{0}$	${ }_{0}$	1	${ }_{\text {¢ }}$ S345312	${ }_{0}$	0	0	${ }_{0}$
2129	0		1	0	0	1．12\％	0	1	${ }^{4356}$	1	0	0	\＄114392	0	0	0	0
2130	0	1	0	0	0	1．09\％		1	4792	1	0	0	\＄151318	0	0	0	0
2131 2132	\bigcirc	0	0	0	1	1．12\％	\bigcirc	1	4356 5336	0	\bigcirc	1	\＄333607 5321091	0	0	0	0
2132 213	0	0	0	1	0	${ }_{\text {l }}^{1.12 \%}$	0	1	5336 4356	\bigcirc	0	${ }_{0}^{1}$	\＄321901 $\$ 407190$	0	0	\bigcirc	${ }_{0}^{0}$
2134	0	1	0	0	0	1．09\％	0	0	${ }^{6} 998$	0	0	1	\＄329849	0	0	0	0
2135	0	0	0	0	1	1．09\％	0	1	6000	0	0	0	5448876	0	0	0	－
2136	0			0	0	1．13\％	0	1	6098	1	0	0	\＄60371	0	0	0	0
2137 2138 2138	0	1	0	0	0	${ }^{1.12 \%}$	0	0	6400 6098	0	0	1	\＄2178911	0	0	0	0
2138 2139	\bigcirc	0	1	0	0	－	0	1	6098 6098	${ }_{1}$	${ }_{0}^{1}$	${ }_{0}$	\＄969888 $\$ 662159$	0	\bigcirc	0	\bigcirc
2139 2140	O	0	0	0	${ }_{0}$	${ }_{1}^{1.09 \%}$	${ }_{0}$	1	${ }_{5665}^{6098}$	${ }_{0}$	1	0	${ }_{5993737}^{562199}$	0	0	${ }_{0}$	${ }_{0}$
2141	0	0	0	1	0	1．13\％	0	1	6534	1	0	0	570961	0	0	0	0
${ }_{2}^{142}$	0	0	0	0	0	1．09\％	0	1	6098	0	0	1	\＄279 176	0	0	0	0
2143 2144 104	0	0	0	1	0	1．09\％	0	1	4356 4356	0	\bigcirc	1	S264 143 $\$ 23094$	0	0	0	0
2144 2145	0	${ }_{0}^{1}$	\bigcirc	\bigcirc	${ }_{1}$	－${ }_{\text {1．1．12\％}}^{1.9 \%}$	。	0	4356 4356	${ }_{1}$	\bigcirc	${ }_{0}^{1}$	S230944 $\mathbf{\$ 1 0 8} 565$	0	\bigcirc	\bigcirc	\bigcirc
${ }_{2} 146$		1	0	0	0	1．09\％	0	0	5663	1	0	0	\＄19380	0	0	0	0
${ }_{2}^{147}$	0	1	0	0	0	1．09\％	0	1	7841	0	0		5348996	0	0	0	0
2148 2149 214	0	1	0	0	0		0	0	4336 6970	${ }_{0}^{1}$	0	\bigcirc	\＄59700 $\$ 887022$	0	0	0	0
2149 2150	0	1	\bigcirc	0	0	－	0	1	6970 6200	\bigcirc	${ }_{0}^{1}$	0	S837022 $\$ 497611$	\bigcirc	0	\bigcirc	${ }_{0}^{0}$
2151 2152	0	0	1	0	－	${ }^{1.12 \%}$	0	1	8276	0	0	1	5444809 $\$ 28555$	－	0	0	0
2152 2153	0	0	0	0	0	1．08\％		1	4356 4500	0	0	1	${ }_{5} 52836575$	0	0	0	\bigcirc
2153 2154	\bigcirc	1	0	\bigcirc	\bigcirc	（1．12\％	0	1	4500 4356	\bigcirc	\bigcirc	${ }_{0}^{1}$	5376729 548751	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2155	－	1	0	0		1．09\％	0	1	4356	0	0	0	\＄162878	0	0	0	0
2156	0	1	0	0	0	1．09\％	0	1	${ }_{5}^{4356}$	0	0	1	$\$ 305815$ $\$ 106854$	0	0	0	
2157 2158	${ }_{1}$	${ }_{1}$	${ }_{0}$	${ }_{0}^{1}$	${ }_{0}$	－	0	1	5227 5208	${ }_{0}^{1}$	${ }_{0}$	\bigcirc	S106854 S461 701	${ }_{0}$	${ }_{0}$	${ }_{0}$	${ }_{0}$
2158 2159	1	${ }_{0}$	0		0	1．10\％	${ }_{0}$	1	5208 10019	1	0		\＄46100 296	0	0	0	0
2160	0	0	0	0	－	1．12\％	0	1	8276	0	0	1	5395565	0	0	0	－
${ }_{2161}^{2162}$	0	0	0	0	1	1．10\％	0	1	6534 7424	1	\bigcirc	0	S143081 S545 64	0	0		
${ }_{2163}^{2162}$	。	\bigcirc	\bigcirc	${ }_{0}^{1}$	\bigcirc	1.12% 1.09% 1，	0	1	7424 6098	\bigcirc	${ }_{1}$	\bigcirc	\＄545064	\bigcirc	\bigcirc	\bigcirc	${ }_{0}^{\circ}$
${ }_{2}^{2164}$		0	0	0	1	${ }^{1.12 \%}$	0	1	5663	0	0	1	\＄375813	O	O	O	0
2165	0	0	0	0	0	1．09\％	0	1	6098	1	0	0	\＄172021	0	0	0	0
2166 2167	\bigcirc	0	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	－1．12\％	\bigcirc	1	7841 8712	1	\bigcirc	\bigcirc	S118422 S12789	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2168	0	1	0		${ }_{0}$	1．12\％	0	1	8712	${ }_{0}$		0	${ }_{\text {\＄243833 }}$	0	0	。	0
${ }^{2169}$	0	0	0	1	0	1．10\％		1	6534 7	0	0	1		0		0	0
2170	－	－	0	0	0	${ }^{1.12 \%}$	0	1	7405	1	0	0	\＄1888911	0	0	0	0
2171	－	1	0	0	0	1．10\％	－	1	6098	0	1	0	\＄725241	0	0	0	0
2172 2173	0	\bigcirc	0	0	\bigcirc	－	0	1	6534 9148	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	S116387 S373999	0	\bigcirc	\bigcirc	\bigcirc
2174		1	0		0	${ }^{1.1 .09 \%}$	0	1	6970	1	0	${ }_{0}$	¢116398	0	0	－	。
2175		1	0	0	0	1．08\％	0	1	2614	0	1	0	$\begin{array}{r}\text { S54 } 8880 \\ \$ 2882 \\ \hline\end{array}$	0	0	0	0
${ }_{2177}^{2176}$	0	\bigcirc	${ }_{0}^{1}$	\bigcirc	${ }_{0}$	1.12% 1.08% 1	0	1	2614 2614	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	$\begin{array}{r}\$ 208352 \\ \$ 553 \\ \hline 679\end{array}$	\bigcirc	${ }_{0}$	\bigcirc	${ }_{0}$
2178		0	0	0		1．12\％		1	4356	0	1	0	\＄831333	0	0	0	0
2179 2189	0	1	0	0	0	1．12\％	0	1	4356 3485	\bigcirc	0		S358889 S190000	0			
2180 2181	\bigcirc	${ }_{0}^{1}$	\bigcirc	\bigcirc	\bigcirc	${ }^{1.09 \%}$	0	1	3485 3950	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	S190000 S648314	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2182	0	1	O	O		1．12\％	0	，	3920	0	0	1	\＄185759	0		0	0
2183 2184 2184	0	1	0	0	0	1．12\％		1	3920	0	1	0	\＄584872	0	0	0	0
2184 2185 2185	\bigcirc	1	\bigcirc	\bigcirc	${ }_{1}$	－	\bigcirc	1	3485 2614	0	${ }_{0}^{1}$	${ }_{0}$	$\$ 757437$ $\$ 198868$	${ }_{0}$	${ }_{0}$	${ }_{0}$	${ }_{0}$
2186	0			1		${ }_{1.12 \%}^{1.12 \%}$	0	1	3049	0	0	1	\＄198644	0	0	0	－
2187 2188	0	－	－	0		${ }^{1.12 \%}$	0	1	2614 3 3	0	0	1	\＄234348	O	O	－	0
2188 2189	0	${ }_{0}$	${ }_{1}$	\bigcirc	0	－${ }_{\text {1．1．2\％}}^{1.9 \%}$	0	1	3846 4792	\bigcirc	0	${ }_{0}^{1}$	\＄298490 $\$ 301677$	${ }_{0}$	\bigcirc	\bigcirc	${ }_{0}^{0}$
2190	0	0	1			1．09\％	0	1	5227	0	0	1	\＄292638	0	0	0	0
2191 2192					${ }_{0}^{1}$	1．12\％							$\begin{array}{r}593155 \\ \$ 215092 \\ \hline\end{array}$	\bigcirc			
2192 2193	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1.12% 1.13%	0	1	3485 6534	${ }_{1}^{1}$	\bigcirc	\bigcirc	S215092 $\$ 5363$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2193 2194 2195			0			1．09\％	0	1	6934 6970 6980	0	0	1	－	0	0	0	0
2195	0	1	0	0	0	1．12\％			6970	0	0	1	5217891	0	O	0	O
2196 2197	0	1	0	0	0	${ }_{\text {1．12\％}}^{1.12 \%}$	0	0	7841 7405	0	0	1	$\$ 242000$ S281860	0	0	\bigcirc	${ }_{0}$
2198		1				1．12\％		1	3485	0	0	1	\＄374576	0		0	0
2199 2200	0	0	\bigcirc	0	\bigcirc	${ }_{\text {1．09\％}}^{1.129}$	－	1	3920 5663	\bigcirc	0	1	－	0	0	0	0
2200 2201	0	1	0	0	1	－	0	1	5663 6534	\bigcirc	0	0	$\$ 345431$ $\$ 21583$	0	0	0	\bigcirc
2201 2202	0	0	0	0	1	${ }_{\text {1．12\％}}^{1.12 \%}$	0	1	6534 5663	0	0	1	\＄215883 $\$ 22599$	0	0	0	0
2203			0	1	0	1．12\％	0	1	6534	1	0		\＄85489	0	0		
2204 2205	0	1	0	0	\bigcirc	1．12\％	0	0	8494 9	0	0	0	5486068 $\$ 399028$	0	0	0	
2205 2206	0	1	0	${ }_{1}$	\bigcirc	－	0	0	9148 6098	0	0	1	$\$ 349028$ $\$ 337000$	\bigcirc	0	\bigcirc	${ }_{0}^{0}$
2207	0	0	0	1	0	1．12\％	0	1	6098	1	0		\＄106549	O	O		
2208	0	1	0	0	0	1．12\％	0	0	7841	0	0	1	\＄2598488	0	0	0	0
			${ }_{0}$	${ }_{0}$	1	1．1．9\％	${ }_{0}$	${ }_{1}^{1}$	6098 4792	0	0	0	S455 288 $\$ 871864$	\bigcirc	\bigcirc		

observation	PROPERTY DURESS $=1$	LTV＿90\％	LTV 81\％－99\％	LTV 70\％－78\％	ltv below 70\%	totaltax burden	parcel in SCEIP $=1$	CONVENTIONAL LOAN＝ 1	Lot SIIE	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	SOLD DURING 2004＿2007	Sold 2008－2012	PRICE ADJUST．TO 2012	ZIP CODE 295403	$\begin{aligned} & \text { ZIP CODE } \\ & 95404 \end{aligned}$	$\begin{aligned} & \text { ZIP CODE } \\ & 95472 \end{aligned}$	$\begin{aligned} & \text { ZIP COD } \\ & \hline 99928 \end{aligned}$
2341	Res＝1	1	0	0	\％	1．08\％			3485	${ }_{1}$	${ }^{2004}$	0	\＄95105		5400		
2342	。	0	0	0	。	1．12\％	0	1	3485	\％	0	1	S195801	。	。	。	。
2343	0	1	0	0	0	1．12\％	0	0	3920	0	。	1	\＄255553	0	0	0	0
2344	0	0	1	0	0	1．12\％	0	1	3485		1	0	5768740	0	0	0	0
2345	0	1	0	0	0	1．08\％	0	0	3485	1	0	0	\＄101756	0	0	0	0
2346	0	1	0	0	0	1．12\％	0	0	3485	0	0	1	\＄195801	0	0		0
2347	0	1	0	0	0	1．12\％	0	1	6098	1	0		S100461	0	0	O	0
2348	0	0		0	0	1．09\％	0	1	4356	0	0	1	S225488	0	0	0	0
2349	0	1	0	0	0	1．08\％	0	0	3485	0	0	1	\＄230857	0	0	0	0
2350	0	0	1	0	0	1．13\％	0	1	4792		1	0	5778270	0	0	0	0
2351	0	1		－	0	1．09\％	0	1	6679	0	0	1	$\begin{array}{r}5333607 \\ \$ 3823 \\ \hline\end{array}$	0	0	0	0
2352	0	1	0	0	0	1．09\％	0	1	${ }^{3485}$	0	1	0	5838723	0	0	0	0
2353	0	1	0	0	－	1．12\％	0	0	3485	0	0	1	\＄278591	0	0	0	0
2354	0	0	1	－	0	1．09\％	0	1	3485	0	0	0	\＄321454	0	0	0	0
2355 2356	0	1	0	0	\bigcirc	1．09\％	0	0	$\begin{array}{r}3920 \\ 3485 \\ \hline\end{array}$	0	\bigcirc	1	$\begin{array}{r}\text { S310 } \\ \hline\end{array}$	0	0	0	0
2356 2357	0	0	\bigcirc	0	\bigcirc	－	0	1	3485 3485	\bigcirc	0	1	S243742 S175718	\bigcirc	0	\bigcirc	\bigcirc
2357 2358	O	${ }_{0}$	0	0	1	${ }_{\text {1．09\％}}^{1.12 \%}$	0	1	3485 3485	0	－	1	－	0	0	0	0
2359	0	1	0	0	0	1．09\％	0	0	3485	0	0	1	S197809	。	0	0	0
2360	0	0	0	1	0	1．12\％	0	1	3485	0	0	1	5190780	0	0	0	0
${ }_{2} 361$	0		0	0	0	1．09\％	0	1	4356		1	0	\＄612946	0	0	0	0
2362	0		0	0	0	1．13\％	0	1	6098	1	0		\＄109737	0	0	0	
2363 2364	0	1	0	O	0	${ }^{1.12 \%}$	0	1	4303	0	0	0	${ }_{5416813}$	0	0	0	0
2364	0	1	0	0	0	${ }^{1.12 \%}$	0	1	3920	0	0	1	\＄200821	0	0	0	0
2365	0	1		0	0	1．09\％	0		3485	0	0	0	\＄299660	0	0	O	0
2366 2367	${ }_{0}^{1}$	1	0	0	\bigcirc		0	0	3487 3456	${ }_{0}^{1}$	0	0	S135599 S26454	0	0	0	0
2367 2368	${ }_{0}$	1	0	0	0	1．09\％	0	0	3456 3920	${ }_{0}$	\bigcirc	1	S264 544 $\$ 241594$	0	0	\bigcirc	0
2369		1			0	1．09\％	0	1	4356	1	。	${ }_{0}$	${ }_{598582}$		0	0	0
2370	0	1	0	0	0	1．09\％	0	1	3049	0	0	1	\＄258870	0	0	0	0
2371	0	1	0	0	0	1．09\％	0	1	3049	0	0		536753	0	0	0	
2372 2373	\bigcirc	1		0	0	－ 1.09%	\bigcirc	1	3049 3049	1	0	0	S299847 S120	0	0	0	\bigcirc
2373 2374	\bigcirc	1	0	0	${ }_{0}$	${ }_{\text {1．12\％}}^{1.12 \%}$	${ }_{0}^{0}$	${ }_{1}^{1}$	3049 3920	1	${ }_{0}^{0}$	\bigcirc	$\$ 120452$ $\$ 300859$	0	\bigcirc	\bigcirc	0
2375	。	1	。	。	。	${ }_{1.12 \%}$	。	${ }_{0}$	3485	。	。	1	${ }_{\text {¢ } 236226}$	。	。	。	。
${ }^{2376}$	0	1	0	0	0	1．09\％	0	1	3885	0	0	0	\＄397576	0	0	0	0
2377	0	1	－	－	0	1．12\％	0	1	3485	1	0	0	\＄131745	0	0	0	0
2378	0	1	0	0	0	1．12\％	0	0	3049	0	0	1	\＄270358	0	0	0	0
2379 2380	0	0	－	0	0	${ }^{1.12 \%}$	0	1	3485 3049	1	\bigcirc	0	－ 586606	0	0	\bigcirc	0
2380 2381	0	0	0	1	1	${ }_{\text {l }}^{1.12 \% \%}$	\bigcirc	1	3049 3485	1	\bigcirc	\bigcirc		\bigcirc	0	0	$\stackrel{0}{0}$
2382	0	0	1	0	0	1．09\％	0	1	3485	0	0	0	\＄325857		0		0
2383	0	1	0	0	0	1．12\％	0	1	3049	0	0	0	\＄190 060	0	0	0	－
2384	0	1	0	0	0	1．09\％	0	0	3049	0	0	1	\＄248 198	0	0	0	0
${ }^{2385}$	0	0	O	0	1	1．12\％	0	1	3920	0	0	1	\＄306099	0	0	0	0
2386 2387	0	1	${ }_{0}$	0	0	－	0	${ }_{0}^{1}$	3049 3485	\bigcirc	${ }_{0}$	${ }_{1}$	\＄345431 $\$ 257701$	0	${ }_{0}$	0	${ }_{0}$
2388 2388		1	0	0	${ }_{0}$	${ }_{\text {1．09\％}}$	0	1	3485 3456	0	${ }_{0}$	${ }_{0}$	\＄373208	${ }_{0}$	0	0	${ }_{0}$
2389	0	1	0	0	0	1．09\％	0	1	3641	0	0	0	\＄419378	0	0	0	0
2390	0		0	0	0	1．12\％	0	1	3920		0	1	\＄292638	0	0	0	0
2391 2392	\bigcirc	0	0	0	0	1．09\％	\bigcirc	1	3049 3049	1	\bigcirc	0	$\begin{array}{r}597417 \\ \$ 29093 \\ \hline\end{array}$	0	0	0	0
2392 2393	0	0	0	0	0	${ }_{\text {1．12\％}}^{1.12 \%}$	0	1	3049 4800	\bigcirc	0	${ }_{1}$	\＄290943 $\$ 274236$	\bigcirc	\bigcirc	\bigcirc	${ }_{0}^{0}$
2394	0	0	0	1	1	1．12\％	0	1	7841	1	0	0	\＄104114	0	0	0	0
2395	0	1	0	0	0	1．12\％	0	0	6098	0	0	1	\＄220000	0	0	0	0
2396 2397	\bigcirc	1	0	0	0	－	0	1	4336 4356	\bigcirc	1	0	S877518 616055	0	0	0	0
2397 2398	\bigcirc	1	0	0	0	${ }^{1.10 \%}$	\bigcirc	1	4336 4356	\bigcirc	1	0	${ }_{\text {S }}^{5616065}$	\bigcirc	\bigcirc	0	$\stackrel{0}{0}$
2399	0	1	0	0	0	1．09\％		1	6970	1	0	0	\＄100461		0	0	。
2400	\bigcirc	0	0	0	0	${ }^{1.12 \%}$	\bigcirc	1	${ }_{6}^{6098}$	0	0	1	${ }^{5347} 654$	0	\bigcirc	0	
2401	0	0	0	0	1	1．09\％	0	1	5663	0	0	0	\＄233 171	0	0	0	0
2402	0	1	0	0	1	1．09\％	0	1	${ }_{4}^{4356}$	0	1	0	－	0	0	0	0
2403 2404	0	0	0	0	1	1．09\％	0	1	4792	0	1	\bigcirc	5831248 $\$ 310557$	0	0	0	0
2404 2405	0	${ }_{0}^{1}$	${ }_{1}^{0}$	\bigcirc	\bigcirc	－	0	1	6970 6970	${ }_{1}$	\bigcirc	0	\＄310 557 $\$ 55452$	0	\bigcirc	\bigcirc	\bigcirc
2406		0	0	1	0	1．09\％	0	1	5663	0	0	1	\＄254000	0	O	O	0
2407	0	0	0	0	1	1．09\％	0	1	6970	1	0	－	\＄113557	0	0	0	0
2408	0	1	0	0	0	1．12\％	0	1	5663	0	0	1	\＄299 167	0	0	0	0
2409 240	1	1	0	0	\bigcirc	1．09\％	0	1	4356 4122	0	1	0	5855349 $\$ 51365$	0	0	0	0
2410 2411	0	1	0	－	\bigcirc	－	0	1	4122 4792	\bigcirc	1	\bigcirc	S513665 $\$ 937888$	\bigcirc	\bigcirc	\bigcirc	${ }_{0}^{\circ}$
${ }_{2}^{2412}$	－	1	0	0	0	1．09\％	0	1	${ }^{4356}$	0	0	0	\＄377339	－	0	O	0
2413	0	1	0	0	0	1．12\％	0	0	${ }^{4356}$	0	0	1	\＄230944	0	－	0	0
${ }_{2} 414$	0	1	0	O	0	1．11\％	－	0	3920	0	0	1	S254846 S190363	0	0	0	0
${ }_{2415}^{2415}$		0	0	0	1	${ }^{1.09 \%}$	0	1	3920 5227	1	0	0	\＄109363	0	0	0	0
2416 2417	0	${ }_{0}^{1}$	${ }_{1}^{0}$	\bigcirc	\bigcirc	1．09\％	0	${ }_{0}^{1}$	5227 3485	${ }_{0}$	\bigcirc	${ }_{0}$		${ }_{0}^{0}$	${ }_{0}$	${ }_{0}$	0
2418	0	0	0	0	1	1．12\％	0	1	3485	1	－	0	\＄90518		0	O	0
2419		1	0	0	0	1．14\％	0	1	9583	1	0	0	\＄62584	0	0	0	－
2420	－	0	0	0		1．12\％	0	1	3920	1	0	0	\＄102896	0	0	0	0
2421	0	1	0	0	\bigcirc	1．09\％	0	1	$\begin{array}{r}5152 \\ 3960 \\ \hline\end{array}$	0	0	0	$\begin{array}{r}5447593 \\ \hline 92281 \\ \hline\end{array}$	0			
2422 2423	。	1	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	1	3960 3920	\bigcirc	${ }_{0}^{1}$	\bigcirc	\＄721281 $\$ 294212$	\bigcirc	\bigcirc	\bigcirc	${ }_{0}^{\circ}$
${ }_{2}^{2424}$	－	0	0	0	0	${ }^{1.12 \%}$	0	1	3485	0	0	1	\＄263374	0	0	0	0
2425	0	1	0	0	0	1．09\％	0	0	3920	1	0	0	\＄153200	0	0	0	0
2426 2427	0	1	\bigcirc	0	\bigcirc	l	0	1	3485 6098	${ }_{0}^{1}$	0	${ }_{1}^{0}$	\＄57911 $\$ 327754$	${ }_{0}$	\bigcirc	\bigcirc	\bigcirc
2428		1	0	0	0	1．09\％		1	3049	0	0	0	\＄356946	0			
${ }^{2429}$	0	0	0	1	1	1．12\％	0	1	3920 3 3	0	0	1	$\underset{\$ 35092}{ }$	0		0	0
2430 2431	\bigcirc	－	0	1	0	${ }^{1.12 \%}$	\bigcirc	1	3920 3920	0	0	1	${ }_{\text {\％}} 5238857$	0	0	0	\bigcirc
${ }_{2432}^{2431}$	\bigcirc	0 1	\bigcirc	\bigcirc	\bigcirc	${ }^{1.12 \%}$	\bigcirc	${ }_{0}^{1}$	3920 3920	\bigcirc	0	${ }_{0}^{1}$	S217389 $\$ 206748$	${ }_{0}^{0}$	\bigcirc	\bigcirc	\bigcirc
2433	0		0	0	0	1．09\％	0	0	3485	0	0	1	\＄257 051	0			0
2434	0	0	－	0	0	${ }^{1.12 \%}$	－	1	6534	0	1	0	－ 5788377	0	0		0
2435 2436	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	－	0	\bigcirc	4792 11326	\bigcirc	\bigcirc	${ }_{1}^{1}$	\＄225924 $\mathbf{5 2 9 7 2 9}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2437	－	1		O	－	1．09\％		1	7841	O	1	${ }_{0}$	\＄754829	0			0
2438	1	0	1	0	0	1．12\％	0	1	5663	0	1	0	\＄686250	0	0	0	0
2439 2400	\bigcirc	0	0	0	\bigcirc	${ }^{1.12 \%}$	\bigcirc	1	7200 6955	\bigcirc	0	0	S443746 $\$ 265926$	0	0	\bigcirc	\bigcirc
2441	${ }_{0}$	1	0	${ }_{0}$	0	${ }_{1}^{1.12 \%}$	0	1	${ }_{5663}$	${ }_{0}$	0	${ }_{0}$	${ }_{\text {¢ }} 5338523$	${ }_{0}$	\bigcirc	\bigcirc	\bigcirc
2442	0	－	1	－	，	1．12\％	－	1	6970	0	1	0	\＄924363	0		O	0
2443	0	0	0	0	1	1．09\％		1	6098	0	1	0	\＄701846	0	0	0	0
2444	\bigcirc	1	${ }_{0}$	\bigcirc	0	－	\bigcirc	1	6970 6970	1	\bigcirc	\bigcirc	（121691	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2446	0		1	0		1．09\％	0	0	6970	1	0	0	\＄122 373	0	－	。	\bigcirc
${ }_{2}^{2447}$	0	1	0	0	0	${ }^{1.12 \%}$	0	0	${ }_{5}^{5663}$	0	0	1	S32794 $\$ 375813$	－	－	0	0
2448 2449	0	${ }_{1}$	${ }_{0}^{1}$	${ }_{0}$	${ }_{0}$	－${ }_{\text {1．09\％}}^{1.09 \%}$	0	1	5663 7841	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	$\$ 375813$ $\$ 965612$	${ }_{0}$	\bigcirc	\bigcirc	${ }_{0}^{0}$
2450	0					0．66\％	0	1	7841	0	0	1	\＄360 109	0	0	0	0
2451	\bigcirc	${ }_{0}^{1}$	\bigcirc	0	\bigcirc	－ 1.12%	\bigcirc	1	7841 6534	\bigcirc	1	\bigcirc	$\$ 813538$ $\$ 330171$	\bigcirc	0	\bigcirc	
${ }_{2453}^{2452}$	0	0	${ }_{0}^{0}$	${ }_{0}^{1}$	${ }_{0}$	1．10\％	0	1	${ }_{6} 6970$	${ }_{0}$	${ }_{0}$	\bigcirc	${ }_{5403003}$	\bigcirc	${ }_{0}$	${ }_{0}$	\bigcirc
2454	0	－	0	1	0	1．09\％	－	1	3485	O	－	－	5471320	0	0	0	0
2455			0	0	0	1．09\％		1	8712	0	0	1	5321314			0	－
2456 2457	0	0	0	\bigcirc	${ }_{0}^{1}$	1．10\％	0	1	7841 6970	0	0	${ }_{1}$	S448876 S279500	0	0	${ }_{0}$	${ }_{0}$
2458	0	1				1．10\％		1	6970	0	0	${ }_{0}$	${ }_{\text {\＄506 } 588}$	0	0	0	0
2459	－	\bigcirc		0		${ }_{\text {120\％}}^{1.12 \%}$	－	1	6098 6098	\bigcirc	0	1	5393349 $\$ 33823$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2460 2461	0	\bigcirc	0	0	${ }_{1}$	1．09\％ 1.09%	0	1	6098 6098	0	0	${ }_{0}^{1}$	$\$ 338232$ $\$ 563019$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2462			0	1	0	1．12\％	0	1	15246	0	0	0	\＄626563	0	0	0	0
2463																	
2464 2465	\bigcirc	${ }_{0}^{1}$	\bigcirc	\bigcirc	0	1．10\％	0	0	6970 6534	0	0	${ }_{0}^{1}$	S279 500 $\mathbf{5 4 6 7} 898$	\bigcirc	\bigcirc	0	\bigcirc
2466 2465		0	0	1	0	${ }^{\text {1．11\％}}$	0	1	${ }_{16553} 16$	1	0	0	\＄192704	0	0	0	
${ }_{2}^{2467}$	0	1	0	0	0	1．12\％	0	1	14375		0		\＄244669	0	0	0	\bigcirc
2468 2469	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	${ }^{1.12 \%}$	\bigcirc	\bigcirc	4336 4356	1	0	0	\＄92445	0	\bigcirc	\bigcirc	\bigcirc
2470			0	${ }_{0}$	1	1．09\％	${ }_{0}$	1	4356 4356	1	0	0	\＄113062	0			

observation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％－90\％	LTV 70\％－78\％	ltv below 70\%	total tax burden	parcel in SCEIP $=1$	CONVENTIONAL LOAN＝ 1	Lot SIIE	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	SOLD DURING 2004＿2007	Sold 2008－2012	PRICE ADJUST．TO 2012	ZIP CODE 295403	$\begin{aligned} & \text { ZIP CODE } \\ & 95404 \end{aligned}$	$\begin{aligned} & \text { ZIP CODE } \\ & 95472 \end{aligned}$	$\begin{aligned} & \text { ZIP CODE } \\ & 94928 \end{aligned}$
2601	Sess	0	0	1	\％	1．10\％			6534	${ }_{0}$	${ }^{2004}$	1	\＄472019				
2602	0	0	1	0	0	1．09\％	0	1	7841	1	。	0	\＄79824	。	。	。	。
2603	0	0	0	0	1	1．10\％	0	1	10890	0	。	0	\＄463 111	0	0	0	0
2604	0	0	1	0	0	1．10\％	0	1	9148		0	1	5450662	0	0	0	0
2605	0	0	0	1	0	1．10\％	0	1	7841	0	1	0	\＄1182340	0	0	0	0
2606	0	0	0	0	1	1．11\％	0	1	16553	0	1	0	\＄1346232	0	0		0
2607	0	0	0	0	1	1．11\％	0	1	24394	0	1	0	\＄1383854	0	0	0	0
2608	0	0	1	－		1．17\％	0	1	22651	1	0	－	\＄107326	0	0	0	0
2609	0	0	0	1	0	1．11\％	0	1	15246	1	0	0	\＄214934	0	0	0	0
2610	0	0	0	0	0	1．11\％	0	1	16988	1	0	0	\＄119847	0	0	0	0
${ }_{2611}^{2611}$	0	0			${ }^{1}$	${ }^{1.111 \%}$	0	1	${ }^{35284}$	1	0	0	${ }_{\$ 362882}$	0	0	0	0
2612	0	0	0	0	1	1．12\％	0	1	20338	1	0	0	\＄116270	0	0	0	0
2613	0	0	0	0	0	1．17\％	0	1	23087	1	0	0	\＄128344	0	0	0	0
2614	0	0	0	0	1	1．11\％	0	1	80586	1	0	0	\＄329210	0	0	0	0
2615	0	0	0	0	1	1．12\％	0	1	35284	1			\＄1781227	0	0	0	－
${ }_{2616}^{2617}$	0	0	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	1．1．17\％	0	1	20473 30750	${ }_{0}^{1}$	0	\bigcirc	（ $\begin{array}{r}\text { S129462 } \\ \text { S1128 } \\ \text { S }\end{array}$	\bigcirc	${ }_{0}$	\bigcirc	\bigcirc
2617 2618	0	\bigcirc	0	${ }_{0}$	1	${ }_{\text {1．11\％}}^{1.18 \%}$	0	1	30750 19602	1	0	0	（1128672	0	0	0	\bigcirc
2619	0	1	0		，	1．18\％	0	1	23958	0	1	0	\＄748882	0	0	0	0
2620	0	0	0	0	1	1．17\％	0	1	19166	0	0	1	S665 727	0	0	0	0
2621	0	0	0	1	0	1．11\％	0	1	82328	1	0	0	\＄327567	0	0	0	0
2622	0	0	1	0	1	1．11\％	0	1	21780	1	0	0	\＄266028	0	0	0	0
$\begin{array}{r}2623 \\ 2624 \\ \hline\end{array}$	0	0	0	0	1	${ }^{1.111 \%}$	0	1	${ }^{18731}$	0	1	0	\＄1753102	0	0	0	
2624	0	0	0	0	1	${ }^{1.111 \%}$	0	1	$\begin{array}{r}76666 \\ \hline 2522 \\ \hline\end{array}$	0	0	0	（$\$ 648059$ $\$ 38885$	0	0	0	0
2625 2626	0	0	0	0	${ }_{1}$	${ }^{1.1 .18 \%}$	\bigcirc	1	23522 15682	${ }_{0}^{1}$	\bigcirc	\bigcirc	\＄368885 $\$ 537268$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2627	0	1	0	0	0	1．10\％	0	1	13504		0	0	\＄459853	0	0	0	0
2628	0	0	0	0	1	1．07\％	0	1	5663	1	0	0	\＄102287	0	0	0	0
2629	0	0	0	0	1	1．12\％	0	1	4430	0	0	0	\＄464266	0	0	0	0
2630	0	0	0	1	1	1．12\％	0	1	${ }^{4356}$	0	0	0	\＄3747933	0	0	0	0
2631	0	0	0	0	0	1．09\％	0	1	4356	0	0	0	\＄487351	0	0	0	0
2632	0	0	0	1	0	1．12\％	0	1	4356		0	0	\＄288764	0	0	0	0
${ }^{2633}$	0	0	0	0	1	${ }^{1.12 \%}$	0	1	4500	0	0	0	\＄464266	0	0	0	0
2634 2635	\bigcirc	1	0	0	0	－${ }_{1}^{1.12 \%}$	0	1	4580 5227	${ }_{0}$	\bigcirc	${ }_{1}$	\＄474 526 $\$ 295282$	0	0	0	${ }_{0}$
${ }_{2636}^{2635}$	${ }_{0}$	0	0	${ }_{0}$	0	${ }^{\text {0．99\％}}$	0	1	${ }_{4} 52356$	1	\bigcirc	1	\＄118383	\％	\％	${ }_{0}$	0
2637	0	0	－	1	0	1．09\％	0	1	4792	0	1	0	\＄686250	0	0	0	0
2638	0		0	0	0	1．09\％	0	1	4730	0	0	0	\＄461701	0	0	0	0
2639 2640 260	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1	1．12\％	\bigcirc	1	4356 4500	1	\bigcirc	0	（ ${ }_{\text {S146048 }}^{504707}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2640 2641	0	0	0	0	${ }_{0}^{1}$	${ }^{1.08 \%}$ 1．09\％	0	1	4500 4356	\bigcirc	0	1	${ }_{\substack{\text { S3047 } \\ \$ 3999}}^{\text {S }}$	0	0	\bigcirc	0
2642	0	0	0	0	1	1．07\％	0	1	${ }_{5}^{4992}$	0	1	0	\＄813538	0	0	0	0
2643	0	0	0	0	1	1．12\％	0	1	5663	1	0	0	\＄103 369	0	0	0	0
2644 2645 1	\bigcirc	1	\bigcirc	0	\bigcirc	－ 1.12%	\bigcirc	1	6098 6970	\bigcirc	\bigcirc	1	5365076 S464266	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2645 2646	\bigcirc	\bigcirc	0	${ }_{0}^{1}$	\bigcirc	1．1．12\％	\bigcirc	1	6970 6098	\bigcirc	\bigcirc	1 1	\＄464266 $\$ 368419$	\bigcirc	\bigcirc	\bigcirc	$\stackrel{0}{0}$
2647	0	1		0	0	1．09\％	－	1	4356	1	0	0	\＄103 505	0	0	0	－
${ }^{2648}$	0	1	0	0	0	1．12\％	0	1	${ }^{4356}$	0	0	0	\＄252813	0	0	0	0
2649	0	0	0	1	0	1．09\％	0	1	${ }^{4356}$	0	0	0	${ }_{\text {\＄293 } 617}$	0	0	0	0
2650 2651	\bigcirc	0	\bigcirc	1	1	－	0	${ }_{1}$	4356 4792	\bigcirc	\bigcirc	1	S331300 S296356	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2652	0	0	1	${ }_{0}$	${ }_{0}$	1．09\％	0	1	${ }_{4356}$	－	\bigcirc	${ }_{0}$	\＄259594	0	0	－	0
2653		1		0	0	1．12\％	0	1	6534	0	0	0	\＄326902	0	0	0	0
2654	－	0	0	0	0	${ }^{1.12 \%}$	0	1	${ }^{4} 356$	1	0	0	\＄93870	0	0	0	0
2655	0	0	0	0	0	1．12\％	0	1	4356	0	0	0	\＄250 323	0	0	0	0
2656 2657	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	－ 1.12%	\bigcirc	1	4356 4356	\bigcirc	1	\bigcirc	5678451 5397246	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2657 2658	\bigcirc	\bigcirc	0	0	0	（1．12\％	\bigcirc	1	4336 4356	\bigcirc	\bigcirc	${ }_{1}^{0}$	S397246 S289 126	\bigcirc	\bigcirc	\bigcirc	$\stackrel{0}{0}$
2659	－	0	0	1	0	1．09\％	0	1	4356	0	0	1	\＄321901	0	0	0	0
2660		1	0	0	0	1．12\％	0	1	4356	0	1	0	5909363	0	0	0	0
2661	－	0	0	0	0	1．12\％	0	1	${ }_{4}^{436}$	1	0	0	597223	0	0	0	－
2662	0	0	0	0	1	1．13\％	0	1	6098	1	0	－	\＄61712	0	0	0	0
2663 2664	0	0	1	0	0	1．12\％	\bigcirc	1	${ }^{9583}$	0	0	0	（ $\begin{array}{r}533716 \\ \text { S63221 }\end{array}$	0	0	0	0
2664 2665	1	${ }_{0}^{1}$	\bigcirc	0	0	－${ }_{\text {1．1．12\％}}$	0	1	10019 4356	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	S633221 5410278	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2666		0	0	0	0	${ }^{1.12 \%}$	0	1	4792	0	1	0	5804313	0	0		0
2667	0	0	0	0	0	1．12\％	0	1	4792	0	1		S658 176	0	0	0	0
2668 2699	0	1	0	\bigcirc	\bigcirc	－ 1.09%	\bigcirc	1	4690 4356	0	\bigcirc	0	5488068 $\$ 97223$	\bigcirc	\bigcirc	0	0
${ }_{2670}^{2669}$	${ }_{0}$	${ }_{1}$	${ }_{0}$	${ }_{0}$	0	${ }_{1}^{1.109 \%}$	0	1	4356 6098	${ }_{0}^{1}$	\bigcirc	1	$\begin{array}{r}\text { S } \\ \text { S270 } 2145 \\ \hline 185\end{array}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }_{2}^{2671}$	0	0	1	0	0	1．09\％	0	1	5227	0	1	0		0	0	0	0
2672 2673	0	0	0 1	0	1	－	0	1	4356 4356	0	1	0	${ }_{5} 5716037$	\bigcirc	0	\bigcirc	0
2673 2674	\bigcirc	\bigcirc	0	0	0	${ }_{1.12 \%}^{1.12 \%}$	0	1	4356 8276	${ }_{1}^{0}$	\bigcirc	${ }_{0}^{1}$	S311757 S118548	\bigcirc	${ }_{0}$	${ }_{0}$	\bigcirc
2675	－	0	0	0	0	1．10\％	0	1	5580	0	0	1	\＄344675	0	0	0	0
2676	0	1	0	0	0	${ }^{1.10 \%}$	0	1	6970	0	1	0	\＄1108444	0	0	。	－
${ }_{2678}^{2678}$	0	${ }_{0}$	0	${ }_{0}$	${ }_{0}^{1}$	（1．12\％	0	1	6534 6534	${ }_{1}$	0	\bigcirc	$\$ 545064$ $\$ 992753$	${ }_{0}$	${ }_{0}$	${ }_{0}$	0
2679		0	0	0	0	1．12\％		1	${ }_{8}^{6537}$	1	1	0			0	0	0
2680	0	0		0		1．09\％	0	1	6970	1	0	0	\＄142990	0	0		
2681 2682	0	0	0	0	0	1．09\％	0	1	8712 6098	1	\bigcirc	0	$\begin{array}{r}\$ 91076 \\ \$ 122604 \\ \hline\end{array}$	0	0	0	\bigcirc
2682 2683	$\stackrel{0}{0}$	0	0	${ }_{0}^{1}$	\bigcirc	－	0	1	6098 5663	1	${ }_{0}^{0}$	0	S12204 S165622	0	\bigcirc	0	\bigcirc
2684 268	－	0	0	1	0	${ }^{1.10 \%}$	0	1	5663	0	0	0	\＄277210	0	O	O	0
2685	0	1	0	0	0	1．10\％	0	0	6260	0	0	1	\＄404430		0	0	0
${ }_{2}^{2686}$	0	0	0	0	1	${ }^{1.10 \%}$	0	1	${ }_{6}^{653}$	0	1	0	${ }_{\$ 1} 145392$	0			0
2687 2688 268	0	${ }_{1}$	\bigcirc	\bigcirc	1	－${ }_{\text {1．1．17\％}}^{110 \%}$	0	1	43966 7405	\bigcirc	0	1	\＄585 000 S432 130	0			
2688 2689	\bigcirc	${ }_{0}^{1}$	\bigcirc	1	\bigcirc	1．1．0\％	0	0	7405 6098	0	0	${ }_{0}^{1}$	$\$ 432130$ $\$ 101693$	\bigcirc	\bigcirc	：	0
2690		0	0	1	0	1．09\％	0	1	7405	1	0	0	\＄98830	0	0	O	
${ }^{2691}$	－	0	0	0	1	1．10\％	－	1	6970	0	0	0	\＄470938	0	0	0	0
${ }_{2693}^{2692}$	0	0	0	0	${ }_{1}$	－${ }_{\text {1．1．10\％}}$	0	1	9583 13504	${ }_{1}$	\bigcirc	\bigcirc	S323566 $\$ 252727$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2694		0	0	0	1	1．10\％		1	${ }_{8712}$	1	0	0	\＄ 79.153	0	0	－	0
${ }_{2}^{2695}$		0	－	${ }^{1}$	－	1．10\％	\bigcirc	1	10919	1	0	0	\＄84072	0	O		0
2696 2697	0	1	${ }_{0}$	${ }_{0}$	${ }_{0}$	1．1．12\％	0	${ }_{1}$	6970 13939	${ }_{1}^{1}$	0	${ }_{0}^{1}$	$\$ 337000$ $\$ 205899$	${ }_{0}$	${ }_{0}$	\bigcirc	\bigcirc
2698	0	0	0	1		1．11\％		1	34412	1	0	0	\＄174330	0	0	0	0
2699 2700	\bigcirc	0	0	1	0	${ }^{1.11 \%} 1$	\bigcirc	1	12632 36155	\bigcirc	0	1	（ 5 \＄587254	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2701	0	${ }_{0}$	\bigcirc	1	1	${ }_{1.11 \%}^{1.11 \%}$	${ }_{0}$	1	36155 88427	1	${ }_{0}$	${ }_{0}$	S192060 $\$ 217354$	\bigcirc	\bigcirc	\bigcirc	0
2702	0	1	－	－	－	1．09\％	0	1	4500		0	0	\＄468 113	0	0		0
${ }_{2} 703$	0	1	0	0	0	1．09\％		1	4500	0	0	0	5468113	0	0	0	0
2704 2705	0	${ }_{1}^{1}$	\bigcirc	\bigcirc	${ }_{0}^{1}$	－	0	1	4356 5227	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	\＄103990	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2706	0	1				${ }_{1.12 \%}$	0	${ }_{0}$	${ }_{4356}$	0	0	1	\＄333607	0	0	0	0
2707 2708	0	0	O	－		${ }^{1.10 \%}$	0	1	${ }^{6970}$	0	0	0	\＄262376	0	O	0	
2708 2709	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	${ }^{1.1 .12 \%}$	0	1	6098 7405	1	\bigcirc	0	$\$ 129689$ $\$ 26548$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2710	0	0				${ }_{1} 1.12 \%$	0	1	4356		0	0	\＄112840	0	0	0	0
${ }_{2711}^{2712}$	\bigcirc	${ }_{0}^{1}$	\bigcirc	\bigcirc	0	－	\bigcirc	1	4356 4792	\bigcirc	\bigcirc	1	S3088031 $\$ 659499$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2713	${ }_{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	1	1	1．09\％	0	1	47922 4992	\bigcirc	\bigcirc	1	S659 459 $\$ 295282$	\bigcirc	\bigcirc	0	0
2714	0	1	0	－	0	1．09\％	0	1	5227	1	－	0	\＄126035	0	0	0	0
2715			0	1	－	1．09\％		1	${ }_{5}^{5227}$	1	0	0	\＄110507	0	0	0	0
2716 2717	0	0	0	\bigcirc	${ }_{1}$	－	0	1	6534 7405	1	\bigcirc	\bigcirc	S111166 S110811	0	0	\bigcirc	\bigcirc
2718	0	0			1	1．12\％		1	6098	1	0	0	\＄127029	0	0	0	0
2719 2720	0	0	1	O	0	1．10\％		1	7405	1	0	0	\＄128012	0	0	0	
2720 2721	0	\bigcirc	1	0	－	1．10\％	0	1	6970 6970	0	1	\bigcirc	\＄1 1108444 $\$ 420275$	\bigcirc	\bigcirc	\bigcirc	0
2722		0	0	1	0	1．12\％	0	1	6098	1	0	0	\＄121374			0	
2723 2724 27	0	0	1	1	0	－ 1.09%	0	1	4356 5625	\bigcirc	\bigcirc	1	S268438 $\$ 351165$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }_{2}^{2724}$	0	0	1	0	1	${ }^{1.1 .12 \%}$	\bigcirc	1	5625 6098	0	\bigcirc	1	S351165 S404 430	0	0	\bigcirc	\bigcirc
2726 2727	0	－	，	1	0	1．09\％	0	1	4792	0	0	0	${ }_{51385732}$	0	0	0	0
2727 2728	0		1	0	1	1．09\％	0	1	${ }_{4}^{4356}$	1	0		${ }^{5118727}$	0	0	0	0
2729	0			0	1	${ }_{\text {1．12\％}}$	${ }_{0}$	${ }_{0}$	5663 6098	1	0	0	\＄120035 $\$ 251026$	0	\bigcirc	\bigcirc	\bigcirc
2730	0	0	0	0	1	1．09\％	0	1	6098	1	0	0	\＄126337	0	0	－	0

	en
范	
宕	

observation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％．90\％	LTV 70\％－78\％	$\begin{gathered} \text { LTV BeLow } \\ 70 \% \end{gathered}$	total tax burden	parcel in SCEIP $=1$	conventional LOAN $=1$	torstiz	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	$\begin{aligned} & \text { SOLD DURING } \\ & \text { 2004_2007 } \end{aligned}$	SoLD 2008－2012	PRICE ADJUST．To 2012	$\begin{aligned} & \text { ZIP CODE } \\ & \text { Z95403 } \end{aligned}$	$\begin{gathered} \text { ZIP CODE } \\ 95404 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	$\begin{array}{ll} \text { ZIP CODE } \end{array}$
3121	S	0	0	1	\％	1．17\％	－	，	19602	－200	－	1	\＄1028914	，	，		
3122	0	0	0	0	1	1．17\％	0	1	19602	0	1	0	\＄1310113	0		0	0
3123	0	0	0	1	0	1．17\％	0	1	19602	1	0	0	S284568	0	－	0	0
3124	0	1	0	0	0	1．08\％	0	0	3485	0	0	0	\＄266970	0	0	0	0
3125	0	1	0	0	0	${ }^{1.12 \%}$	0	1	${ }^{3485}$	1	0	0	\＄99373	0	0	0	0
3126	0	1	0	0	0	1．12\％	0	0	3485	1	0	0	599373	0	0	0	0
3127	0	0	0	0	0	1．08\％	0	1	3485	0	0	1	533719	0	0	0	0
3128	0	1	0	0	0	1．12\％	0	0	2614	1	0	0	\＄111042	0	0		0
3129	0	0	0	1	0	1．08\％	0	1	2614	0	0	1	5238857	0	0	0	0
3130	0	0	1	0	0	1．09\％	0	0	2614	0	0	1	${ }_{5} 5304343$	0	0	\bigcirc	0
3131 3132 3		1	0	0	0	1．08\％	0	0	${ }_{2}^{2614}$	1	0	0	\＄111042	0	0	0	0
3132	0	1	0	0	0	1．08\％	0	0	2614	1	0	0	\＄111042	0	0	0	0
3133	0	1	0	0	0	1．08\％		1	2614	0	0	1	\＄220 119	0	0	－	
3134	0	1	0	0	0	1．12\％	－	0	2614	1	0	0	511042	0	0	0	0
3135	0	1	0	0	0	1．12\％	0	0	${ }^{2614}$	1	0	0	\＄111042	0	0	0	0
3136 3137	0	1	\bigcirc	1	0	${ }^{1.12 \%}$	0	1	2614	0	\bigcirc	0	\＄210862 $\$ 111042$	\bigcirc	\bigcirc	0	\bigcirc
${ }_{3138}$	0	1	0	0	0	${ }^{1.12 \%}$	。		2614	1	0	0	\＄111042	0	0	0	。
3139	－	1	0	0	－	1．12\％	0	1	2614	0	1	0	\＄847960	0	0	0	0
3140	0		1	0	0	1．08\％	0	0	2614	1	0	0	\＄111042	0	0	0	0
${ }^{3141}$	0	1	0	0	0	1．08\％	0	0	3049	1	0	0	\＄111042	0	0	0	0
3142 3143	0	1	0	0	0	${ }^{1.12 \%}$	0	0	$\begin{array}{r}3049 \\ 3408 \\ \hline\end{array}$	1	0	1	\＄111042	0	\bigcirc	\bigcirc	\bigcirc
	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	${ }_{\text {1．08\％}}$	$\stackrel{0}{0}$	1	3408 2614	${ }_{0}$	1	1	S2537888 $\$ 74200$	\bigcirc	${ }_{0}$	\bigcirc	\bigcirc
3145	－	1	0	0	0	1．08\％	0	0	3920	1	0	0	\＄112 171	0	0	0	0
3146	0	1	0	0	0	1．08\％		0	3920	1	0	0	\＄112 171	0	0	0	0
3147 3148 314	0	1	0	\bigcirc	0	1．08\％	\bigcirc	\bigcirc	3920 3049 309	1	\bigcirc	\bigcirc	S112171 $\$ 11430$	\bigcirc	0	\bigcirc	\bigcirc
3148 3149	0	\bigcirc	1	0	\bigcirc	1．1．2\％\％	${ }_{0}$	\bigcirc	3049 3049	1	0	。	S114430 S114 40	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3150	0	1			0	1．08\％	0		3049	1	0	0	\＄114430	。	0	0	。
3151	0	1	0	0	0	1．12\％		0	6534	0	0	1	\＄385 111	0	0	0	0
3152	0	0	0	0	0	1．12\％	0	1	8276	0	0	0	5265157	0	0	0	0
3153	0	0	0	0	0	${ }_{\text {1．12\％}}$	0	1	5663 16988	0	0	1	\＄247000	0	0	\bigcirc	0
3154 3155	0	\bigcirc	${ }_{0}^{1}$	\bigcirc	1	－${ }_{\text {1．1．8\％}}$	${ }_{0}$	1	16988 6534	0	1	${ }_{0}$	$\$ 1115156$ $\$ 101140$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }_{3156}$	0	1	0	0	1	${ }^{1.06 \%}$	0	1	${ }_{6534}$	0	0	。	¢403988	0	0	0	。
3157	0	0	0	0	0	1．09\％	0	1	5663	0	0	0	\＄241052	0	0	0	0
3158	0	0	0	1	－	1．13\％	0	1	19166	0	0	0	\＄259594		0	0	0
$\begin{array}{r}3159 \\ 3160 \\ \hline 1\end{array}$	\bigcirc	0	1	0	0	1．09\％	0	1	$\begin{array}{r}5227 \\ 3653 \\ \hline 65\end{array}$	0	0	1	${ }_{\text {S }}^{516757}$	0	0	\bigcirc	\bigcirc
3160 3161	\bigcirc	1	0	0	\bigcirc	1．12\％	${ }_{0}$	1	3653 3492	\bigcirc	0	1	S279176 $\$ 268438$	0	0	－	\bigcirc
${ }_{3162}$	0	0	0	1	0	1．12\％	0	1	3798	0	0	0	\＄361 551	0	0	0	0
${ }^{3163}$	0	0	0	0	1	1．09\％	0	1	3116 286	0	1	0	\＄677653	0	0	\bigcirc	0
3164 3165 3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1	－ 1.12%	\bigcirc	1	2896 4497	\bigcirc	\bigcirc	1	$\$ 350580$ $\$ 322126$	0	\bigcirc	\bigcirc	\bigcirc
${ }_{3166}$		0	0	0	1	${ }^{1.1 .09 \%}$	${ }_{0}$	1	4283	${ }_{0}$	\bigcirc	1		0	0	\bigcirc	\bigcirc
${ }_{3167}$	0	1	0	0	0	1．09\％	0	1	3766 433	0	1	0	\＄851654	0	0	0	0
3168	0	0	1	0	－	1．12\％	0	1	4353	0	0	0	\＄132415	0	0	0	0
3169	0	0	0	0	0	1．09\％	0	1	3687	0	0	1	\＄246963	0	0	0	0
3170	${ }_{1}$	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	\bigcirc	${ }_{\text {1．12\％}}^{1.12 \%}$	\bigcirc	${ }_{1}^{1}$	3262 3076	\bigcirc	\bigcirc	${ }_{0}^{1}$	S273807 5344165	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3172	1	0	－	0	0	1．11\％	0	1	15246	0	。	0	\＄139068	0	－	0	。
3173	0	0	0	1	0	1．12\％	0	1	7405	0	0	1	\＄261500	0	0	0	0
3174	1	0	0	0		1．21\％	0	1	${ }^{15682}$	1	0	0	\＄86048	0	－	1	0
3175	1	0	0	0	1	1．12\％	0	1	10017	0	0	0	\＄665 619		0	1	0
3176 3177 317	\bigcirc	\bigcirc	\bigcirc	0	1	－${ }_{\text {1．1．13\％}}$	\bigcirc	1	7405 9583	\bigcirc	${ }_{0}^{1}$	0	$\$ 1102486$ $\$ 612576$	\bigcirc	\bigcirc	1	0
3178	0	\bigcirc	${ }_{0}$	1	${ }_{0}$	${ }^{1.12 \%}$	${ }_{0}$	1	9583 8276	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	\＄$\$ 121576$	\bigcirc	\bigcirc	1	0
${ }^{3179}$		0	0	1	1	1．23\％	0	1	${ }_{6} 6970$	1	0	0	\＄101091	0	－	1	0
3180 3181	0	0	0	1	0	1．31\％	0	1	4356	0	0	1	\＄294000	0	－	1	0
3181 3182 1	0	${ }_{0}^{1}$	\bigcirc	\bigcirc	0	${ }^{1.1 .16 \%}$	\bigcirc	${ }_{1}^{1}$	4792 4356	0	\bigcirc	1	\＄295282 $\$ 270000$	\bigcirc	\bigcirc	1	0
3183	1	0	1	0	0	1．16\％	0	1	4794	0	1	0	\＄885666	0	0	1	0
3184	0	0	0	1	0	${ }^{1.19 \%}$	0	1	10019	1	0	0	${ }_{5}^{560371}$	0	0	，	0
3185	0	0	0	0	0	${ }^{1.21 \%}$	0	1	3920	1	0	0	${ }_{\text {S }}^{546955}$	0	0	1	0
3186 3187 3188	0	1	0	0	\bigcirc	1．14\％	0	1	${ }_{6}^{6970}$	0	0	0	\＄282772	－		1	0
3187 3188 318	0	\bigcirc	0	0	\bigcirc	（1．33\％	\bigcirc	${ }_{1}^{1}$	4356 10454	\bigcirc	${ }_{1}^{0}$	1	¢ ${ }_{\substack{\text { S301232 } \\ \$ 88655}}$	\bigcirc	\bigcirc	1	\bigcirc
${ }_{3189}$		0	1			${ }^{1.17 \%}$	。	1	${ }_{8276}^{10464}$	0	1	0	\＄1046807	0	0	1	0
3190		0	0	1	0	1．14\％	0	1	5663	0	0		5367223 81208	0	0	1	\bigcirc
${ }_{3191}$	0	1	0	0	\bigcirc	${ }^{1.177 \%}$	0	1	$\begin{array}{r}3920 \\ \hline 1226 \\ \hline\end{array}$	1	0	0	\＄531608	0	0	1	\bigcirc
3192 3193		0	1	0	0	${ }^{1.2 .26 \%}$	0	1	11326 5227	0	0	0	5268043	－		1	\bigcirc
3193 3194 3	0	1	0	\bigcirc	${ }_{1}$	${ }_{1.15 \%}^{1.19 \%}$	\bigcirc	${ }_{1}^{1}$	5227 7405	${ }_{0}^{1}$	${ }_{1}$	0	\＄577688	\bigcirc	\bigcirc	1	\bigcirc
3195	0	0	0	0	0	1．18\％	0	1	5227	1	0	0	\＄116387	0	0	1	0
3196		0	1	0	0	1．15\％	0	1	9148	0	0	，	5322126	0	0	1	
3197	0	1	0	0	0	1．13\％	0	1	3920	0	1	0	\＄1075 991	0	0	1	0
3198 3199 319	0	0	0	1	0	1．14\％	0	1	4792	0	0	0	\＄405904	0	0	1	\bigcirc
3199 3200	0	\bigcirc	0	${ }_{0}^{1}$	1	${ }^{1.1 .23 \%}$	${ }_{0}$	1	${ }_{2614}^{4356}$	\bigcirc	\bigcirc	1	S230944 S185 759	\bigcirc	\bigcirc	1	\bigcirc
3201		0	0	0	1	1．23\％	0	1	3920	0	0	1	\＄220903	0	0	1	
3202		0	0	1	1	1．20\％	0	1	4356	1	－		${ }_{\text {\％}}^{585391}$	0	\bigcirc	1	0
${ }_{3}^{203}$	0	0	0	1	\bigcirc	${ }^{1.22 \%}$	0	1	${ }_{4}^{4366}$	1	－	0	$\$ 127980$ $\$ 384751$	0	\bigcirc	1	0
3204 3205	0	0	O	0	0	1．1．16\％	0	1	5227 1742	0	0	0	${ }_{\$ 384751}$	0	0	1	${ }_{0}$
3205 3206	\bigcirc	1	\bigcirc	\bigcirc	${ }_{1}$	${ }_{\text {1．13\％}}^{1.22 \%}$	\bigcirc	0	1742 6098	0	0	1		\bigcirc	0	1	0
${ }_{3207}$	0	0			${ }_{0}$	${ }_{1.24 \%}^{1.28 \%}$	0	1	7405	0		1	${ }_{\text {S }}$	0	0	1	0
3208	0	0	0	－	1	${ }^{1.14 \% \%}$	0	1	7405	0		1	S432130 $\$ 15055$	\bigcirc	\bigcirc	1	0
3209	0	1	0	0	0	1．17\％	0	1	5227	1	－	，	${ }_{\text {S }} \mathbf{5 1 5 0 5 6 5}$	0	0	1	－
3210 3211	0	0	0	1	\bigcirc	－ $1.1 .15 \%$	0	1	5663 5633	${ }_{1}$	${ }_{0}^{1}$	0	$\$ 831333$ $\$ 160282$	0	\bigcirc	1	\bigcirc
3211 3212	0	${ }_{0}^{1}$	0	0	0	1．1．8\％	\bigcirc	1	5663 7405	${ }_{0}^{1}$	$\stackrel{0}{0}$	${ }_{0}^{0}$	（ $\begin{gathered}\text { \＄160282 } \\ \$ 267938\end{gathered}$	0	0	1	\bigcirc
3213	－	1	0		0	1．16\％	0	1	7405	1	0	0	\＄144320	0	0	1	
3214		1	0	0	0	${ }^{1.21 \%}$	0	1	27878	1	0	0	${ }_{\text {S }}^{555037}$	0	0	1	0
（3215 $\begin{aligned} & 3216 \\ & 326\end{aligned}$	\bigcirc	\bigcirc	\bigcirc	${ }_{1}$	0	${ }^{1.1 .17 \%}$	${ }_{0}$	1	7405 7405	${ }_{1}$	1	0	\＄1 143735 $\$ 160352$	0	\bigcirc	1	${ }_{0}$
3217		1	0	0	0	1．13\％	0	1	7405	1			\＄409912		0	1	0
3218	0		0	1	0	1．12\％	0	1	13939	1	0	0	\＄293961	0	0	1	0
$\begin{array}{r}3219 \\ 3220 \\ \hline\end{array}$	0	0	0	0	1	${ }_{\text {1 }}^{1.177 \%}$	\bigcirc	1	6970 6098	0	1	0	5401642 887490	0	\bigcirc	1	0
3220 3221	${ }_{0}^{1}$	${ }_{0}^{1}$	0	0	0	${ }^{1.121 \%}$ 1．14\％	$\stackrel{0}{0}$	1	6098 10454	0	${ }_{0}^{1}$	${ }_{0}^{0}$	$\$ 787490$ $\$ 165031$	0	0	1	0
3222	0		－	1	0	${ }^{1.117 \%}$	0	1	5227		0		\＄123038	0	\bigcirc	1	0
${ }^{3223}$	1	0	0	1	0	1．13\％	0	1	5665		1	，	\＄993905	0	\bigcirc	1	0
3224 3225 3	\bigcirc	\bigcirc	\bigcirc	1	0	1.14% 1.14% 1	\bigcirc	1	6098 6098	0	0	0	\＄611112	0	\bigcirc	1	0
3226	0	0	1	0	0	${ }_{1}^{1.12 \%}$	0	1	13068	${ }_{0}$	1	${ }_{0}$	（	${ }_{0}$	${ }_{0}$	1	0
3227	0	0		0	1	1．67\％	0	1	4792	0	0	1	\＄216000	0	0	1	0
3228	0	0	0	0	0	1．15\％	0	1	5227	0	0	1	\＄256047	0	0	1	
3229	0	1	0	0	0	1．22\％	0	1	6098	0		1	\＄235000	0	0	1	0
3230 3231	\bigcirc	1	\bigcirc	\bigcirc	0	1.21% 1.18% 1.2%	\bigcirc	${ }_{0}^{1}$	5227 4792 47	0	\bigcirc	1	5321589 S190278	0	\bigcirc	1	\bigcirc
3232	0	1			0	${ }^{1.1 .16 \%}$	－	1	${ }_{3920}$	0	\bigcirc	${ }_{0}^{1}$	S100278 $\$ 356946$	\bigcirc	\bigcirc	1	\bigcirc
${ }^{233}$	0	0	0	0	0	1．14\％	0	1	112197	0	0	0	${ }_{\$ 381126}$	0	0	1	0
3234 3235 3	0	0	1	0	\bigcirc	${ }_{\text {1 }}^{\text {1．13\％}}$	0	1	17424 4792	0	1	\bigcirc		\bigcirc	0	1	\bigcirc
3235 3236	0	0	1	${ }_{0}$	\bigcirc	${ }_{\text {1．15\％}}^{1.17 \%}$	${ }_{0}$	1	4792 5663	0	${ }_{0}^{1}$	\bigcirc	S725241 S208 909	0	0	1	\bigcirc
3237		0	0	1	0	1．17\％	0	1	${ }_{9}^{148}$	1		0	\＄899121	0	0	1	
3238	0	0	0	1	0	1．17\％	0	1	88276	1	－	－	\＄1082798	－	0	1	－
3239 3240 3	0	\bigcirc	${ }_{1}$	O	${ }_{0}^{1}$	${ }_{1}^{1.121 \%}$	${ }_{0}$	1	8276 8276	1	\bigcirc	0	$\$ 66855$ S106163	${ }_{0}$	0	1	\bigcirc
${ }_{3241}$			${ }_{0}$			1．29\％		1	${ }_{8712}$	1		。	\＄400247	0	0	1	
3242		0		0	1	1．13\％	0	1	8276	0	1	0	\＄105174	0	0	1	
3243 324 324	0	\bigcirc	1	0	0	${ }_{\text {1 }}^{1.17 \%}$	0	1	6970 6098	1	0	0	（ ${ }_{\text {S13403 }}$	0	0	1	
3244 3245 3	0	\bigcirc	\bigcirc	${ }_{1}^{0}$	0	${ }^{1.212 \%}$	0	1	6098 6534	1	0	0	\＄131745 $\$ 336375$	0	0	1	0
3246		0	0	0	1	${ }^{1.127 \%}$	0	1	6970		－	1	5318185	－	0	1	0
3247 3248 324	0	\bigcirc	0	\bigcirc	0	1．1．3\％	\bigcirc	1	8584 9583 58	0	\bigcirc	${ }_{0}^{1}$	S510 S12232 S129	0	0	1	\bigcirc
3249 3250	0	0	O	－		${ }_{\text {1．1．14\％}}^{1.14 \%}$	0	1	10454 6990	1	－	0 1	¢ ${ }_{\substack{\text { S202 } 847 \\ \$ 542 \\ \hline 17}}$	－	0	1	\bigcirc

observation	PROPERTY	LTV＿9\％	LTV 81\％．90\％	LTv 70\％－78\％	LtV below	total tax	PARCEL IN	conventional	Lotsize	$\xrightarrow{\text { Sold }}$	sold during	Sold 2008－2012	PRICE ADUSST．To	ZIP CODE	$\underset{\text { ZIP CODE }}{\text { 94004 }}$		ZIP CODE
3251	DURESS	0	0	0	－	${ }_{\substack{\text { BuRbe } \\ 1.12 \%}}^{\text {dem }}$	${ }_{0}^{\text {ScIPP }} 0$	${ }_{1}^{\text {LOAN }} 1$	6970	－08000	2004－2007	0	$\underset{\substack{2012 \\ 5616019}}{\text { 20，}}$	${ }_{\substack{29503 \\ 0}}$	95404	95472	${ }_{0}^{99928}$
3252	0	0	0	0	1	1．14\％	。	1	7405	0	。	1	5486991	0	0	1	0
3253		1	0	0		1．17\％	0	1	10890	1		0	\＄58344	－	0	1	0
3254	0	0		0	1	1．12\％	0	1	5663	1	0	0	\＄238646	0	0	1	0
3255	0	0	0	0	0	1．13\％	0	1	6534	0	0	1	\＄513570	0	0	1	0
3256	0	0	0	0	0	1．13\％	0	1	13939	0	0	1	\＄472 451	0	0	1	0
3257	0	0	0	0	1	1．13\％	0	1	6970	0	1	0	5990383	0	0	1	0
3258 325 3	0	0	0	0	1	1．18\％	0	1	5663	1	0	，	\＄1803188	0	0	1	0
3259	0	0	0	0	1	1．12\％	0	1	5663	0	0	1	5671095	0	0	1	0
3260	0	0	0	0	1	1．12\％	0	1	5663		1	0	\＄1328285	0	0	1	0
3261	0	0	0	0	1	1．12\％	0	1	5663		1	0	\＄1090201	0	0	1	0
3262	0	0	0	0	0	1．12\％	0	1	12690	0	1	0	\＄1450214	0	0	1	0
3263	0	0	0	1	0	1．13\％	0	1	12197	0	0	0	\＄397736	0	0	1	0
3264	0	0	0	0	1	1．13\％	0	1	14810	0	0	1	\＄678919	0	0	1	0
${ }_{3265}$	0	0		0		1．15\％	0	1	7841	0	0	0	5222509	0	0	1	0
3266	0	0	0	1	0	1．22\％	0	1	5663	1	0	0	\＄76483	0	0	1	0
3267	0	0	0	0	1	1．13\％	0	1	6098	0	0	1	\＄606345	0	0	1	0
${ }^{3268}$	0	0	0	1	0	1．18\％	0	1	10454	0	0	1	\＄517448	0	0	1	0
3269	0	0	0	0	1	1．16\％	0	1	17424	1		0	\＄115 682		0	1	0
3270 3271	0	0	1	0	0	1．13\％	0	1	20038	\bigcirc	1	0	${ }_{5856510}$	0	0	1	0
3271	0	0	0	1	1	${ }^{1.12 \%}$	0	1	19602	1	0	0	${ }_{\text {S }}$ \＄319234	0	0	1	0
3272	0	0	0	0	1	${ }^{1.144 \%}$	0	1	9583	0		0	\＄441318	0	0	1	0
3273 3274	\bigcirc	1	\bigcirc	0	0	${ }^{1.1 .14 \%}$	0	1	13504 13504	1	\bigcirc	0	\＄140036 $\$ 244699$	0	0	1	\bigcirc
3275	0	0	0		0	1．14\％	0	1	12000	0	0	0	\＄596364	0	0	1	0
3276	0	0	0	0	0	1．1．6\％	0	1	10019	1	0	0	\＄82730	0	0	1	0
3277	\bigcirc	0	\bigcirc	\bigcirc	0	1．13\％	\bigcirc	1	13504 13504	0	0	0	\＄768219	0	0	1	0
${ }^{3278}$	0	1	0	0	0	1．14\％	0	1	${ }^{13504}$	1	\bigcirc	0	\＄156890	0	0	1	0
3279	0	0	0	0	0	1．14\％	0	1	27443	1	0	0	\＄87202	0	0	1	0
${ }^{3280}$	0	0	0	0	1	1．14\％	0	1	13339	1	0	0	\＄122977	0	0	1	0
3281 3282	\bigcirc	${ }_{1}$	\bigcirc	\bigcirc	\bigcirc	${ }^{1.12 \%}$	\bigcirc	1	7405 9583	\bigcirc	\bigcirc	1	\＄755 $\$ 390000$	\bigcirc	\bigcirc	1	\bigcirc
3283	0	0	0	1		1．13\％	0	1	14016	0	0	1	\＄598334	0	－	1	0
3284	0	0	0	0	0	1．17\％	0	1	7841	1	0	0	\＄179 569	0	0	1	0
${ }_{3285}$	0	0	0	1	0	1．44\％	1	1	15682	0	－	0	\＄795 152	0	0	1	0
3286	0	0	0	0	1	${ }^{1.113 \%}$	0	1	5227 2855	0	0	1	\＄966377	0	0	1	\bigcirc
3287 3288 3	0	\bigcirc	0	0	1	${ }_{\text {l }}^{1.1 .13 \%}$	\bigcirc	1	28750 5227	${ }_{0}^{1}$	${ }_{1}^{0}$	${ }_{0}$	\＄147573 $\mathbf{5 8 2 1 9 4 0}$	\bigcirc	\bigcirc	1	0
3289	0	0	0	0	1	1．14\％	0	1	5663	0	0	1	\＄271 108	0	0	1	0
3290	－	0	0	0	1	1．13\％	0	1	6098	0	0	1	5476451	0	0	1	0
3291	0	0	0	0	1	1．13\％	0	1	7841	0	0	0	\＄679726	0	0	1	0
${ }^{3292}$	0	1	0	0	0	1．116\％	0	1	7405	1	0	0	\＄120378	0	0	1	0
3293 3294 3	\bigcirc	\bigcirc	\bigcirc	${ }_{1}$	${ }_{0}$	${ }^{1.17 \%}$ 1．13\％	\bigcirc	1	4892 7841	1	\bigcirc	${ }_{1}$	［58533	\bigcirc	\bigcirc	1	\bigcirc
3295	0	0	0	0	1	1．15\％	0	1	6320	0	1	0	\＄863271	0	0	1	
3296	－	0	0	0	0	1．15\％	0	1	7841	1	0	0	\＄143506	0	0	1	0
${ }_{3297}$	0	1	0	0	0	1．12\％	\bigcirc	1	10454	1	0	－	\＄224059	0	0	1	0
$\begin{array}{r}3298 \\ 3299 \\ \hline\end{array}$	0	0	1	0	0	${ }^{1.15 \%}$	0	1	10890	1	0	0	\＄177904	0	0	1	0
3299 3300	\bigcirc	\bigcirc	0	1	0	${ }^{1.111 \%}$	\bigcirc	1	10019 12632	${ }_{0}^{1}$	0	\bigcirc	S312047 S389 392	0	\bigcirc	1	\bigcirc
3301	0	0	0	0	0	1．12\％	0	1	12197	0	1	0	\＄1370940	0	0	1	0
3302 3303	0	0	0	1	1	${ }^{1.12 \%}$	0	1	8712	0	1	0	\＄1431740	0	0	1	0
${ }^{3303}$	0	0	0	1	1	1．14\％	0	1	8712	1	0	0	\＄199521	0	0	1	0
$\begin{array}{r}3304 \\ 3305 \\ \hline\end{array}$	0	0	0	0	，	1．13\％	0	1	10454	1	0	0	\＄208612	0	0	1	0
3305 3306	\bigcirc	\bigcirc	${ }_{0}^{1}$	0	${ }_{1}$	${ }^{1.1 .13 \%}$	\bigcirc	1	10019 12632	0	${ }_{0}^{1}$	${ }_{1}^{0}$	$\$ 1269358$ $\$ 700087$	0	\bigcirc	1	\bigcirc
3307	0	0	0	0	1	1．14\％	0	1	10019	1	0		\＄222 134	0	0	1	0
${ }^{3308}$	0	0	0	0		1．12\％	0	1	10454	1	0	1	5327479	0	0	1	0
${ }^{3309}$	0	1	0	0	0	1．12\％	0	1	1019	0	0	1	\＄532 176	0	0	1	0
3310 $\begin{array}{r}3311 \\ 3312\end{array}$	0	0	0	0	1	1．13\％	0	1	11326 10890	1	0	0	5304895 S278922	0	0	1	\bigcirc
－ $\begin{array}{r}3311 \\ 3312\end{array}$	0	\bigcirc	\bigcirc	\bigcirc	1	${ }_{\text {1．13\％}}^{1.13 \%}$	\bigcirc	1	10890 10019	${ }_{0}^{1}$	\bigcirc	${ }_{1}^{0}$	\＄${ }_{\text {S2789222 }} \mathbf{5 7 5 1 6 2 7}$	\bigcirc	\bigcirc	1	\bigcirc
3313	0	0	0	0	1	1．14\％	0	1	10019	1	0	0	\＄162 848	0	0	1	0
3314 3	0	0	0	0	1	${ }^{1.13 \%}$	0	1	10019	0	0	1	5660358 $\$ 5095$	0	0	1	0
3315	0	0	0	0	1	1．12\％	0	1	9583	0	0	1	\＄590 564	0	0	1	0
3316	\bigcirc	1	0	0	0	1．14\％	0	1	10019	0		1	545000 $\$ 790085$	0	0	1	\bigcirc
3317 3318	0	${ }_{0}^{1}$	\bigcirc	\bigcirc	1	${ }^{1.112 \%}$	\bigcirc	1	14810 10019	\bigcirc	${ }_{0}$	1	ST99486 S677 689	${ }_{0}^{0}$	${ }_{0}^{0}$	1	\bigcirc
3319	0	0	0	0	1	1．14\％	0	1	10019	1	0	0	\＄186220	0	0	1	0
${ }^{3320}$	0	0	0	0	0	1．13\％	0	1	10026	0	0		\＄7592411	－	0	1	0
${ }_{3}^{321}$	0	0	1	0	0	1．14\％	0	1	10019	0	0	0	5765654	0	0	1	0
3322	0	0	0	0	1	${ }^{1.12 \%}$	0	1	10019	\bigcirc	1	0	\＄1139 ${ }^{\text {S }}$	0	0	1	0
3323 3324 332	0	\bigcirc	\bigcirc	\bigcirc	1	${ }^{1.1 .12 \%}$	0	1	10890 45738	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	S998181 $\$ 814399$	0	\bigcirc	1	\bigcirc
3325	0	0	0	0	1	1．12\％	0	1	9583	0	0	1	\＄558351	0	0	1	0
${ }^{3326}$	0	0	0	0	0	${ }^{1.144 \%}$	1	1	49658	1	0	0	\＄24076	0	0	1	0
${ }_{3}^{3327}$	0	0	0	1	0	1．65\％	1	1	${ }^{39} 640$	0	1	0	\＄703 116	0	0	1	
3328 3329	0	1	0	0	0		0	1	19166 19166	1	0	0	\＄12 110 $\$ 8466$	0	0	1	－
3329 3330	${ }_{0}$	${ }_{1}^{1}$	\bigcirc	\bigcirc	1	${ }^{3.24 \%}$ 1．17\％	1	1	${ }^{19166}$	1	${ }_{0}$	${ }_{1}$	${ }_{\text {S }}^{54965656}$	${ }_{0}$	\bigcirc	1	${ }_{0}$
3331	0	0	0	0	1	1．19\％	0	1	8400	0	0	0	\＄589951	0	0	1	0
${ }^{3332}$	0	0	0	0	0	1．14\％	0	1	8712	1	0	0	\＄214555	0	0	1	0
${ }^{3333}$	0	1	0	0	0	${ }^{1.14 \%}$	0	1	8712	0	1		\＄1053022	0	0	1	
$\begin{array}{r}3334 \\ 3355 \\ \hline 354\end{array}$		0	0	0	0	1．15\％	0	1	8712 8712	1	\bigcirc	0	\＄1284688	\bigcirc	0	1	0
3335 3336	${ }_{0}$	${ }_{0}$	0	\bigcirc	1	${ }^{1.12 \% \%}$	0	1	8712 8712	${ }_{0}^{1}$	1	\bigcirc	\＄181232 $\$ 991590$	${ }_{0}$	0	1	0
3337	0	0	0	0	0	1．13\％	0	1	7405	0	0	1	\＄549246	0	0	1	0
${ }^{3338}$	0	0	0	0	0	${ }^{1.15 \%}$	0	1	24394	1	0	0	${ }_{5}^{583813}$	0	0	1	0
${ }^{3339}$		0	0	0	0	1．116\％	0	1	8276	1	0	0	576022	0		1	0
（3340	0	0	0	0	0	${ }^{1.113 \%}$	0	1	7405 12632	0	0	1	$\begin{array}{r}\text { S526748 } \\ \$ 15274 \\ \hline\end{array}$	0	0	1	0
3341 3342	${ }_{0}$	\bigcirc	\bigcirc	${ }_{0}$	1	－${ }_{\text {1．1．13\％}}^{1.15}$	\bigcirc	1	12632 7405	1	${ }_{0}$	\bigcirc	\＄152214	\bigcirc	\bigcirc	1	\bigcirc
3343	0	0	0	0	0	1．15\％	0	1	6534	0	0	0	\＄584354	0	0	1	0
3344	0	0	0	0	0	1．13\％	0	1	8712	1	0	0	\＄187 181			1	0
（3345 $\begin{aligned} & 3346 \\ & 336\end{aligned}$	\bigcirc	${ }_{1}$	\bigcirc	0	${ }_{0}^{1}$	${ }_{1}^{1.14 \%}$	\bigcirc	1	5663 4356	${ }_{1}^{1}$	${ }_{0}$	0	\＄135798 $\$ 150565$	\bigcirc	\bigcirc	1	\bigcirc
3347	0	0	0	0	1	1．16\％	0	1	3485	1	0		\＄156588			1	0
${ }^{3348}$	0	－	0	－	1	${ }^{1.13 \%}$	\bigcirc	1	4539	0	0	1	\＄568417	0	0	1	0
3349 3350 3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1	1．16\％	\bigcirc	1	2614 6000	\bigcirc	1	0	5741410 $\$ 320000$	\bigcirc	\bigcirc	1	0
3350 3351	0	${ }^{\circ}$	\bigcirc	${ }_{0}$	1	${ }^{1.1 .14 \%}$	\bigcirc	1	6000 6098	${ }_{0}$	${ }_{0}$	${ }_{0}$	\＄32000 $\$ 393372$	\bigcirc	\bigcirc	1	0
3352	0	0	0	0	0	1．27\％	0	1	6098	0	0	1	\＄366498	0	0	1	0
$\begin{array}{r}3353 \\ 3354 \\ \hline 354\end{array}$	0	\bigcirc	0	1	0	1．1．16\％	0	1	6098 3985 3	1	0	0	（179925	0	0	1	0
3354 3355 3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{1}^{0}$	1．14\％	\bigcirc	1	3485 4792	\bigcirc	${ }_{1}$	\bigcirc	（ ${ }_{\text {S428335 }} \mathbf{S 1 0 2 3 8 3 8}$	\bigcirc	\bigcirc	1	\bigcirc
3356	0	0	1	0	0	1．15\％	0	1	6970	0	0	1	\＄350000	0		1	0
3357	0	1	0	0	－	1．13\％	0	1	6970	0	0	1	5467082	0	0	1	0
3358 3359	\bigcirc	${ }_{0}^{1}$	\bigcirc	0	0 1	－ 1.73%	1	1	4356 3485	0	1	0	5762673 $\$ 984362$	\bigcirc	0	1	0
3359 3360	${ }_{0}$	${ }_{0}^{\circ}$	${ }_{0}$	${ }_{0}$	1	1．56\％	1	1	3485 6970	1	1	${ }_{0}$	（ 5983762	${ }_{0}$	0	1	${ }_{0}$
3361	0	1	0	0	0	1．14\％		1	7405	0	1	0	551994	0	0	1	0
3362	0	0	0	1	0	1．17\％	0	1	4792	0	1	0	5991862	0		1	0
3363 3364	${ }_{0}$	1	\bigcirc	${ }_{0}$	\bigcirc	1．1．17\％	0	1	6098 7841	${ }_{1}$	0	\bigcirc	5431789 S17291	${ }_{0}$	${ }_{0}$	1	\bigcirc
3365	1	1	0	0		1．17\％		1	7875				\＄577 126			1	0
3366	0					1．14\％	0	1	10454	1			\＄124787			1	0
${ }_{3367}$	－	0	0	1	0	1．13\％	0	1	${ }^{4} 792$	0	1	0	\＄1310608	0	0	1	－
3368 3369	0	${ }_{0}^{0}$	\bigcirc	${ }_{0}^{0}$	${ }_{0}^{1}$	${ }^{1.1 .14 \%}$	\bigcirc	1	10019 9148	${ }_{0}^{1}$	${ }_{1}$	\bigcirc	S170479 S951 392	0	\bigcirc	1	\bigcirc
3370	0	1	0	0	－	1．18\％			7405		1		\＄740838	0	0	1	0
3371 3372	0			1		1．14\％	0	1	${ }_{6} 634$	0	0	0	\＄270720			1	0
（3372	0	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	${ }_{\text {1．1．14\％}}^{1.14}$	0	1	13068 8276	${ }_{0}^{1}$	\bigcirc	0	5102950 $\$ 337799$	0	0	1	\bigcirc
3374	0	O	0	O		1．16\％		1	6534	1	。	0	\＄106854	0	0	1	0
${ }_{3}^{3375}$	1	－	－	0	1	1．14\％	－	1	8276 2134	0	0	1	5602776 $\$ 720217$	0	0	1	0
3376 3377 3	－	0		0	1	1．14\％	0	1	${ }_{2}^{21344}$	0	0	1	\＄720217	0	0	1	\bigcirc
3377 3378	\bigcirc	${ }_{1}^{0}$	0	\bigcirc	\bigcirc	1．1．13\％	${ }_{0}^{1}$	1	6970 7841	\bigcirc	${ }_{0}^{1}$	0		0	0	1	0
3379 3380	0	0	0	－	－	1．13\％	O	1	7405 6098	1	－	0	${ }_{\text {\＄133014 }}^{\$ 5650}$	0	0	1	

observation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％．90\％	LTV 70\％．78\％	$\begin{gathered} \text { LTV BELOW } \\ 70 \% \end{gathered}$	totaltax burden	PARCEL IN SCEIP＝ 1	CONVENTIONAL LOAN $=1$	tor size	SOLD PRIOR 2000	sold during 20042007	SoLD 2008－2012	$\begin{aligned} & \text { PRICE ADJUST. TO } \\ & 2012 \end{aligned}$	$\begin{gathered} \text { ZIP CODE } \\ \text { Z95403 } \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95404 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
3381		0	1	0	。	1．21\％	－	－1	6098	－	200－207	0	548520	0	，	1	－
3382	0	0	0	0	1	1．17\％	0	1	5663	1	0	0	\＄52098	0	0	1	0
3383	0	0	0	0	1	1．13\％	0	1	6275	0	1	0	\＄1232888	0	0	1	0
3384	0	1	0	0	0	1．17\％	0	0	1742	0	0	1	\＄276129	0	0	1	0
3385	0	0	0	1	0	1．15\％	0	1	1742	0	1	0	5704507	0	0	1	0
${ }^{3336}$	0	0	0	0	1	${ }^{1.17 \%}$	0	1	1307	0	0	0	5232880 $\$ 20639$	0	0	1	0
${ }^{3387}$	0	0	0	0	1	1．15\％	0	1	1742	0	1	0	\＄1046389	0	0	1	0
3388	0	0	0	1	0	1．98\％	0	1	16320	0	0	1	556989	0	0	1	0
3389	0	0	0	0	1	1．19\％	0	1	15246	0	0	0	\＄345431	0	0	1	0
3390	0	0	0	1	1	1．25\％	0	1	3920	1	0	0	\＄64256	0	0	1	0
${ }_{3}^{3391}$	0	0	0	0	0	1．13\％	－	1	10019	0	0	1	5475343	0	0	1	0
3392 3	0	1	0	0	0	${ }^{1.38 \%}$	1	1	12197	0	0	1	\＄708183	0	0	1	0
${ }^{3393}$	0	0	0	0	0	1．116\％	0	1	6090	0	0	0	5720766	0	0	1	0
3394	0	0	0	0	1	1．15\％	0	1	9148	0	0	1	5415510	0	0	1	0
3395	0	0	0	0	0	1．16\％	0	1	6970	0	1	0	S653 497	0	0	1	0
${ }^{3396}$	0	0	0	0	1	${ }^{1.14 \%}$	0	1	17860	1	0	0	\＄130468	0	0	1	0
3397	0	1	0	0	0	1．15\％	0	1	7841	1	0	0	5207027	0	0	1	0
3398	0	0	0	0	1	1．17\％	0	1	5663	0	0	0	\＄314916	0	0	1	0
3399	0	0	1	0	0	1．14\％	0	1	6970	0	0	0	567844	0	0	1	0
3400	0	1	0	0	0	1．15\％	0	1	5663	1	0	0	\＄12969	0	0	1	0
3401	0	0	0	0	0	1．15\％	0	1	5663	1	0	0	\＄130 715	0	0	1	0
3402	0	0	0	0	1	1．14\％	0	1	${ }_{11761}$	1	0	0	\＄140 036	0	0	1	0
3403 3004 304	0	0	1	0	${ }_{0}$	${ }_{\text {l }}^{1.121 \%}$	\bigcirc	1	15682 11761	0	${ }_{1}$	\bigcirc	S246741 $\mathbf{S 1 3 1 0 7 5}$	\bigcirc	\bigcirc	1	\bigcirc
3405	0	0	0	1	1	1．23\％	0	1	4792	1	0	0	\＄99761	0	0	1	0
3406	0	0	1	0	0	1．17\％	0	1	2614	0	0	0	5307833 $\$ 97385$	0	0	1	0
3407	0	1	0	0	0	1．14\％	0	1	10890	0	1	0	5937488	0	0	1	0
3408 3409	0	0	0	1	0	1．18\％	0	1	10019	1	0	0	\＄175409	0	0	1	0
3409 3010	0	0	0	0	1	${ }^{1.14 \%}$	0	1	${ }_{7}^{2614}$	${ }^{0}$	1		\＄7735910	0	0	1	0
3411	0	0	1	0	0	1．17\％	0	1	13504	0	1	0	\＄981278	0	0	1	0
3412	0	0	0	0	1	1．13\％	0	1	10820	0	0	0	\＄737439	0	0	1	0
3413	0	0	0	1	0	1．17\％	0	1	5227	1	0	0	\＄87165	0	0	1	0
3414	0	0	0	0	1	1．19\％	0	1	4792	0	0	0	\＄203040	0	0	1	0
退3415	1	0	0	${ }_{0}$	\bigcirc	${ }_{\text {1．1．12\％}}^{1.12 \%}$	0	1	7405 6534	\bigcirc	：	1	\＄580000 $\$ 214750$	${ }_{0}$	\bigcirc	1	${ }_{0}$
3417	0	0	0	0	1	1．15\％	0	1	4792	1	0	0	\＄132753	0	0	1	0
${ }^{3418}$	0	0	0	1	0	${ }^{1.15 \%}$	0	1	4792	1	0	0	\＄169261	0	0	1	0
3419	0	1	0	0	0	1．15\％	0	1	4792	0	0	0	\＄246615	0	0	1	0
${ }^{3420}$	0	0	0	0	1	1．15\％	0	1	${ }_{4}^{4356}$	0	1	0	\＄715883	0	0	1	0
3421 3422	\bigcirc	\bigcirc	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	${ }^{1.1 .14 \%}$	\bigcirc	1	5227 5227	${ }_{1}$	0	\bigcirc	S369922 $\$ 129077$	\bigcirc	\bigcirc	1	\bigcirc
3423	－	。	0	${ }_{0}$	1	${ }^{\text {1．1．3\％}}$	0	1	${ }_{9} 583$	${ }_{0}$	0	1	\＄848649	0	0	1	0
3424	0	0	0	0	1	1．12\％	0	1	9583	0	0	0	\＄546933	0	0	1	0
3425		0	0	1		1．12\％	0	1	9583	0	1	0	\＄1569643	0	0	1	0
${ }_{3}^{3426}$	0	0	0	0	0	${ }^{1.116 \%}$	0	1	9583	1	\bigcirc	0	\＄111892	0	0	1	0
3427 3428	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{\text {1．1．15\％}}$	\bigcirc	1	8712 7405	\bigcirc	\bigcirc	${ }_{0}^{1}$	5626035 564899	\bigcirc	\bigcirc	1	\bigcirc
3429	0	1	0	0	0	1．13\％	0	1	6000	0	0	0	\＄511718	0	0	1	0
3430 3 3	0	0	0	0	1	${ }^{1.1 .16 \%}$	0		6534 7	1	0	0	S161105 $\$ 15055$	0	0	1	0
${ }^{3431}$	0	0	0	0	1	1．16\％	0	1	7405	1	0	0	\＄150565	0	0	1	
${ }^{4322}$		0	0	1	0	1．14\％	0	1	7405	0	0	0	\＄446182	0	0	1	0
3433 3434	\bigcirc	${ }_{1}$	0	${ }_{0}$	\bigcirc	－${ }_{\text {1．1．27\％}}^{1.27}$	\bigcirc	1	7405 6534	${ }_{1}$	\bigcirc	0	\＄446766 $\$ 43825$	0	\bigcirc	1	\bigcirc
3435	0	0	0	1	0	1．44\％	0	1	7405	1	0	0	\＄120 742	0	0	1	0
3436	0	1	0	0	0	1．13\％	0	1	7405	0	1	0	\＄917079	0	0	1	0
${ }^{4377}$		0	1	0	0	1．16\％	0	1	7405	0	0	0	\＄187742	0	0	1	0
${ }^{3438}$		1	0	0	0	1．17\％	0	1	7405	0	0	0	\＄208128	0	－	1	0
3439 3440	\bigcirc	\bigcirc	\bigcirc	0	1	${ }_{\text {1．15\％}}^{1.14 \%}$	\bigcirc	1	7841 9583	1	0	${ }_{0}$	\＄134100 $\$ 140648$	0	${ }_{0}$	1	0
3441	0	0	0	1	0	1．14\％	0	1	9583	1	0	0	\＄17754	0	0	1	
3442	0	0	0	0	0	${ }^{1.13 \%}$	0	1	10454	0	0	0	S305 109 $\$ 25033$	0	0	1	0
${ }^{3443}$	0	0	0	0	0	${ }^{1.115 \%}$	0	1	7405	1	0	0	5125033	0	0	1	0
3444	0	0	0	0	0	${ }^{1.13 \%}$	0	1	6970	0	0	1	\＄481991	0	\bigcirc	，	
3445 3446	${ }_{0}^{1}$	${ }_{0}^{1}$	\bigcirc	\bigcirc	1 1	${ }_{\text {1．1．15\％}}^{1.15 \%}$	\bigcirc	1	6970 7405	1 1	${ }_{0}^{1}$	\bigcirc		\bigcirc	0	1	\bigcirc
3447	0	0	0	0	1	1．15\％	0	1	7405	1	0	0	\＄115 103	0	0	1	0
3448	0	0	0	0	1	1．15\％	0	1	${ }^{1148}$	0	1	1	\＄1218734	0	0	1	0
3449	0	0	\bigcirc	1	0	1．14\％	0	1	${ }^{13} 068$	0	0	1	\＄556012	0	0	1	
3450	0	0	0	0	0	1．17\％		1	7405	1	0	0	${ }_{\$ 397475}$	0	0	1	0
$\begin{array}{r}3451 \\ 3452 \\ \hline\end{array}$	\bigcirc	\％	：	0	\bigcirc	${ }_{\text {l }}^{1.14 \% \%}$	0	1 1	3485 7405	\bigcirc	：	\bigcirc	$\$ 3684600$ $\$ 408760$	\bigcirc	${ }_{0}$	1	\bigcirc
3453	0	0	0	0	1	1．16\％	0	1	7405	1	0	0	570656	0	0	1	
3454 355	0	0	0	0	0	${ }^{1.116 \%}$	0	1	7405	1	0	0	\＄114465	0	0	1	0
${ }^{3455}$	0	0	0	0	0	1．14\％	0	1	7841	1	0	0	\＄213050	0	0	1	0
$\begin{array}{r}3456 \\ 3457 \\ \hline\end{array}$	0	0	0	0	0	1．14\％		1	6098	0		0	\＄1049986	0	0	1	0
	0	${ }_{0}$	\bigcirc	0	\bigcirc	${ }_{\text {1．1．15\％}}$	\bigcirc	1	6534 6534	${ }_{1}$	\bigcirc	${ }_{0}^{1}$	S463155 S170 139	\bigcirc	\bigcirc	1	\bigcirc
3459	0	0	0	0	0	1．17\％	0	1	4792	1	0	0	\＄144543	0	0	1	0
3460	0	1	\bigcirc	0	\bigcirc	${ }^{1.1 .13 \%}$	0	1	5663 4792	0	0	0	\＄ 5293434	0	0	1	0
${ }^{3461}$	0	\bigcirc	0	1	0	${ }^{1.17 \%}$	0	1	4792	1	0	0	\＄102950	0	0	1	0
3462 3463	0	0	0	0	1	1．15\％	0	1	4792	0		1	\＄532601			1	\bigcirc
3463 3464	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{\text {l }}^{1.1 .15 \%}$	0	1	4792 4792	${ }_{0}^{1}$	\bigcirc	\bigcirc	\＄115428 $\$ 29974$ 150	\bigcirc	\bigcirc	${ }_{1}^{1}$	${ }_{0}$
3465	－	0	0		1	1．19\％	0	1	10454	1	0	0	578258	0	－	1	0
3466 3467	0	0	0	0	1	1．13\％	0	1	－6970	0	1	0	${ }_{\text {\％}} \mathbf{\$ 1} 157797$	0	0	1	
3467 3468 3	0	\bigcirc	\bigcirc	0	${ }_{0}^{1}$	1.14% 1.49%	0	1	7405 11761	${ }_{0}^{1}$	\bigcirc	${ }_{1}^{0}$	$\$ 122292$ $\$ 381560$	\bigcirc	\bigcirc	1	0
3469	0	0	0	0	1	1．15\％	0	1	6534		0		\＄240 588	0	0	1	0
3470	0	1	0	0	0	${ }^{1.14 \%}$	－	1	17424		0	0	\＄184890	0	0	1	0
${ }^{3471}$	0	0	0		0	1．13\％	0	1	${ }^{13560}$	1			\＄588339	0	0	1	0
3472 3473	0	\bigcirc	1	0	0	1．1．14\％	0	1	12632 8712	1	0	0	$\$ 201381$ $\$ 137266$	\bigcirc	0	1	\bigcirc
3474	0	0		O	0	1．38\％	1	1	8276				\＄970 108	0	0	1	0
3475	\bigcirc	0	0	0	0	${ }^{1.12 \%}$	0	1	7405	1	1	0	\＄1012 218	0	0	1	0
3476 347	\bigcirc	${ }_{0}$	0	${ }_{1}$	${ }_{0}$	${ }_{\substack{1.1 .13 \% \\ 1.13 \%}}^{1.15}$	${ }_{0}$	1	5663 7841	${ }_{0}^{1}$	1	${ }_{0}$	\＄161858	\bigcirc	\bigcirc	1	${ }_{0}$
3478	0	0	0		0	1．14\％	0	1	7841		1	0	\＄943593	0	0	1	0
3479	0	0	0	1	0	1．12\％	0	1	7860	0	0	0	\＄679726	0	0	1	0
3480		0	0	0	1	1．15\％	0	1	7405	0	，	0	\＄345431	0	0	1	0
（ $\begin{array}{r}3481 \\ 3482 \\ \hline\end{array}$	\bigcirc	1	0	0	1	1．23\％	0	1	6098 8276	1	1	0	5754829 $\$ 156292$	0	0	1	0
3482 3483	0	${ }_{1}$	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }^{1.1 .15 \%}$	0	1	8276 8276	${ }_{0}^{1}$	0	0		0	0	1	0
3484	0	0	1		0	1．13\％	0	1	7150	0	1	0	\＄1161782	0	0	1	0
${ }^{3485}$	0	0	0	1	0	${ }^{1.14 \%}$	0	1	9148	1	0	0	\＄214555	0	0	1	0
3486 3487	0	0	0	0	1	1．10\％	0	1	6534 6534	0	0	0	\＄314295	0	0	1	0
3487 3488	${ }_{0}$	0	0	${ }_{0}$	1	${ }^{1.124 \%}$	${ }_{0}$	1	6534 6970	1	0	0	\＄1246859	0	0	1	\bigcirc
3489	0	0		0	0	1．15\％	0	1	7405	1		0	\＄164938	0		1	0
3490 3491	\bigcirc	1	0	0	0	1．17\％	0	1	${ }^{14810}$	0	0	0	$\$ 149812$ $\$ 1105298$	0	0		\bigcirc
3491 3492	0	0	0	0	1	${ }^{1.35 \%}$ 1．14\％	${ }_{0}^{1}$	1	4792 15246	${ }_{1}$	1	0	\＄1 105298 $\$ 172397$	\bigcirc	0	1	0
3493	－	0	－	－		1．18\％	－	1	4792	0	0	1	\＄601459		0	1	0
3494		0	0			1．14\％	0	1	12197	0	1	0	\＄881207	0		1	
3495 3496		0	0	0	\bigcirc	－ 1.12%	0	1	6098 8276	1	0	\bigcirc	S797802 $\$ 95895$	0	0	1	0
3496 3497	\bigcirc	${ }_{1}^{0}$	${ }_{0}^{1}$	0	0	${ }^{1.22 \%}$	0	1	8276 9583	1	0	0	\＄95895 $\$ 343601$	\bigcirc	\bigcirc	1	\bigcirc
3498		${ }_{0}$	0	0	0	1．19\％	0	1	6970	0	0	${ }_{0}$	\＄276345	0	0	1	0
${ }^{3499}$	0	0	1	0	－	${ }^{1.12 \%}$	－	1	19602	0	1	0	\＄1836751	0	0	1	－
3500 3501	0	0	0	\bigcirc	0	${ }^{1.1 .11 \%}$	0	1	${ }_{20}^{19602}$	${ }_{0}^{1}$	1 1	0		0	0	1	0
3502	0	0	0	0	1	1．11\％	0	1	21344	0	1	0	\＄2053098	0	0	1	0
（ $\begin{array}{r}3503 \\ 3504 \\ 3504\end{array}$	0	0	0	0	1	${ }^{1.11 \%}$	－	1	${ }_{20}^{20473}$	0	－	0	\＄ 5764876	0	0	1	0
3504 3505 350	0	${ }_{0}^{1}$	\bigcirc	0	${ }_{1}$	${ }^{1.11 \%}{ }_{1.11 \%}$	0	1	27007 19602	${ }_{0}$	\bigcirc	0	\＄46356 S888 981	${ }_{0}$	${ }_{0}$	1	\bigcirc
3506	0	0	0	0		1．14\％	0	1	16553	0	1	0	\＄2216888	0	0	1	0
3507	0	0	0	0	1	1．16\％	0	1	${ }^{45738}$	1	0	0	\＄82730	0	0	1	0
${ }^{3508}$	0	0	0	0	0	${ }^{1.12 \%}$	0	1	29185	0	0	0	\＄673 591	0		1	－
			\bigcirc			${ }_{\text {1．14\％}}^{1.12 \%}$		${ }_{1}^{1}$	8712 8712	\bigcirc	0	1 0	S3775 539 $\$ 550$	\bigcirc	0	1	\bigcirc

observation	PROPERTY DURESS $=1$	LTV_9\%	LTV 81\%-90\%	LTV 70\%-78\%	LTV below 70\%	total tax burden	parcel in SCEIP $=1$	CONVENTIONAL LOAN $=1$	Lot SIIE	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	SOLD DURING 2004_2007	Sold 2008-2012	PRICE ADJUSt. to 2012	ZIP CODE 295403	ZIP CODE 95404	ZIP CODE 95472	ZIP CODE 94928
3511		1	0	0	2\%	1.17\%			6534	0	-	0	\$316005				
3512	0	1	0	0	0	1.15\%	0	1	6204	0	0	0	5445028	0	0	1	0
3513			0		1	1.16\%		1	6534	0	0	O	\$443 303	-	0	1	
3514	0	0	0	0	0	1.18\%	0	1	6534	1	0	0	\$169 386	0	0	1	0
3515	0	0	0	0	0	1.14\%	0	1	6534	0	1	0	\$830 614	0	0	1	0
3516	0	0	0	0	1	1.14\%	0	1	6534	0	0		5423883	0	0	1	0
3517	0	0	0	0	0	1.13\%	0	1	6534	0	0	0	\$595081	0	0	1	
3518	0	0	-	,	1	1.21\%	0	1	6534	1	,		\$103465	0	0	1	0
3519	0	0	0	1	0	1.13\%	0	1	6534	0		0	582925	0	0	1	0
3520	0	0	0	1	0	1.14\%	0	1	6534	1	0	0	\$138012	0	0	1	0
${ }_{3}^{3521}$	0	0	0	1	0	1.13\%	0	1	${ }_{6}^{6534}$	0	0	0	${ }_{\text {¢ }} 5337764$	0	0	1	0
3522	0	1	0	0	0	1.14\%	0	1	${ }^{6534}$	0	1	0	\$748 636	0	0	1	0
3523	0	0	0	0	1	1.23\%	0	1	6098	1	0	0	\$58135	0	0	,	0
3524 3525 3525	0	1	0	0	0	${ }^{1.1 .15 \%}$	0	1	${ }^{6534}$	0	1	-	\$1089 970 $\$ 378618$	0	\bigcirc	1	0
3525	0	0		0	0	1.12\%	0	1	16117	0	0	1	\$738 618	0	0	1	0
3526	0	0	0	0	0	1.20\%	0	1	15682	0	0	1	S415000 $\$ 297365$	0	\bigcirc	1	0
${ }_{3527}$	0	0	0	0	1	${ }^{1.13 \%}$	0	1	17424	1	0	0	5297366	0	0	1	0
3528	0	0	1	0	0	1.21\%	0	1	7405	1	0	0	\$44547	0	0	1	0
3529	0	0	0	0	1	1.15\%	0	1	11326	0	1	0	\$1431740	0	0	1	0
3530	0	0		1	\bigcirc	1.13\%	0	1	${ }^{7} 405$	0	0	0	\$217935	0	0	1	0
3531	0	0		0	0	1.12\%	0	1	21780	1	0	0	\$376413	0	0	1	0
3532	0	1	0	0	0	${ }^{1.1 .13 \%}$	0	1	${ }^{9583}$	0	1	0		\bigcirc	\bigcirc	1	0
3533 3534	\bigcirc	\bigcirc	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	- ${ }_{\text {1.1.13\% }}$	0	1	14810 8650	0	${ }_{1}$	${ }_{0}$	S305 951 S804784	\bigcirc	\bigcirc	1	\bigcirc
3535	0	-		0	1	1.11\%	0	1	6970	0	${ }_{0}$	1	\$527155	0	-	1	0
3536	0	0	0	1	0	1.14\%	0	1	6534	1	0	0	\$63054	0	0	1	-
3537	0	0		0	1	1.12\%	0	1	7841	0	\bigcirc	1		0	0	1	0
${ }^{3538}$	0	0	0	0	1	${ }^{1.116 \%}$	0	1	6970	1	0	0	\$134677	0	0	1	0
3539 359 350	\bigcirc	1	0	0	0	${ }^{1.1 .15 \%}$	0	1	6970 6908	0	1	0	(5694048	0	0	1	0
3540 3541	\bigcirc	0	0	\bigcirc	${ }_{1}^{0}$	${ }_{\text {l }}^{1.1 .13 \%}$ (13\%	\bigcirc	1	6098 6970	\bigcirc	${ }_{0}^{1}$	0	$\$ 1088123$ $\$ 412986$	0	\bigcirc	1	\bigcirc
3542	0	0	1	0	0	1.13\%	0	1	6098	0	0	1	\$481991	0	0	1	0
3543	0	0	0	1	0	1.15\%	0	1	6534	1		0	\$157954	0	0	1	0
3544	0	0	1	0	0	1.18\%	0	1	6534	1	0	0	\$148311	0	0	1	0
3545	0	1	0	\bigcirc	0	1.20\%	0	1	6534 6534	0	0	0	\$261522 S132017	:	\bigcirc	1	\bigcirc
3546 3547	\bigcirc	${ }_{0}$	\bigcirc	\bigcirc	1	- ${ }_{\text {1.1.2\% }}^{1.17 \%}$	\bigcirc	1	6534 6970	1	\bigcirc	\bigcirc	${ }_{\substack{\text { S }}}^{\$ 1324217}$	0	\bigcirc	1	\bigcirc
3548	0	0	1	0		1.13\%	0	1	6534	0		0	\$411639	0	0	1	0
3549	0	1	0	0	0	1.15\%	0	1	6970	1		0	\$165 270	0	0	1	0
3550	0	0	0	0	1	1.13\%	0	1	7841	0	0	0	$\begin{array}{r}\text { S431789 } \\ \hline\end{array}$	0	-	1	-
3551	\bigcirc	0	0	0		${ }^{1.12 \%}$	0	1	6825	0	0	0	\$461701	0		1	0
3552 3553 53	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	\bigcirc	\bigcirc	1.1.15\%	0	1	6534 6098	${ }_{1}$	${ }_{0}^{1}$	\bigcirc	5997600 5207027	\bigcirc	\bigcirc	1	0
3554	0	0		0	1	1.15\%	0	1	8712		0	1	\$558351	0	0	1	0
3555	0	0	0	1	0	1.13\%	0	1	7841	0	0	0	\$408628	0	0	1	0
3556	-	0	0	0	1	1.13\%	0	1	6098	0	0	1	\$485 336	0	0	1	0
3557 3558	\bigcirc	0	0	${ }_{0}^{1}$	0	${ }^{1.1 .13 \%}$ 1.13\%	\bigcirc	1	6534 6098	\bigcirc	${ }_{0}^{1}$	0	S834417 $\$ 525826$	\bigcirc	\bigcirc	1	$\stackrel{0}{0}$
3559	0		0	0	1	1.14\%	0	1	8712	0	1	0	\$1151235	0	0	1	0
3560 3561	0	1	0	0	0	1.15\%	0	1	6970 7705	0	1	0	\$588417	0	0	1	0
3561 3562	\bigcirc	0	\bigcirc	1	0 1	${ }^{1.1 .15 \%}$ 1.17\%	0	1	7405 6098	0 1	\bigcirc	${ }_{0}^{1}$	\$335000 $\$ 104509$	0	\bigcirc	1	0
3563	0	0	0	0	1	1.13\%	-	1	6970	0	0	1	\$526312		。	1	
3564	0	1	0	0	0	1.20\%	0	1	6534	0	0	0	5214165	0		1	
3565 3566 356	\bigcirc	0	\bigcirc	\bigcirc	1	1.18\%	\bigcirc	1	6098 6098	1	\bigcirc	0		0	\bigcirc	1	0
3566 3567	\bigcirc	${ }_{0}^{1}$	0	0	0	${ }^{1.1 .14 \%}{ }_{1.13 \%}$	0	1	6098 6098	\bigcirc	0	1	\$403 731 $\$ 45892$	\bigcirc	\bigcirc	1	0
3568	0	0	0	0	1	1.11\%	0	1	2038	0	0	0	\$747283			1	0
3569	0	0	0	0	1	${ }^{1.11 \%}$		1	20038	1	0	0	${ }_{\text {\$212326 }}$	0		1	
3570 3571 58	\bigcirc	\bigcirc	${ }_{1}$	\bigcirc	${ }_{0}^{1}$	1.11% 1.13% 1	\bigcirc	1	20038 20038	${ }_{1}$	${ }_{0}^{1}$	\bigcirc	\$1388096 S201 150	\bigcirc	\bigcirc	1	\bigcirc
3572		0	1		0	1.11\%		1	20038	0	1	0	\$1344977	-	0	1	0
${ }_{3}^{573}$	0	0	0	1	0	1.11\%		,	20473	0	1	0	\$216313	0	\bigcirc	1	0
3574	0	0	0	0	0	1.23\%	0	1	20388	0	1	0	\$1274241	0	0	1	0
3575	0	0	0	0	1	1.13\%	0	1	7841	1	0	0	${ }_{5189648}$	0	0	1	
3576 3577 357	0	1	0	\bigcirc	\bigcirc	- $1.1 .13 \%$	0	1	11326 7841	0	${ }_{1}$	\bigcirc	\$ $\begin{aligned} & \text { \$275335 } \\ & \$ 1413266\end{aligned}$	0	\bigcirc	1	\bigcirc
3578		${ }_{0}$		0	1	${ }_{1.20 \%}^{1.12 \%}$	0	1	1841 10019	1	1			\bigcirc	\bigcirc	1	\bigcirc
3579	0	0	0	0	1	1.26\%	0	1	8276	0	0	0	5380120	0	0	1	0
3580 3581 358	\bigcirc	0	1	0	0	1.13\%	-	1	${ }_{6970}^{6970}$	0	1	0	${ }_{\text {S1 }}^{51021862}$	0	0	1	
3581 3582 3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{1}^{0}$	(1.13\%	\bigcirc	1	6970 7841	0	${ }_{0}^{1}$	0		0	\bigcirc	1	\bigcirc
3583	0	0	-	0	1	1.48\%	0	1	43560	1	0	0	\$22350	0	0	1	0
3584	0	0	0	0	0	1.12\%	0	1	11761	0	0	0	\$571571	0		1	
3585 3586	\bigcirc	${ }_{0}$	${ }_{0}^{1}$	${ }_{0}$	${ }_{1}$	${ }_{\text {l }}^{1.14 \%}$	0	1	18731 16553	1	\bigcirc	0	S216061 S161 346	${ }_{0}$	0	1	${ }_{0}$
3587	0	1	0	。	0	1.27\%		1	${ }_{51401}$	1	0	0	\$116688		0	1	0
3588	0	0	0	0	1	1.1.6\%	0	1	14375	0	1	0	\$1241275	0	0	1	0
$\begin{array}{r}3589 \\ 3590 \\ \hline 59\end{array}$	\bigcirc	0	0	\bigcirc	1	1.13\%	0	1	10454 6400	0	\bigcirc	0		0	\bigcirc	1	0
3590 3591	\bigcirc	\bigcirc	0	\bigcirc	1	${ }^{1.1 .15 \%}$	0	1	6400 6534	0	\bigcirc	0	5628426 $\$ 47025$	\bigcirc	\bigcirc	1	\bigcirc
3592	0	0	0	1	0	1.13\%	0	1	7500	0	,	0	\$575844	0	0	1	
3593	\bigcirc	0	0	0	1	1.13\%	\bigcirc	1	${ }_{10}^{1019}$	0	1	0	\$1048870	0	\bigcirc	1	0
3594 3595	\bigcirc	0	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	${ }^{1.14 \% \%}$	0	1	9583 7405	${ }_{1}^{0}$	\bigcirc	${ }_{0}^{1}$	\$643178	0	\bigcirc	1	\bigcirc
3596	0	0	0	${ }_{0}$		1.15\%	0	1	6970	${ }_{0}$	1	0	\$1124985	0	0	1	0
3597	0	0	0	0	0	1.13\%	0	1	8276	1	0	0	\$126035	0		1	
3598 359 359	0	0	0	0	1	${ }^{1.14 \%}$	0	1	7700	0	0	0	S593799 $\$ 83417$	0	\bigcirc	1	\bigcirc
3599 360	\bigcirc	0	1	\bigcirc	${ }_{0}$	${ }^{1.1 .12 \%}$	0	1	6098 6534	\bigcirc	1	1	${ }_{5813533}^{5834}$	\bigcirc	\bigcirc	1	0
3601	0	0	0	0	0	1.13\%	0	1	8276	0	0	0	\$518147			1	0
3602	0	1	0	0	0	${ }^{1.15 \%}$	0	1	7841	0	0	1	\$696478	0		1	0
3603 3604	0	0	0	0	0 1	- ${ }_{\text {1.1.18\% }}$	\bigcirc	1	6970 7405	0 1	1	0	S1 106597 S162922	\bigcirc	\bigcirc	1	0
3604 3605	\bigcirc	0	\bigcirc	0	1	${ }_{\text {1.11\% }}$	${ }_{0}$	1	${ }_{7405}^{7405}$	1	1	${ }_{0}$	($\begin{array}{r}\text { S162942 } \\ \$ 1249662\end{array}$	0	0	1	\bigcirc
3606 36005	0	0	0	1	${ }_{0}$	${ }_{1.12 \%}^{1.17 \%}$	0	1	6970	0	,	1	\$606670	0	0	1	0
3607 3608	\bigcirc	0	\bigcirc	0	1	1.12\%	0	1	10454	0	1	0	\$1236243	0	0	1	0
3608 369	${ }_{0}^{0}$	${ }_{0}$	0	0	1	${ }^{1.112 \%}$	0	1	${ }_{8276}$	1	\bigcirc	1		0	\bigcirc	1	0
3610	0	0	0	1	0	1.12\%	0	1	9104	0		0	\$801564	0		1	0
3611 3612	\bigcirc	0	\bigcirc	0	${ }_{0}^{1}$	- 1.14%	0	1	6534 7255	${ }_{0}^{1}$	\bigcirc	0	$\$ 188429$ $\$ 765654$	\bigcirc	0	1	0
3613	0	0	0	0	1	1.15\%	0	1	10890	1	0	0	\$146125	0		1	
3614 3615 3	0	1	0	0	0	${ }^{1.14 \%}$	0	1	${ }_{6} 6534$	0	0	0	\$354 144 $\$ 4737$	0	0	1	0
3615 3616 3615	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	1.15\%	\bigcirc	1	6534 6534	0 1	\bigcirc	${ }_{0}^{1}$	$\$ 473127$ $\$ 113156$	\bigcirc	\bigcirc	1	0
3616 3617	${ }_{0}$	0	0	0	0	${ }^{1.15 \%}$	${ }_{0}$	1	6534 6534	1	0	0	$\$ 113156$ $\$ 905229$	0	0	1	0
${ }_{3618}$	0	1	0	0	${ }_{0}$	${ }^{\text {1.15\% }}$	0	1	${ }_{5663}$		1	0	\$1062 259	0	0	1	0
$\begin{array}{r}3619 \\ 3620 \\ \hline\end{array}$	\bigcirc	0	\bigcirc	0	0	${ }^{1.113 \%}$	0	1	7405 5663	0	1		\$106259	\bigcirc	0	1	
3620 3621	0	0	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }^{1.1 .16 \%}$	0	1	5663 5663	1	0	0	$\$ 112029$ $\$ 437670$	\bigcirc	0	1	0
3622					1	1.13\%		1	5663		0		\$766229	0	0	1	0
3623	0	0	0		1	1.12\%		1	10890		0	0	5690862	0		1	
3624 3625	0	1	0	0	\bigcirc	1.87\%	1	1	${ }^{12063}$	0	0	\bigcirc	5768219 $\$ 35328$	0	\bigcirc	1	\bigcirc
3625 3626	0	${ }_{0}^{1}$		1	\bigcirc	${ }^{2.12 \%}$	${ }_{0}$	1	10019 12197	${ }_{0}^{1}$	0	1	$\begin{array}{r}\text { S3532 } \\ \$ 797779 \\ \hline\end{array}$	\bigcirc	0	1	0
3627		0	0	0	1	${ }^{1.12 \%}$	0	1	15263	0	0	0	\$75676	0		1	-
3628 3629	0	0	0	0	1	1.1.3\%	0 1	1	12120 12197	0	0 1	${ }_{0}^{1}$	5734984 $\$ 130871$	\bigcirc	\bigcirc	1	0
3630	0	0		0	1	1.13\%	1	1	11761		${ }_{0}$	0	\$1228371	\bigcirc	${ }_{0}^{\circ}$	1	${ }_{0}$
$\begin{array}{r}3631 \\ 3632 \\ \hline\end{array}$	-	-	0	\bigcirc	1	${ }^{1.12 \%}$	-	1	${ }^{12197}$,	-	0	$\$ 1598007$ $\$ 561768$	-	0	1	0
3632 3633	0	0	0	\bigcirc	1	${ }_{\text {1.13\% }}^{1.12 \%}$	0	1	12197 12632	0	0	1	\$7617 788 $\$ 304895$	0	0	1	0
3634	0		0			1.11\%		1	10019	1	0	0	\$372649	0	0	1	0
3635 3636 3	\bigcirc	0	\bigcirc	\bigcirc	1	-1.12\%	-	1	10019 10890	\bigcirc	0	${ }_{1}$	\$509918 $\$ 725757$	\bigcirc	0	1	\bigcirc
${ }_{3637}$	0	0	0	0	1	${ }^{1.12 \%}$		1	10087	0	0	0	${ }_{5807335}$	0	0	1	\bigcirc
3638	0			0	0	1.12\%	0	1	10019	0		0	\$1499980	0		1	0
3639 3640		\bigcirc	0	\bigcirc	1	${ }_{\text {1.13\% }}^{1.12 \%}$	\bigcirc	1	10362 10019	\bigcirc	\bigcirc	${ }_{0}$	$\$ 896469$ $\$ 367604$	\bigcirc	0	1	\bigcirc

observation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％－90\％	LTV 70\％．78\％	$\begin{gathered} \text { LTV BELOW } \\ 70 \% \end{gathered}$	total tax burden	PARCEL IN SCEIP＝ 1	conventional LOAN $=1$	tor size	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	sold during 2004＿2007	Sold 2008－2012	PRICE ADJUST．To 2012	$\begin{gathered} \text { ZIP CODE } \\ \text { Z95403 } \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95404 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
3641	S	0	0	0	0	1．12\％	－	1	9583	－	${ }_{0}$	0	\＄770312	0	－	1	－
3642	0	0	0	1	0	1．12\％	0	1	${ }_{11326}$	0	0	1	\＄735520	－	0	1	0
3643	0	0	0	0	1	1．13\％	0	1	10454	0	1	0	\＄1208735	0	0	1	0
3644	0	1	0	0	0	1．12\％	0	1	13068	1	0	0	5317693	0	0	1	0
3645	0	0	0	1	0	1．11\％	0	1	38768	0	1	0	\＄2399781	0	0	1	0
3646	0	0	0	0	1	1．11\％	0	1	21780	0	0	0	\＄1186315	0	0	1	0
3647	0	0	0	0	1	${ }^{1.111 \%}$	0	1	22651	0	1	0	\＄1661036	0	0	1	0
3648	0	1	0	0	0	1．12\％	0	1	21344	1	0	0	5309590	0	0	1	0
3649	0	0	0	0	1	1．11\％	0	1	21780	0	0	1	5753079	0	0	1	0
3650	0	0	0	0	0	1．20\％	0	1	${ }^{6} 098$	1	0	0	\＄150306	0	0	1	0
${ }_{3651}^{3651}$	0	0	0	0	1	${ }^{1.14 \%}$	－	1	22000	0	0	0	\＄678444	0	0	1	0
$\begin{array}{r}3652 \\ 3653 \\ \hline\end{array}$	0	\bigcirc	${ }_{1}$	0	${ }_{0}$	1．15\％	－	1	10454 13999	${ }_{1}$	\bigcirc	${ }_{0}^{1}$	$\$ 573384$ $\$ 159725$	\bigcirc	\bigcirc	1	\bigcirc
3653 3654 3	\bigcirc	0	${ }_{0}^{1}$	0	${ }_{1}$	${ }^{1.1 .5 \%}$	\bigcirc	1	13939 17360	1	\bigcirc	\bigcirc	\＄159725 S127251	0	\bigcirc	1	0
3655	0		1			1．15\％		1	20909	1	－	0	\＄143385	0	－	1	\bigcirc
3656	0	1	0	0	0	1．13\％		1	14810	1	0	0	5218808	0	0	1	0
3657	0	1	0	0	0	1．13\％	0	1	7841	0	0	0	\＄282226		0	1	0
3658	0	0	0	0	0	1．14\％	0	1	6534	0	0	0	\＄326902	0	0	1	0
3659	0	0	0	0	1	1．14\％	0	1	9148	1	0	0	5182694 $\$ 43515$	0	0	1	0
3660	0	0	0	1	0	1．13\％	0	1	5227	0	0	0	${ }_{5433516}$	0	0	1	0
3661	0	0	0	0	0	1．12\％	0	1	10454	0	1	0	5818821	0	0	1	0
$\begin{array}{r}3662 \\ 3653 \\ \hline\end{array}$	0	0	0	0	0	1．14\％	0	1	6534	1	0	0	\＄214555	0	0	1	0
3663 3664	\bigcirc	\bigcirc	${ }_{1}$	\bigcirc	0	${ }_{\text {l }}^{1.1 .15 \%}$	\bigcirc	1	6007 6534	\bigcirc	\bigcirc	\bigcirc	5568149 $\$ 29679$	\bigcirc	\bigcirc	1	\bigcirc
3665	0	0	1	0	0	1．14\％	0	1	7650	0	。	－	\＄538651	0	0	1	－
3666	0	1	0	0	0	1．15\％	0	1	${ }_{6}^{6098}$	1	0	0	\＄187454	0	0	1	0
3667	0	0	0	0	0	1．14\％	0	1	8712	0	0	1	5417690	0	0	1	0
3668	0	0	0	0	0	1．14\％	0	1	7841	0	0	1	5384988	0	0	1	0
3669	0	0	0	0	0	1．18\％	0	1	9583	1	0	0	\＄130 904	0	0	1	0
3670	0	0	0	0	1	${ }^{1.12 \%}$	0	1	7841	0	0	1	\＄407754	0	0	1	0
3671 3672	0	${ }_{1}^{0}$	\bigcirc	0	${ }_{0}^{1}$	${ }_{\text {1．1．4\％}}^{1.16 \%}$	\bigcirc	1	8276 7405	\bigcirc	${ }_{1}$	${ }_{0}$	5292044 S778 270	0	\bigcirc	1	\bigcirc
3673	0	${ }_{0}$	0	1	0	1．16\％	0	1	6098	1	${ }_{0}$	0	\＄146316	0	－	1	0
3674	－	0	1	，	－	1．14\％	0	1	6098	0	0	0	\＄513001	0	0	1	0
3675	0	0	0	0	1	1．1．6\％	0	1	6534	0	0	1	\＄526748	0	0	1	0
3676 3677	\bigcirc	0	0	1	\bigcirc	${ }^{1.21 \%}$	0	1	6098 10454	1	\bigcirc	\bigcirc	S116 387 $\$ 101078$	0	\bigcirc	1	0
3678	0	0	1	${ }_{0}$	0	1．19\％		1	8712	1	0	0	\＄55899	0	\bigcirc	1	0
3679	0	0	0	0	0	1．15\％	0	1	11761	1	0	0	\＄196488		0	1	0
3680	－	1	0	－	0	1．16\％	0	1	7841	1	0	0	\＄142325	0	0	1	0
3681	0	1	0	0	0	1．15\％	0	1	15246	0	1	0	5825839	0	0	1	0
${ }_{3682}^{3682}$	0	1	0	0	0	${ }^{1.15 \%}$	0	1	17860	0	1	0	\＄956237	0	0	1	0
3683 3684	\bigcirc	1	0	\bigcirc	\bigcirc	${ }^{1.1 .14 \%}$	\bigcirc	1	91488 17464	${ }_{0}^{1}$	\bigcirc	${ }_{0}$	5113247 5493763	0	\bigcirc	1	\bigcirc
3685	0	1		0	0	1．16\％	0	1	9583	1	0	0	\＄97781	0	0	1	0
${ }^{3686}$	0	0	0	1	0	1．14\％	0	1	7841	0	0	0	\＄381386	0	0	1	0
3687	0	0	0	0	1	1．17\％	0	1	7405	0	0	1	561439	0	0	1	0
3688 3689	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	1	7405 8712	${ }_{1}$	\bigcirc	1	\＄391000 S197993	\bigcirc	\bigcirc	1	0
3690	0	0	－	0	1	1．16\％	0	1	8712	1	－	0	\＄121668	0	。	1	0
3691	0	0	0	0	1	1．15\％	0	1	6098	0	0	0	\＄316005	0	0	1	0
3692	0	0	0	0	0	1．12\％	0	1	7405	0	0	1	\＄840 455	0	0	1	0
3693	0	0	0	0	1	1．12\％	0	1	7405	0	0	1	5842797	0	0	1	0
3694 3695	0	0	0	0	0	${ }^{1.14 \%}$		1	7405	0	0	1	\＄581714	0	0	1	0
3695 3696	\bigcirc	${ }_{0}^{1}$	\bigcirc	\bigcirc	0	1.13% 1.13% 1.1	0	${ }_{1}^{1}$	7405 6750	\bigcirc	${ }_{1}^{0}$	${ }_{0}$		0	\bigcirc	1	\bigcirc
3697	0	0	1	0	0	1．16\％	－	1	6000	0	0	0	\＄384751	0	0	1	0
3698		0	0		1	1．13\％	0	1	6000	0	0	0	5448876		0	1	0
3699	0	0	0	0	0	1．18\％	0	1	6098	1	0	0	\＄151 304	0		1	0
3700 3701	0	0	0	\bigcirc	${ }_{0}^{1}$	（1．13\％	0	1	6098 6098	0	${ }_{0}^{1}$	${ }_{1}$	5964504 5310000	0	0	1	\bigcirc
3702	0	\bigcirc	0	0	1	${ }^{1.13 \% \%}$	0	1	6098	0	\bigcirc	${ }_{0}^{1}$	¢429486	0	0	1	\bigcirc
3703	0	0	1	0	0	1．13\％	0	1	6098	0	0	0	5432365	0		1	0
3704	0	0	0	1		1．13\％	0	1	6534	0	0	0	\＄431789		0	1	0
3705	0	0	0	0	1	1．13\％	0	1	7405	0	0	0	5494071	0		1	0
3706	0	0	0	0	1	${ }^{1.12 \%}$	0	1	${ }_{1}^{11761}$	0	1	0	\＄1450214	0	－	1	0
3707 3708	0	\bigcirc	0	${ }_{0}^{1}$	\bigcirc	（1．14\％	0	1	7560 7405	\bigcirc	0	${ }_{1}$	S633556 $\$ 585275$	\bigcirc	\bigcirc	1	\bigcirc
3709	0	0	1	0	0	1．12\％	0	1	13504	0	0	0	${ }_{557579}$	0	0	1	0
3710		0	0		1	1．14\％	0	1	8276	0	0	1	559027	0	0	1	0
3711	0	0	0	0	1	${ }_{1}^{1.12 \%}$	0	1	7841 12632	\bigcirc	1	\bigcirc	$\$ 931116$ $\$ 106568$	\bigcirc	\bigcirc	1	\bigcirc
3712 3713	\bigcirc	0	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }_{\substack{1.12 \% \\ 1.15 \%}}^{\text {dem }}$	\bigcirc	1	12632 8276	0	${ }_{1}^{1}$	0	S1060 S140368	\bigcirc	\bigcirc	1	0
3714	0	1	0		0	1．15\％	0	1	7841	0	0	0	5403003	。	0	1	。
3715	0	0	0	0	1	1．13\％	0	1	13939	－	1	0	\＄1180493	0	0	1	0
3716		0	0	0	1	1．22\％	0	1	9148	1	0	0	\＄44700		－	1	0
3717 3718	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1	${ }_{\text {l }}^{1.13 \% \%}$	\bigcirc	1	6534 5633	\bigcirc	1	${ }_{0}$	$\$ 1153110$ S88746	\bigcirc	\bigcirc	1	\bigcirc
3719	0	0	0	0	1	1．15\％	0	1	5663		1	0	\＄173103	0	0	1	。
3720	0	0	0	0	1	1．15\％	0	1	5663		0	0	\＄140339	0			0
3721		0	0	0	1	1．14\％	0	1	5663	0	0	0	\＄169 394	0	0	1	0
3722	0	0	0	0	1	1．13\％	0	1	5663	0	0	1	5442810		0	1	－
3723 3724	\bigcirc	\bigcirc	$\stackrel{0}{0}$	${ }_{0}^{1}$	\bigcirc	${ }_{\substack{1.12 \% \\ 1.12 \%}}^{1}$	\bigcirc	1	10745 12632	\bigcirc	\bigcirc	${ }_{0}$		\bigcirc	\bigcirc	1	\bigcirc
3725		0	0	0	1	1．13\％	0	1	8276	1	0	0	\＄227 737	0	0	，	0
3726	0	0	0	0	0	1．13\％	0	1	${ }^{11761}$	0	0	0	5789699 $\$ 105293$	0	0	1	－
3727 3728 3	0	1		0	0	1．12\％	0	1	15682 11761	0	0	－	\＄105 228			1	0
3728 3729	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }^{1.1 .12 \%}$	\bigcirc	1	${ }_{6534}^{11761}$	${ }_{1}^{0}$	\bigcirc	${ }_{0}^{1}$	ST64538 $\substack{191971}$	\bigcirc	\bigcirc	1	\bigcirc
3730	0	0	0	0	1	1．5\％	0	1	6970	0	0	1	\＄36148	0	0	1	0
$\begin{array}{r}3731 \\ 3732 \\ \hline\end{array}$	0	0	0	0	0	${ }^{1.13 \%}$	0	1	7320		1	1	\＄1274711	0	0	1	－
3732 3733	${ }_{0}$	${ }_{1}$	0	${ }_{0}$	${ }_{0}$	－${ }_{\text {1．1．14\％}}$	${ }_{0}$	1	12197 10019	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	\＄476950	${ }_{0}$	0	1	${ }_{0}$
3734	－	0	0	1	0	1．13\％	－	1	8600	－	\bigcirc	1	\＄426745	0	0	1	。
3735	0	0	0	0	0	1．14\％	0	1	7405	0	0	1	\＄598334	0	0	1	0
3736 3737	\bigcirc	\bigcirc	\bigcirc	1	\bigcirc	－${ }_{1}^{1.40 \%}$	\bigcirc	1	7405 6098	${ }_{0}^{1}$	\bigcirc	0	$\$ 150565$ $\$ 370489$	0	0	1	0
3738	0	0		0	0	1．17\％	0	1	5663	1	0	0	\＄131684	0	0	1	0
3739	0	1	0	0	0	1．23\％	0	1	5663	1	0	－	\＄5366	0	0	1	0
3740 3741	0	0	0	0	1	1．13\％	0	1	5663	0	0	1	\＄477820	0	0	1	0
3741 3742	${ }_{0}^{0}$	\bigcirc	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }_{\text {l }}^{1.128 \%}$	0	1	${ }_{6}^{6970}$	1	0	${ }_{0}$	${ }_{\text {S }}^{51171387}$	\bigcirc	${ }_{0}$	1	${ }_{0}^{0}$
3743	0	0	0	0	1	1．13\％	0	1	6098	0	0	0	\＄595081	0	0	1	0
3744	0	0	0	0	0	1．15\％	0	1	6098	1	0		\＄130904	0	0	1	
3745	0	0	0	0	1	1．14\％	－	1	6098	0	0	1	5462368	－	0	1	
3746	0	0	0	0	1	1．15\％	0	1	${ }^{6970}$	0	0	0	\＄534267	0	0	1	0
3747 3748	0	${ }_{0}^{1}$	\bigcirc	\bigcirc	\bigcirc	${ }_{\text {1．13\％}}^{1.15 \%}$	\bigcirc	1	11326 6008	0	1	0	\＄1 167172 $\$ 1162019$	0	\bigcirc	1	\bigcirc
3749	0	0	0	0	1	1．14\％	0	1	6970		0	1	\＄354568	0	0	1	0
3750	0	0	1	0	0	1．17\％	－	1	6970	1	0	0	5203263	0	0	1	0
3751 3752	0	0 1	0	\bigcirc	${ }_{0}^{1}$	${ }_{\text {1．1．15\％}}^{1.15}$	0	1	6970 6534	1	0	\bigcirc	5111750 $\$ 424973$	\bigcirc	0	1	\bigcirc
3753		${ }_{0}$	0	0	1	1．17\％	0	1	6534	1	0	0	\＄138819	0	0	1	0
3754		0	0		0	1．15\％	0	1	5663	0	0	0	\＄426032	0	0	1	0
3755 3756 3	0	\bigcirc	\bigcirc	0	1	1．24\％	1	1	6534 6534	\bigcirc	\bigcirc	\bigcirc	5412986 $\$ 305951$	\bigcirc	0	1	\bigcirc
3756 3757	0	0	0	0	${ }_{0}^{1}$	－${ }_{\text {l }}^{1.20 \%}$	${ }_{0}$	1	6534 6534	\bigcirc	${ }_{0}$	0	\＄305 951 $\$ 35207$	${ }_{0}$	${ }_{0}$	1	\bigcirc
3758		1	0	0		1．16\％		1	7841	1	0	0	\＄170479	0	0	1	0
3759 3760 3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1	－${ }_{\text {1．115\％}}$	\bigcirc	1	6534 7305	，	0	0	\＄424973	\bigcirc	0	1	0
3760 3761	${ }_{0}$	${ }_{0}$	${ }_{0}$	0	1	${ }^{1.111 \%}$	\bigcirc	1	7405 9148	0	\bigcirc	$\stackrel{1}{0}$	\＄569089 $\$ 162224$	0	0	1	\bigcirc
3762		0	0		1	1．17\％		1	10019	1	。	0	\＄84966		0	1	0
3763	0	1	0	0	1	1．15\％	0	1	9583	1	0	0	5253702 $\$ 16863$	－			0
3764 3765 3		0	0	0		${ }^{1.14 \%}$		1	9583	1	0	0	\＄168463	0	0	1	\bigcirc
3765 3766	0	\bigcirc	${ }_{0}^{1}$	0	0	－${ }_{\text {1．12\％}}^{1.12 \%}$	0	1	10019 10941	0	\bigcirc	0	S610 217 $\$ 795152$	0	0	1	\bigcirc
3767		0	0		1	1．14\％		1	10454	1	0	－	\＄171583		0	1	0
3768	0	0		0	0	1．12\％	0	1	11326	0	1	0	\＄1534820	0	0	1	0
3769 3770						${ }_{1.16 \%}^{1.12 \%}$			9583 8712			${ }_{1}$	$\$ 1283210$ $\$ 362500$		0	1	${ }_{0}$

observation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％－90\％	LTV 70\％－78\％	Ltv below 70\％	totaltax burden	parcelin SCEIP $=1$	conventional	Lot SIIE	sold PRIOR 2000	SOLD DURING	SOLD 2008－2012	PRICE ADJUST．TO	ZIP CODE 295403	ZIP CODE 95404	ZIP CODE 95472	ZIP CODE 94928
3771	${ }_{0}$	0	0	0	0	1．14\％			9583		－	0	S149 187	0			
3772	0	0	0	0	1	1．13\％	。	1	12632	0	1	0	\＄1216114	0	0	1	0
3773	0	0	0	1	0	1．14\％	0	1	10890	1	0	0	\＄199521	0	0	1	0
3774	0	0	0	0	1	1．15\％	0	1	9583	1	0	0	\＄95699	0	0	1	0
3775	0	1	0	0	0	1．17\％	0	1	6970	1	0	0	\＄125 366	0	0	1	0
3776	0	0	0	0	1	2．00\％	1	1	6970	0	1	0	5956117	0	0	1	0
3777	0	0	－	0	0	${ }^{1.15 \%}$	0	1	3920	0	0	0	\＄241052	0	0	1	0
3778	0	0	0	0	0	1．19\％	0	1	3920	1	0	0	\＄164869	0	0	1	0
3779	0	0	0	1	0	1．24\％	0	1	3920	1	0	0	\＄55452	0	0	1	0
3780	0	0	0	1	0	${ }^{1.14 \%}$	0	1	4792	1	0	0	\＄57017	0	0	1	0
3781	0	1	0	0	0	1．1．16\％	0	1	4356	1	0	0	\＄106549	0	0	1	0
（3782	0	0	0	0	0	（1．13\％	0 1	1	7405 6970	0	\bigcirc	0	S462047 $\$ 32929$	0	${ }_{0}$	1	${ }_{0}$
3783 3784 3	0	${ }_{0}^{1}$	0	0	0 1	${ }^{1.713 \%}$	0	1	6970 6970	\bigcirc	0	1	5329129 $\$ 471377$	\bigcirc	\bigcirc	1	\bigcirc
3785		0	。	－	1	${ }^{1.13 \%}$	0	1	${ }_{7405}$	0	1	${ }_{0}$	\＄4878804	\bigcirc	\bigcirc	1	${ }_{0}$
3786	0	1	0	0	0	1．18\％	0	1	7841	1		0	\＄93591	0	0	1	0
3787	0	0	0	0	1	1．76\％	1	1	8487	0	0	0	\＄699 189	。	。	1	0
3788	0	0	0	0	0	1．13\％	0	1	9257	0	0	0	\＄696 399	0	0	1	0
${ }^{3789}$	0	0		1	1	${ }^{1.14 \%}$	0	1	8712	1	0	0	\＄188824	0	0	1	0
3790	0	0	0	1	1	1．16\％	0	1	6534		0	0	${ }_{5163784}$	\bigcirc	0	1	0
3791	0	0	0	0	1	1．14\％	0	1	5663	0	1	0	\＄1182340	0	0	1	
3792	0	0	0	1	0	1．18\％	0	1	5663	1	0	1	\＄127859	0	0	1	0
3793 3794 3	\bigcirc	\bigcirc	\bigcirc	0	0	${ }_{\text {1．1．12\％}}^{1.12 \%}$	\bigcirc	1	7841 4356	0	\bigcirc	${ }_{0}^{1}$	${ }_{\substack{\text { S6683844 } \\ \$ 324 \\ \hline}}$	\bigcirc	\bigcirc	1	\bigcirc
3795	0	0	0	1	。	1．12\％	0	1	9520	0	。	0	\＄654076	0	0	1	0
3796	0	1	0	0	0	1．13\％		1	12121	0	0	0	\＄801564	0	。	1	0
3797	0	0	0	0	1	1．12\％	0	1	11761	0	0	1	S676464	0	0	1	0
3798	0	0	0	1	0	1．14\％	0	1	12632	1	0	0	\＄111350	0	0	1	0
3799	0		0		1	1．12\％	0	1	11761	0	1		\＄1041852	0	0	1	
3800	0	0	0	－	0	1．12\％	0	1	10019	0	0	0	\＄620 625	0	0	1	－
3801	0	1	0	0	0	${ }^{1.12 \%}$	0	1	10982	0	0	0	\＄798999	0	0	1	0
3802	0	1	0	0	0	${ }^{1.12 \%}$	0	1	1724	1	0	0	582195	0	0	1	0
3803	0	1	0	0	0	1．12\％	0	1	2038	1	0	0	\＄54 199	0	0	1	
3804	0	0	0	0	1	1．12\％	0	1	16988	1	0	0	\＄301942	0	0	1	0
3805 3806	\bigcirc	${ }_{1}$	\bigcirc	${ }_{0}^{1}$	${ }_{0}^{1}$	${ }_{\text {1．11\％}}^{1.12 \%}$	\bigcirc	1	16117 17424	${ }_{1}^{1}$	\bigcirc	${ }_{0}^{1}$	\＄705 000 $\$ 885741$	\bigcirc	\bigcirc	1	\bigcirc
3807	0	1	0		0	1．13\％	0	1	22216	1	0	0	\＄61463	－	－	1	0
3808	0	0	0	0	1	1．12\％	0	1	10890	0	0	0	\＄509918	\bigcirc	0	1	0
3809	0	0	0	0	1	1．11\％	0	1	10890	1	0	0	598430	0	0	1	0
3810 3811	0	0	0	1	0	${ }^{1.07 \%}$	0	1	${ }_{4}^{43560}$	0	0	0	${ }_{\text {S31522 }}$	0	0	1	0
3811 3812	\bigcirc	${ }_{1}^{0}$	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }_{\text {l }}^{\text {1．08\％}}$	\bigcirc	1	653400 55321	1	\bigcirc	\bigcirc	\＄382416 $\$ 262736$	\bigcirc	0	${ }_{1}^{1}$	0
3813	0	0	0	1	0	1．09\％	0	1	54450	0	0	0	\＄691943	0	0	1	0
3814	0	1	0	0	0	1．08\％	0	1	54014	1	0	0	\＄274782	0	0	1	0
3815	0	0	0	0	1	1．09\％	0	1	${ }^{426888}$	1	0	0	\＄219473	0	0	1	0
${ }^{3816}$	0	0	0	－	1	1．12\％	0	1	143312	0	0	0	\＄770 312	0	0	1	0
3817 3818	\bigcirc	\bigcirc	${ }_{1}$	\bigcirc	${ }_{0}^{1}$	${ }_{\text {1．1．12\％}}^{1.12 \%}$	\bigcirc	1	392476 397267	${ }_{1}^{0}$	\bigcirc	\bigcirc	S477468 $\mathbf{S 1 5 5} 892$	\bigcirc	\bigcirc	${ }_{1}^{1}$	0
3819	0	0	0	0	0	1．92\％	1	1	59936	0	0	0	\＄704613	0	0	1	0
3820 3821	0	－	0	－	1	${ }^{1.1 .15 \%}$	0	1	48352	1	0	0	\＄246076	0	0	1	0
${ }^{3821}$	0	0	0	0	0	1．25\％	0	1	446054	0	0	1	\＄640000	0	0	1	0
3822 3823 3	0	0	0	0		${ }^{1.12 \%}$	0	，	63598 5094	0	1	0	${ }_{\text {\％}} \mathbf{\$ 1 2 5 6 2 3 7}$	0	0	1	0
3823 3824 38	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	\bigcirc	${ }_{0}$	${ }^{1.37 \%}$	\bigcirc	${ }_{1}$	50094 44341	${ }_{0}$	${ }_{0}$	${ }_{0}^{1}$	（ $\begin{array}{r}\text { S3865880 } \\ \$ 1026130\end{array}$	\bigcirc	${ }_{0}^{0}$	1	0
3825	0	1	0		0	1．16\％	0	1	87120	0	0	0	\＄495 118	0	0	1	0
3826	，	，	0	1	1	1．13\％	0	1	38333	0	0	0	5495118	0	0	1	0
3827	1	1	0	0	0	1．12\％	0	1	210395	0	1	0	\＄2309258	0	0	1	0
${ }^{3828}$	0		0	0	1	${ }^{1.17 \%}$	0	1	361984	1	0	0	\＄189545	0	0	1	0
$\begin{array}{r}3829 \\ 3880 \\ \hline\end{array}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1	${ }_{\text {1．1．12\％}}^{1.12 \%}$	\bigcirc	1	128066 653836	\bigcirc	\bigcirc	1	587357 575000	\bigcirc	\bigcirc	1	\bigcirc
3831	0	0	0	0	1	1．12\％	0	1	${ }^{209524}$	0	0	0	\＄1109365	0	0	1	0
3832	0	1	0	0	0	1．15\％	0	1	185566	0	0		\＄587254	0	0	1	0
3833	0	0	0	0	1	1．12\％	0	1	696960	0	0	0	\＄1338803	0	0	1	
3834 3835 3	0	0	0	1	0	${ }^{1.12 \%}$	0	1	87120 8865	0	0		\＄907321	\bigcirc	－	1	0
3835 3836	\bigcirc	\bigcirc	${ }_{0}$	0	1	（1．1．14\％	${ }_{0}^{0}$	1	83635 70132	${ }_{1}$	1	\bigcirc	$\$ 167798$ $\$ 187181$	\bigcirc	\bigcirc	1	\bigcirc
3837	0	0	0	0	0	1．13\％		1	396396	1	0	0	\＄169932	0	0	1	0
3838	0	1	0	0	0	1．13\％	－	1	88862	0	0	0	\＄759241	0	0	1	
3839	0	0	0	0	1	1．14\％	0	1	43560	0	0	1	5668800	0	0	1	0
3840	0	1	0	0	0	1．60\％		1	43560	1	0	0	S101 145	0			0
$\begin{array}{r}3841 \\ 3842 \\ \hline\end{array}$	\bigcirc	\bigcirc	\bigcirc	0	${ }_{1}^{1}$	－${ }_{\text {1．114\％}}^{1.14 \%}$	0	1	55321 202900	\bigcirc	${ }_{0}^{1}$	${ }_{0}$	$\$ 1025311$ $\$ 938421$	${ }_{0}^{0}$	\bigcirc	1	\bigcirc
3843	0	0	0	0	0	1．16\％	0	1	85813	0	1	0	\＄1288108	0	0	1	0
3844 384	0		0	1		1．14\％	0	1	89298 5921	1	0	0	\＄237430	0	0	1	－
3845	0	0	0	1	0	1．14\％	0	1	55321	0	0	1	\＄532 176	0	0	1	0
（3846	0	0	0		0	1．12\％	0	1	54.14	0	1	${ }_{0}$	\＄1116715	0	0	1	0
3847 3848 3	\bigcirc	${ }_{0}$	\bigcirc	${ }_{0}^{1}$	0	${ }_{\text {l }}^{1.1 .14 \%}$	0	1	57499 57955	1	\bigcirc	${ }_{0}^{1}$	\＄588000 $\$ 189648$	\bigcirc	\bigcirc	1	${ }_{0}$
3849		0	0	1	0	1．14\％	0	1	46174	1	0	0	\＄166903	0	0	1	0
3850	0	0	0	1		1．15\％	0	1	87120	1	0	0	\＄149 121	0	0	1	
3851	0	0	0	0	1	1．14\％	0	1	${ }^{43996}$	0	0	1	\＄625 558	0	0	1	0
${ }^{3852}$	0	0	0	0	1	1．12\％	－	1	$\begin{array}{r}65340 \\ \hline 17500\end{array}$	0	1	0	\＄1590377	0	0	1	0
3853 3854	\bigcirc	\bigcirc	0	\bigcirc	1	${ }_{\text {1．12\％}}^{1.12 \%}$	\bigcirc	1	217800 115434	\bigcirc	${ }_{0}$	${ }_{0}^{0}$	（ $\begin{aligned} & \text { \＄704613 } \\ & \$ 1122190\end{aligned}$	0	\bigcirc	${ }_{1}^{1}$	0
3855	0	0	0	0	1	1．14\％	0	1	107593	0	1	0	\＄1652 237	0	0	1	0
${ }^{3856}$			0	－		${ }^{1.119 \%}$	0	1	${ }^{69} 996$	1	0	0	\＄82730	0	0	1	0
3857 3858 385	0	\bigcirc	\bigcirc	\bigcirc	0 1	${ }_{\text {1．1．13\％}}^{1.1}$	\bigcirc	1	37897 40075	1	0	\bigcirc	$\$ 199660$ $\$ 157693$	\bigcirc	0	1	0
3858 3859	0	1	0	0	1	${ }_{\text {1．15\％}}^{1.14 \%}$	${ }_{0}$	1	43958 2398	1	1	0	\＄	\bigcirc	0	1	${ }_{0}$
3860	0	0	0	0	1	1．14\％	0	1	43124	1	0	0	\＄202847	0	0	1	0
${ }^{3861}$	0	0	0	1		${ }^{1.14 \%}$	0	1	${ }^{61420}$	1	0	0	\＄175740	0			
3862 3863	\bigcirc	0	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	${ }_{\text {1．114\％}}^{1.18 \%}$	\bigcirc	1	97574 40075	\bigcirc	0	\bigcirc	$\$ 500646$ $\$ 889021$	\bigcirc	\bigcirc	1	0
3864	0	0	0	0	0	1．15\％	－	1	104108	1		0	\＄263 489	0	0	1	0
3865 3865	0	\bigcirc	0	${ }_{1}$	0	${ }^{1.119 \%}$		1	105851 50514	0	0	1	${ }_{5} 572842$	0	0	1	0
3866 3867	\bigcirc	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	${ }^{1.1 .12 \%}$	${ }_{1}$	1	54014 134600	${ }_{0}^{1}$	${ }_{1}^{0}$	\bigcirc	（ $\begin{array}{r}\text { S237060 } \\ \$ 1402133\end{array}$	\bigcirc	0	1	0
3868	0	1	0	0	0	1．13\％		1	${ }_{92347}$	0	0	。	\＄538010	。	0	1	0
3869	0	0	0	1	1	1．12\％	0	1	107593	0	1	0	\＄1976224	0	0	1	0
3870	0	0	0	\bigcirc	1	1．12\％	0	1	106286 9881	1	0	0	（ 5331870	0	0	1	0
3871 3872	\bigcirc	\bigcirc	${ }_{0}$	${ }_{0}^{0}$	${ }_{0}^{1}$	－${ }_{\text {1．12\％}}^{1.12 \%}$	${ }_{0}$	1	98881 87120	${ }_{0}$	1	${ }_{0}^{1}$	（\＄111911 $\$ 1152588$	\bigcirc	0	1	0
3873	0	0	0	1	0	1．13\％	－	1	61855	1	0	0	\＄282310	0	0	1	0
3874	0	－	0	0	1	1．13\％	0	1	57064	0	0	1	5720217	0	0	1	0
3875		－	，	－	，	${ }^{1.15 \%}$	0	1	80150	－	0	0	\＄377849	0	0	1	0
3876	0		0	0	0	1．16\％	0	1	72310 16984	0	0	0	\＄203967	－	O	1	0
3877 3878	0	0	0	0	${ }_{0}^{1}$	${ }^{1.1 .12 \%}$	0	1	169884 87120	0	${ }_{1}$	${ }_{0}^{1}$	$\$ 825238$ $\$ 983794$	0	${ }_{0}$	1	0
3879	0	1	0	0	0	1．12\％	0	1	92783	0	0	0	\＄719648	0	0	1	0
3880	0	1	，	0	－	1．15\％	0	1	85378	0	0	0	5691943	0	0	1	0
3881 3882 3	0	\bigcirc	${ }_{0}^{1}$	\bigcirc	\bigcirc	1．1．13\％	\bigcirc	1	45302 211266	${ }_{0}^{1}$	0 1	\bigcirc	（ $\begin{gathered}\text { S271017 } \\ \$ 1660624\end{gathered}$	\bigcirc	0	1	0
3883	0		。			1．12\％		1	233917	1		0	\＄100 016	。	0	1	0
3884	0	0	0	0	1	1．12\％	0	1	45302	0	1		\＄112954	0		1	．
（3885	0	1	0	0	1	1．13\％	0	0	130244 87991	0	0	1	$\begin{array}{r}5562299 \\ \\ \$ 398998 \\ \hline 1\end{array}$	0	0	1	
3886 3887	0	0	\bigcirc	0	${ }_{0}^{1}$	${ }^{1.1 .12 \%}$	0	1	87991 107158	${ }_{0}^{1}$	0	0	$\$ 398998$ $\$ 1476111$	0	0	1	0
3888	0				1	1．14\％	0	1	108900	1	0	－	\＄159520	0	0	1	
3889 3890	1		0	1	1	1．23\％		1	145055 O8505	1	0	\bigcirc	\＄99761		0	1	0
3890 3891	1	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	\bigcirc	${ }^{1.1 .12 \%}$	\bigcirc	1	308405 12204	1	\bigcirc	\bigcirc	$\begin{array}{r}\text { S } \\ \$ 3039099 \\ \hline\end{array}$	\bigcirc	\bigcirc	1	\bigcirc
3892						1．11\％		1	549292	0		0	\＄1381725	0	。	1	0
${ }^{3893}$	0	1	0	0	0	1．12\％	0	1	279220 1789	－	，	－	\＄1401353	0	0	1	0
3894 3895 89	0	1	－	0	0	1．14\％	0	1	${ }^{21780}$		1	0	\＄6457988			1	\bigcirc
3895 3896	\bigcirc	${ }_{0}^{1}$	\bigcirc	${ }_{1}^{0}$	\bigcirc	${ }^{1.1 .12 \%}$	\bigcirc	1	85813 181210	0	1	0	$\$ 1325145$ $\$ 537196$	0	0	1	\bigcirc
3897					1	1．12\％	0	1	187744	0	0	0	\＄1070890	－	。	1	0
3898	0	1	0		0	1．13\％		1	187308	0	1	0	\＄1258049			，	0
											0						

osservation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％－90\％	LTV 70\％－78\％	Ltv below 70\％	total tax BURDEN	parcelin SCEIP $=1$	conventional	Lot SIIE	sold PRIOR 2000	SOLD DURING	SOLD 2008 －2012	PRICE ADJUST．TO	ZIP CODE 295403	ZIP CODE 95404	ZIP CODE 95472	ZIP CODE 94928
3901	${ }_{0}$	0	0	1	0	${ }^{\text {1．12\％}}$			82328	0	－	0	\＄781941	0			
3902	0	0	0	0		1．13\％	。	1	82328	1	0	0	\＄219 187	0	0	1	0
3903	0	0	0	0	1	1．14\％	0	1	227819	，	0	0	5547002	0	0	1	0
3904	0	0	1		0	1．13\％	0	1	214315	1	0	0	\＄304895	0	0	1	0
3905	0	0	0	O	1	1．14\％	0	1	420790	0	0	1	\＄410000	0	0	1	0
3906	0	0	0	0	0	1．14\％	0	1	179467	1	0	0	\＄121636	0	0	1	0
3907	0	－		0	0	${ }^{1.14 \%}$	0	1	173369	1	0	0	\＄169261	0	0	1	0
3908	0	0	0		0	1．13\％	0	1	218671	1	0	0	\＄375765	0	0	1	0
3909	0	0	0		0	1．13\％	0	1	227819	0	0	1	\＄640 000	0	0	1	0
3910	0	0	0	0	1	1．12\％	0	1	164221	0	1	0	\＄1718088	0	0	1	0
3911	0	0	0	1	0	1．12\％		1	612889	0		0	\＄898981	0	0	1	
3912 3913	0	0	0	0	1	1．11\％	0	1	182516 26089 260	0	0	\bigcirc	\＄1000933	\bigcirc	0	1	0
3913 3914	${ }_{0}$	0	\bigcirc	${ }_{0}^{1}$	1	${ }_{\text {l }}^{1.112 \%}$	0	1	260489 132422	0	0	0	\＄2540184	0	0	1	\bigcirc
3915	0	0	0	1		1．13\％	0	1	346302	0	1	0	\＄2734162	－	。	1	－
3916	0	0	0	0	1	1．13\％	0	1	165092	1	0	0	S438947	0	0	1	0
3917	0	0	0	，	0	1．14\％	0	1	177725	1	0	0	\＄365 456	。	。	1	0
3918	0	0	0	1	0	1．14\％	0	1	233882	0	0	1	\＄954566	0	0	1	0
3919	0	0		0	1	${ }^{1.113 \%}$	0	1	169884	0	0	0	\＄713885	0	0	1	0
3920	0	1	0	0	0	1．13\％	0	1	${ }^{808038}$	0	1	0	\＄1499980	\bigcirc	0	1	0
3921	0	0	0		1	1．11\％	0	1	357192	0	0	1	5898674	0	0	1	－
3922	0	0	0	－	1	1．12\％	0	1	${ }^{367211}$	0	1	0	\＄1893592	0	0	1	0
3923 3924 929	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{\text {1．1．12\％}}^{1.12 \%}$	\bigcirc	1	217800 217800	\bigcirc	\bigcirc	\bigcirc	5542367 $\$ 39736$	\bigcirc	\bigcirc	${ }_{1}^{1}$	0
3925	0	0	0	。	1	1．13\％	0	1	65340	1	0	－	${ }_{5338772}$	0	。	1	0
3926	0	0	0	0	0	1．12\％	0	1	193406	0	1	0	\＄2199118	－	－	1	0
3927	0	0	0	1	0	1．15\％	0	1	128066	1	0	0	\＄119944	0	0	1	0
3928	0	0	0	1	0	0．79\％	0	1	425581	0	1	0	\＄2 105539	0	0	1	0
3929	0	0	0	0	1	1．14\％	0	1	217800	1	0	－	\＄132275	。	。	1	0
3930	0	0	0	0	1	1．14\％	0	1	23958	0	0	1	\＄448751	0	0	1	0
${ }^{3931}$	0	0		0	1	${ }^{1.14 \%}$	0	1	23522	0	0	1	\＄581714	0	0	1	0
3932 3933	0	\bigcirc	${ }_{0}$	1	\bigcirc	${ }_{\text {1．1．5\％}}$	0	1	23522 47916	0	${ }_{0}^{1}$	${ }_{1}$	\＄1237762	0	0	1	0
3934	－	，	1		0	1．12\％	0	1	305356	0	1	${ }_{0}$	\＄1863012	\bigcirc	－	1	0
3935	0	1	0	0	0	1．13\％	0	1	435600	0	1	0	\＄1258049	0	0	1	0
${ }^{3936}$	\bigcirc	0	0	0	0	1．18\％	0	1	21344	0	0	1	\＄223929	0	0	1	0
3937	0	0	0	0	1	1．14\％	0	1	$\begin{array}{r}43560 \\ \hline 3155 \\ \hline\end{array}$	1	0	0	\＄161200	0	0	1	－
3938 3939	0	0	${ }_{0}$	\bigcirc	\bigcirc	${ }_{\text {1．15\％}}^{1.12 \%}$	\bigcirc	1	36155 397267	${ }_{0}^{1}$	0	${ }_{1}^{0}$	\＄121668	\bigcirc	\bigcirc	1	0
3940	0	0	0		0	1．15\％	0	1	212573	0	0	1	${ }_{\$ 622733}$	。	。	1	－
3941	－		1	0	－	1．12\％	0	1	187308	0	0	，	\＄806006	0	0	1	0
3942	0	0	0	1	0	1．64\％	1	1	47045		0	1	\＄586 146	0	0	1	0
3943	0	0	0	1	0	${ }^{1.177 \%}$	0	1	399881 49560	1	0	0	${ }_{\text {S }}^{538011}$	0	0	1	0
3944 3995	\bigcirc	0	0	${ }_{1}^{1}$	\bigcirc	${ }_{\text {1．1．13\％}}^{1.15}$	0	1	43560 10890	${ }_{1}^{1}$	\bigcirc	\bigcirc	\＄589951 $\mathbf{\$ 1 6 4 8 9 8}$	\bigcirc	0	1	0
3946	0	－	0	1	－	1．15\％	0	1	43996	0	0	1	\＄476451	。	0		0
3947	0	0	0	0	1	1．14\％	0	1	38333	0	0	0	\＄500875	0	0	1	0
3948	1	1	0	0	0	1．16\％	0	1	10890		1	0	\＄946796	0	0	1	0
$\begin{array}{r}3949 \\ 3950 \\ \hline\end{array}$	0	0	0	0	1	1．13\％	0	1	${ }_{5}^{52272}$	0	0	0	\＄572079	0	0	1	0
3950 3951	\bigcirc	0	0	${ }_{1}^{0}$	0	－${ }_{\text {1．1．13\％}}^{1.18}$	0	1	12632 13068	\bigcirc	1	\bigcirc	5762673 $\$ 902400$	\bigcirc	0	1	0
3952	－	0	0	0	0	1．12\％	－	1	22464	0	0	0	\＄832344	。	0		0
3953	0	1	0	－	0	1．14\％	0	1	14375	0	1	0	\＄1228525	0	0	1	0
3954	0	1	0	0	0	1．42\％	0	1	9148	1	0	0	\＄339865	0	0	1	0
3955	0	，	0	－	－	1．34\％	0	1	22216 11200 1	1	0	0	5339865 $\$ 391920$	0	0	1	0
3956 3957	0	${ }_{1}^{1}$	0	\bigcirc	0	－${ }_{\text {1．1．15\％}}$	0	1	11200 1653	\bigcirc	0	${ }_{0}^{1}$	${ }_{\text {¢ }}^{53999920}$	0	0	1	\bigcirc
3958	－	0	0	－	1	1．12\％	0	1	74488	0	0	1	\＄562 299	。	0	，	。
3959	0	1	0	0	0	1．13\％	0	1	70567	0	1	0	\＄1012 487	0	0	1	0
3960	0	0	0	0	0	${ }^{1.17 \%}$	0	1	${ }^{43560}$	0	0	1	${ }_{5}^{5438224}$	0	0	1	0
3961	1	0	0	0	1	${ }^{1.1 .18 \%}$	0	1	${ }^{43562}$	0	1	0	${ }_{\text {S1 }}{ }_{\text {S1031236 }}$	0	－	1	0
3962 3963	\bigcirc	\bigcirc	\bigcirc	0	${ }_{0}^{1}$	${ }_{\text {l }}^{1.1 .17 \%}$	\bigcirc	1	13939 11326	1	\bigcirc	\bigcirc	$\$ 145397$ $\$ 118727$	\bigcirc	\bigcirc	1	\bigcirc
3964	0	0	0	0		1．14\％	0	1	10890	0	0	0	\＄530956	。	－	1	
3965	0	0	0	0	1	1．15\％	0	1	13939	1	0	0	S205 145	0	0	1	0
3966	0	0	0	0	0	1．14\％	0	1	14375	0	1	0	\＄1273108	0	0	1	0
$\begin{array}{r}3967 \\ 3968 \\ \hline\end{array}$	1	1	0	0	0	${ }^{1.116 \%}$		1	114375	0	0		\＄480149	\bigcirc	0	1	
3968 3969 396	0	\bigcirc	$\stackrel{0}{0}$	0	${ }_{0}^{1}$	1．1．14\％	\bigcirc	1	106286 31363	${ }_{0}^{1}$	${ }_{1}^{0}$	\bigcirc	$\$ 275339$ $\$ 1476111$	。	\bigcirc	1	\bigcirc
3970	0	0	0	0	1	1．13\％	0	1	35719	0	0	。	\＄577126	。	0	1	0
3971	0	0	0	0	1	1．14\％	0	1	${ }^{36} 155$	0	0	0	\＄459 424	0	0	1	0
3972 3973	\bigcirc	${ }_{0}^{1}$	\bigcirc	0	\bigcirc	${ }_{\text {1．1．14\％}}$	\bigcirc	1	36590 44867	1	\bigcirc	\bigcirc	\＄${ }_{\text {S229612 }}$	\bigcirc	\bigcirc	1	\bigcirc
${ }_{3974}$	0	0	－			${ }^{1.1 .13 \%}$	0	1	${ }_{37}^{47897}$	${ }_{0}$	1	\bigcirc	\＄1368757	\bigcirc	－	1	0
3975	0	0	0	0	0	${ }^{1.116 \%}$	0	1	${ }^{33541}$	0	1	0	${ }_{\text {\％}} \mathbf{\$ 1 3 7 7 1 6 9}$	0	0	1	0
3976 3977	0	0	0	1	0	1．116\％	0	1	13068 8381	1	0	0	S13470 $\mathbf{S 4 3 3 9 7}$	0	0	1	0
3977 3978	\bigcirc	${ }_{0}^{0}$	\bigcirc	0	1	${ }^{1.1 .14 \%}$	0	1	28314 43560	\bigcirc	1	\bigcirc	5493967 $\$ 881207$	\bigcirc	\bigcirc	1	${ }_{0}$
3979	0	0	0	1		1．18\％	0	1	35284	1	0	0	\＄56122	0	0	1	0
3980	0	1	0			1．15\％	0	1	54450	0	0	0	\＄375938	0	0	1	
3981	0	0	0	1	0	1．16\％	0	1	29621	0	0	0	\＄545064	0	0	1	0
${ }^{3982}$	0	1	0	－	0	1．15\％	0	1	${ }_{5}^{51401}$	\bigcirc	1	0	\＄1200814	\bigcirc	－	1	0
3983 3984 398	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1	${ }_{\text {1．12\％}}^{1.12 \%}$	\bigcirc	1	95396 67518	\bigcirc	\bigcirc	\bigcirc	5685144 $\$ 817256$	\bigcirc	\bigcirc	1	0
3985	0	0	0	0	1	1．14\％		1	63162	1	0	0	\＄147126	0	0	1	0
${ }_{3}^{3986}$			0	1	1	${ }^{1.114 \%}$	0	1	71003 6398	1	0	0	\＄133039	0	0	1	
3987 3988 398	0	0 1	0	${ }_{0}^{1}$	0	${ }_{\text {1．1．2\％}}^{1.15}$	0	1	65340 21780	0 1	0	1	$\$ 952903$ $\$ 391727$	\bigcirc	0	1	0
3989	0	${ }_{0}$	0	0	1	${ }^{1.12 \%}$	${ }_{0}$	1	${ }_{20}^{21780}$	1	\bigcirc	${ }_{0}$	${ }_{\$ 265593}$	\bigcirc	0	1	\bigcirc
3990	0	1	0	－	，	1．12\％	0	1	14810	1	0	0	5410290	0	0	1	0
3991	0	0	0	0	1	1．12\％	0	1	19426	0	1		\＄1580948	0	0		
3992 3993	\bigcirc	\bigcirc	0	\bigcirc	1	${ }_{\text {1．114\％}}^{1.12 \%}$	\bigcirc	1	87566 55321	${ }_{0}^{1}$	0	\bigcirc		\bigcirc	\bigcirc	1	0
3994	0	0	0	0	1	1．15\％	－	1	18295	0	1	0	5965429	0	0	1	0
3995	0	\bigcirc	0	\bigcirc	0	1．13\％		1	14810 2831	0	0	0	5490353 $\$ 502367$	0	0	1	0
3996 3997	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	（1．14\％	\bigcirc	1	28314 21600	\bigcirc	0	0	S542367 $\$ 555965$	\bigcirc	0	1	0
3998	0	1	0	0	0	1．15\％	－	1	21780	0	1	。	\＄1293185	。	0	1	0
3999	0	0	0	0	0	1．14\％	0	1	32670	0	0	0	\＄375 885	0	0	1	0
4000 4001	0	${ }_{0}^{1}$	\bigcirc	\bigcirc	\bigcirc	${ }^{1.1 .12 \%}$	0	1	108029 17860	\bigcirc	1	\bigcirc	\＄1549974	\bigcirc	0	1	\bigcirc
${ }_{4002}$	\bigcirc	\bigcirc	${ }_{0}$	\bigcirc	0	${ }^{1.17 \% \%} 1$	${ }_{0}$	1	${ }_{4}^{17860} 124$	0	${ }_{0}^{1}$	\bigcirc	\＄1051861	\bigcirc	\bigcirc	1	${ }_{0}$
4003	0	0	0	0		1．12\％	0	1	63598	1	0	0	\＄172654	0	0	1	0
4004	0	0	1	0	－	1．12\％	0	1	48787	0	1	0	\＄1838170	0	0	1	0
4005 4006	${ }_{0}^{1}$	0	${ }_{0}^{1}$	\bigcirc	1 1	${ }_{1}^{1.12 \% \%}$	0	1	66211 64469	${ }_{1}$	0	\bigcirc	5834411 S167 346	${ }_{0}$	${ }_{0}$	1	0
4007	0	0	0	0	1	${ }_{1.12 \%}^{1.14 \%}$	0	1	64469 3442	1	1	${ }_{0}^{0}$	\＄1579 533	${ }_{0}^{0}$	\bigcirc	1	${ }_{0}$
4008	0				1	1．13\％	0	1	76230			1	5831091	0		1	0
4009	0	0	0	1	0	1．15\％	0	1	53143 26136	0	1	0	¢ $\begin{aligned} & \$ 1420656 \\ & \$ 286074\end{aligned}$	0	0	1	0
${ }_{4011}$	\bigcirc	${ }_{0}$	\bigcirc	\bigcirc	1	${ }^{1.1 .14 \%}$	0	1	26136 65340	1	\bigcirc	0	S286074 $\$ 468197$	\bigcirc	0	${ }_{1}^{1}$	\bigcirc
4012	1	0	0		1	1．17\％		1	54452	0		0	\＄4688113	0		1	0
4013	0	0	0	0	1	1．13\％	0	1	${ }^{87120}$	1	0		\＄256886	0	0	1	
4014 4015	0	\bigcirc	\bigcirc	\bigcirc	1	${ }_{\substack{1.13 \% \\ 1.16 \%}}$	\bigcirc	1	117176 13504	0	\bigcirc	\bigcirc	S $\mathbf{5 1 2 9 3 9 3 9}$ S	${ }_{0}$	\bigcirc	1	\bigcirc
4016	0	0	0	0	1	${ }^{1.1 .16 \%}$	0	1	13504 9	${ }_{0}$	0	1	S12964 $\mathbf{S 4 0 9 6 9 3}$	${ }_{0}^{0}$	0	1	\bigcirc
4017	0	0	1	0	0	1．14\％	0	1	8276	1	0	0	\＄186220	0	0	1	0
4018	\bigcirc	0	。	0	0	${ }^{1.144 \%}$	－	1	5227 13504	1			S372592 $\$ 124787$	－	－	1	
4019 4020	\bigcirc	\bigcirc	\bigcirc	${ }_{1}^{0}$	\bigcirc	${ }^{1.1 .16 \%}$	0	1	13504 16553	1	0	\bigcirc	\＄\＄124787 $\$ 63054$	0	0	1	0
4021	0	1	0		0	1．18\％	0	1	5663	1	0	0	\＄114458	0	0	1	
4022	0	0	0	1	0	1．14\％	0	1	8276	－	1	0	\＄1053022	\bigcirc	\bigcirc	1	0
4023 4024	0	0	0	0	1	${ }_{\text {1．1．13\％}}^{1.15}$	0	1	10890 8712	\bigcirc	${ }_{0}^{1}$	\bigcirc	\＄1355996	${ }_{0}$	\bigcirc	1	0
${ }_{4025}$	${ }_{0}$	0	0	${ }_{0}$	${ }_{0}$	${ }_{1.14 \%}^{1.13 \%}$	0	1	8712 781	${ }_{0}$	0	\bigcirc	S44927 $\$ 106597$	${ }_{0}^{0}$	${ }_{0}$	1	${ }_{0}$
4026	0	0	－	0	0	1．1．16\％	0	1	8276	0	1	0	\＄974787	0	0	1	0
${ }_{4027}^{4028}$	\bigcirc	0	\bigcirc	\bigcirc	1	${ }^{1.1 .13 \%}$	\bigcirc	1	10454	${ }_{1}$	\bigcirc	\bigcirc	5513541 $\$ 137601$	\bigcirc	\bigcirc	1	0
4028 4029 4030	0	0	0	0	1	（	－	1	1148 1828 8276	1	0	0	（	－	－	1	－

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline observation \& PROPERTY DURESS \(=1\) \& LTV＿90\％ \& LTV 81\％－9\％ \& LTV 70\％．78\％ \& \[
\begin{gathered}
\text { LTV BELOW } \\
70 \%
\end{gathered}
\] \& total tax burden \& PARCEL IN SCEIP＝ 1 \& conventional LOAN \(=1\) \& Lot SIIE \& \[
\begin{gathered}
\text { SOLD } \\
\text { PRIOR_2000 }
\end{gathered}
\] \& sold during 2004＿2007 \& SOLD 2008－2012 \& \begin{tabular}{l}
PRICE ADJUST．To \\
2012
\end{tabular} \& \[
\begin{gathered}
\text { ZIP CODE } \\
\text { Z95403 }
\end{gathered}
\] \& \[
\begin{gathered}
\text { ZIP CODE } \\
95404
\end{gathered}
\] \& \[
\begin{gathered}
\text { ZIP CODE } \\
95472
\end{gathered}
\] \& \[
\begin{gathered}
\text { ZIP CODE } \\
94928
\end{gathered}
\] \\
\hline 4421 \& \({ }_{0}\) \& 1 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 0 \& 98446 \& 0 \& － \& 1 \& \＄499295 \& \& \& \& \\
\hline 4422 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 1 \& 10890 \& 0 \& 1 \& ， \& \＄1088 123 \& 0 \& 0 \& 1 \& 0 \\
\hline 4423 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．13\％ \& 0 \& 1 \& 21780 \& 0 \& 0 \& 1 \& 5488557 \& 0 \& 0 \& 1 \& 0 \\
\hline 4424 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．12\％ \& 0 \& 1 \& 11468 \& 0 \& 1 \& 0 \& \＄765 792 \& 0 \& 0 \& 1 \& 0 \\
\hline 4425 \& 0 \& 0 \& 1 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& 95832 \& 0 \& 1 \& 0 \& \＄1526230 \& 0 \& 0 \& 1 \& 0 \\
\hline 4426 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．11\％ \& 0 \& 1 \& 63162 \& 1 \& 0 \& 0 \& \＄113586 \& 0 \& 0 \& 1 \& 0 \\
\hline \({ }_{4}^{427}\) \& 0 \& 0 \& 0 \& 0 \& 1 \& \({ }^{1.118 \%}\) \& 0 \& 1 \& 16988 \& 0 \& 0 \& 1 \& \＄150616 \& 0 \& 0 \& 1 \& 0 \\
\hline 4428 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．13\％ \& 0 \& 1 \& 2099 \& 0 \& 0 \& 0 \& \＄231781 \& 0 \& 0 \& 1 \& 0 \\
\hline 4429 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．11\％ \& 0 \& 1 \& 28750 \& 0 \& 1 \& 0 \& \＄1115470 \& 0 \& 0 \& 1 \& 0 \\
\hline 4430 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．10\％ \& 0 \& 1 \& 31799 \& 0 \& 1 \& 0 \& \＄618881 \& 0 \& 0 \& 1 \& 0 \\
\hline \({ }_{4}^{431}\) \& 1 \& 0 \& 1 \& － \& 0 \& 1．13\％ \& － \& 1 \& \({ }^{43562}\) \& 0 \& 1 \& 0 \& \＄1124985 \& \& 0 \& 1 \& 0 \\
\hline \({ }_{4}^{4432}\) \& 0 \& 0 \& 0 \& 0 \& 0 \& \({ }^{1.11 \%}\) \& 0 \& 1 \& 27900
47045 \& 0 \& \({ }_{1}\) \& 1 \& \(\begin{array}{r}5472934 \\ \$ 93934 \\ \hline\end{array}\) \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \& \(\bigcirc\) \\
\hline 4433
4434 \& 0 \& 1 \& 0 \& 0 \& \(\bigcirc\) \& 1．11\％ \& \(\bigcirc\) \& 1 \& 47045 \& \({ }_{1}\) \& 1 \& 0 \& \＄939343 \& 0 \& 0 \& 1 \& \(\bigcirc\) \\
\hline 4435 \& 0 \& 0 \& 。 \& 0 \& O \& 1．09\％ \& 0 \& 1 \& \({ }_{199411}^{14995}\) \& \({ }_{0}^{1}\) \& \(\bigcirc\) \& 1 \& \& \(\bigcirc\) \& \({ }_{0}\) \& 1 \& 0 \\
\hline 4436 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 89298 \& 1 \& 0 \& 0 \& \＄111750 \& 0 \& 0 \& 1 \& 0 \\
\hline 4437 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．16\％ \& 0 \& 1 \& 44867 \& 1 \& 0 \& 0 \& \＄150 565 \& \& 0 \& 1 \& 0 \\
\hline 4438 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．17\％ \& 0 \& 1 \& 91040 \& 1 \& 0 \& 0 \& \＄60371 \& 0 \& 0 \& 1 \& 0 \\
\hline 4439 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．09\％ \& 0 \& 1 \& 176418 \& 0 \& 0 \& 0 \& \({ }_{\$ 542367}\) \& 0 \& 0 \& 1 \& 0 \\
\hline 4440 \& 0 \& 1 \& 0 \& 0 \& 0 \& \({ }^{1.12 \%}\) \& 0 \& 1 \& 26062 \& 0 \& 0 \& 0 \& \＄577 126 \& 0 \& 0 \& 1 \& 0 \\
\hline 4441 \& 0 \& 0 \& 1 \& 0 \& \& 1．15\％ \& 0 \& 1 \& 17424 \& 1 \& 0 \& 0 \& \＄64619 \& 0 \& 0 \& 1 \& 0 \\
\hline 4442 \& 0 \& 1 \& 0 \& 0 \& － \& \({ }^{1.11 \%}\) \& 0 \& 1 \& 54450 \& 0 \& 1 \& 0 \& \＄1082403 \& 0 \& 0 \& 1 \& 0 \\
\hline 4443
4444 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }_{1}^{1}\) \& \({ }_{1}^{1.112 \%}\) \& \(\bigcirc\) \& 1 \& 89298
85813 \& 0
1 \& \(\bigcirc\) \& \(\bigcirc\) \& 5769501
S149 169 \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \& \(\bigcirc\) \\
\hline 4445 \& \& 0 \& 1 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 43560 \& 1 \& － \& 0 \& \＄197526 \& 0 \& 0 \& 1 \& 0 \\
\hline 4446 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& \({ }^{43560}\) \& 1 \& 0 \& 0 \& \＄212490 \& 0 \& 0 \& 1 \& 0 \\
\hline 4447 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& 43560 \& 0 \& 1 \& 0 \& \＄943593 \& 0 \& 0 \& 1 \& 0 \\
\hline 4448 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& 43560 \& 0 \& 0 \& 0 \& \＄506698 \& 0 \& 0 \& 1 \& 0 \\
\hline 4449 \& － \& 0 \& 0 \& 0 \& 1 \& 1．13\％ \& 0 \& 1 \& 20909 \& 1 \& 0 \& 0 \& \＄115 682 \& 0 \& 0 \& 1 \& 0 \\
\hline 4450
4451 \& \(\bigcirc\) \& 0 \& 0 \& 0 \& 1 \& 1．11\％ \& 0 \& 1 \& 13939
1359 \& 0 \& 0 \& \(\bigcirc\) \& 5397731
\(\$ 43898\) \& 0 \& 0 \& 1 \& 0 \\
\hline 4451 \& 0 \& 0 \& 1 \& 0 \& 0 \& \({ }^{1.1 .13 \%}\) \& 0 \& 1 \& \begin{tabular}{l}
13504 \\
11568 \\
\hline 1
\end{tabular} \& 0 \& 0 \& 0 \& \begin{tabular}{l}
S438698 \\
\(\$ 35548\) \\
\hline
\end{tabular} \& 0 \& 0 \& 1 \& \(\bigcirc\) \\
\hline 4452
4453 \& \(\bigcirc\) \& 0 \& 1 \& \(\bigcirc\) \& \({ }_{0}^{1}\) \& \({ }_{\substack{1.12 \% \\ 1.12 \%}}^{1.18}\) \& \({ }_{0}\) \& 1 \& 12688
13100 \& \(\bigcirc\) \& \(\bigcirc\) \& 0 \& \＄465548
\(\mathbf{5} 52239\) \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \& \(\bigcirc\) \\
\hline 4454 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．13\％ \& 0 \& 1 \& 13068 \& 。 \& 0 \& 1 \& \＄345000 \& 0 \& － \& 1 \& 。 \\
\hline 4455 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& 9720 \& 0 \& 0 \& 0 \& \＄487351 \& 0 \& 0 \& 1 \& 0 \\
\hline 4456
4457 \& 0 \& \({ }_{0}^{1}\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& －\({ }_{\text {1．1．10\％}}^{1.10 \%}\) \& 0 \& 1 \& 9583
21344 \& \(\bigcirc\) \& 1 \& \(\bigcirc\) \& 5966988
\(\$ 962309\) \& 0 \& \(\bigcirc\) \& 1 \& \(\bigcirc\) \\
\hline 4458 \& 。 \& 0 \& 1 \& 0 \& 0 \& 1．12\％ \& \& 1 \& \({ }_{43560}^{2104}\) \& 1 \& 1 \& 0 \& （ \& 0 \& \& 1 \& 0 \\
\hline 4459 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．12\％ \& 0 \& 1 \& 80586 \& 0 \& 0 \& 0 \& \＄546933 \& 0 \& 0 \& 1 \& 0 \\
\hline 4460 \& － \& 0 \& 0 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& 20473 \& 0 \& 1 \& 0 \& \＄168778 \& 0 \& 0 \& 1 \& 0 \\
\hline 4461 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．11\％ \& 0 \& 1 \& 126324 \& 1 \& 0 \& 0 \& \＄205 899 \& 0 \& 0 \& 1 \& 0 \\
\hline \({ }_{4}^{462}\) \& 0 \& 0 \& 0 \& 0 \& 1 \& \({ }^{1.12 \%}\) \& 0 \& 1 \& \({ }^{36590}\) \& 1 \& 0 \& 0 \& \＄151718 \& 0 \& 0 \& 1 \& 0 \\
\hline 4463
4464 \& 0 \& \(\bigcirc\) \& 0 \& 0 \& \(\bigcirc\) \& 1．14\％ \& 0 \& 1 \& 27007
86299 \& \(\bigcirc\) \& 1 \& \({ }_{1}\) \& 5419350
\(\$ 576174\) \& 0 \& \(\bigcirc\) \& 1 \& \(\bigcirc\) \\
\hline 4465 \& \& 1 \& 0 \& \({ }_{0}\) \& 0 \& \({ }_{1.11 \%}^{1.14 \%}\) \& － \& 1 \& \({ }_{43560}\) \& － \& 0 \& \({ }_{0}\) \& \＄293434 \& 0 \& － \& 1 \& 0 \\
\hline 4466 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．15\％ \& 0 \& 1 \& 16988 \& 1 \& 0 \& 0 \& 560371 \& 0 \& 0 \& 1 \& 0 \\
\hline 4467 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．18\％ \& 0 \& 1 \& 17424 \& 0 \& 0 \& 1 \& 5410679 \& \& 0 \& 1 \& 0 \\
\hline 4468
4469 \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \& \({ }^{1.111 \%}\) \& \(\bigcirc\) \& 1 \& 36590
41382 \& 0 \& \(\bigcirc\) \& \({ }_{1}^{1}\) \& \(\begin{array}{r}5472089 \\ 556094 \\ \hline\end{array}\) \& 0 \& \(\bigcirc\) \& 1 \& \(\bigcirc\) \\
\hline 4470 \& 0 \& 0 \& 。 \& 0 \& 0 \& 1．14\％ \& 0 \& 1 \& 87120 \& 1 \& 0 \& \％ \& \＄222084 \& \& 0 \& 1 \& 0 \\
\hline 4471 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．10\％ \& 0 \& 1 \& 176418 \& 0 \& 1 \& 0 \& \＄1931225 \& 0 \& 0 \& 1 \& 0 \\
\hline 4472 \& 0 \& 0 \& 1 \& 0 \& 0 \& 1．09\％ \& 0 \& 1 \& 72310 \& 0 \& 0 \& 1 \& 5692570 \& 0 \& 0 \& 1 \& 0 \\
\hline 4473 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．11\％ \& 0 \& 1 \& 72310 \& 0 \& 0 \& 0 \& 584039 \& 0 \& 0 \& 1 \& 0 \\
\hline 4474 \& 0 \& － \& 0 \& 0 \& 1 \& 1．10\％ \& 0 \& 1 \& 72310 \& 0 \& 0 \& 1 \& \＄554013 \& 0 \& 0 \& 1 \& 0 \\
\hline 4475 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．10\％ \& 0 \& 1 \& 28750
17850 \& 0 \& 0 \& 1 \& 5853180
\(\$ 127263\) \& － \& 0 \& 1 \& 0 \\
\hline 4476
4477 \& \(\bigcirc\) \& \({ }_{1}^{0}\) \& \(\bigcirc\) \& \({ }_{0}\) \& \({ }_{0}^{1}\) \& \({ }_{\text {1．12\％}}^{1.10 \%}\) \& \(\bigcirc\) \& 1 \& 17860
17860 \& \({ }_{1}\) \& 0 \& \(\bigcirc\) \& \(\$ 1272863\)
\(\$ 191218\) \& \(\bigcirc\) \& 0 \& 1 \& \(\bigcirc\) \\
\hline 4478 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& 17860 \& 0 \& \& 。 \& \＄285554 \& 0 \& 0 \& 1 \& 。 \\
\hline 4479 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& 17860 \& 0 \& 1 \& 0 \& 5838699 \& \& 0 \& 1 \& 0 \\
\hline 4480
4481 \& 0 \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \& 1 \& － \& \(\bigcirc\) \& 1 \& 276170
41818 \& \(\bigcirc\) \& \({ }_{0}^{1}\) \& 0 \& \(\$ 1967488\)
\(\$ 699898\) \& 0 \& 0 \& 1 \& \(\bigcirc\) \\
\hline 4482 \& \& 0 \& \& \& 0 \& 1．12\％ \& 0 \& 1 \& 53143 \& 0 \& 0 \& 0 \& \＄375485 \& － \& 0 \& 1 \& 0 \\
\hline 4483 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．10\％ \& 0 \& 1 \& 36155 \& 0 \& 0 \& 1 \& \＄581714 \& 0 \& 0 \& 1 \& 0 \\
\hline 4484 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．13\％ \& 0 \& 1 \& 96268 \& 0 \& 0 \& 1 \& 5409693 \& 0 \& 0 \& 1 \& 0 \\
\hline 4485 \& \& 1 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 125453 \& 0 \& 0 \& 0 \& 5801564 \& 0 \& \& 1 \& 0 \\
\hline 4486 \& 0 \& 0 \& 0 \& 0 \& 0 \& \({ }^{1.12 \%}\) \& 0 \& 1 \& 28314 \& 0 \& 1 \& 0 \& 5838699
\(\$ 2599\) \& 0 \& 0 \& 1 \& 0 \\
\hline 4487
4488 \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }_{1}^{0}\) \& \({ }_{0}^{1}\) \& 1．1．12\％ \& 0 \& 1 \& 212137
23453 \& 1 \& \(\stackrel{0}{0}\) \& \(\bigcirc\) \& \(\$ 250691\)
\(\$ 20366\) \& \(\bigcirc\) \& 0 \& 1 \& \(\bigcirc\) \\
\hline 4489 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．10\％ \& 0 \& 1 \& 160736 \& 0 \& 0 \& 0 \& \＄1026002 \& 0 \& 0 \& 1 \& 0 \\
\hline 4490 \& \& 1 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 1 \& \({ }^{65776}\) \& 1 \& 0 \& 0 \& \＄109737 \& \& 0 \& 1 \& \(\bigcirc\) \\
\hline 4491
4492 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }_{0}\) \& \(\bigcirc\) \& \({ }^{1.1 .13 \%}\) \& 0 \& 1 \& 115870
14810 \& 1 \& \({ }_{0}\) \& \(\bigcirc\) \& S192205
\(\$ 76107\) \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \& \(\bigcirc\) \\
\hline 4493 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．13\％ \& 0 \& 1 \& 65340 \& 0 \& 0 \& 0 \& \＄52961 \& 0 \& 0 \& 1 \& 0 \\
\hline 4494 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．14\％ \& 0 \& 1 \& \({ }^{39206}\) \& 0 \& 1 \& 0 \& 576233

S062259 \& \& 0 \& 1 \& 0

\hline 4495 \& \& 0 \& 0 \& \& 0 \& 1．11\％ \& 0 \& 1 \& 24829 \& 0 \& 1 \& 0 \& \＄1062 259 \& 0 \& 0 \& 1 \& 0

\hline 4496 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& ${ }^{40} 075$ \& 0 \& 1 \& 0 \& \＄1034955 \& 0 \& \& 1 \& 0

\hline 4499
4488 \& \bigcirc \& ${ }_{1}$ \& 0 \& \bigcirc \& \bigcirc \& ${ }_{\text {l }}^{1.1 .12 \%}$ \& 0 \& 1 \& 21780
52788 \& 1 \& ${ }_{0}$ \& ${ }_{0}$ \& \& ${ }_{0}$ \& \bigcirc \& 1 \& \bigcirc

\hline 4499 \& \& 0 \& 0 \& 0 \& 0 \& 1．11\％ \& O \& 1 \& 5272 \& 0 \& 1 \& 0 \& \＄1293185 \& 0 \& 0 \& 1 \& 0

\hline 4500 \& 0 \& 0 \& 0 \& 0 \& 1 \& ${ }^{1.12 \%}$ \& 0 \& 1 \& ${ }^{61855}$ \& 1 \& 0 \& 0 \& 5232110 \& \& 0 \& 1 \& 0

\hline 4501 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．11\％ \& 0 \& 1 \& 108900 \& － \& 0 \& 1 \& 5498612 \& 0 \& 0 \& 1 \& 0

\hline 4502 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．10\％ \& 0 \& 1 \& 106286 \& 0 \& 0 \& 0 \& \＄897752 \& 0 \& \& 1 \& －

\hline 4503
4504 \& \bigcirc \& ${ }_{1}$ \& \bigcirc \& ${ }_{0}^{1}$ \& 0 \& ${ }_{\text {l }}^{\text {1．11\％}}$ \& \bigcirc \& 1 \& 76666
19584 \& ${ }_{0}^{1}$ \& ${ }_{1}$ \& 0 \& ${ }_{\text {\＄1394979 }}^{\text {S }}$ \& \bigcirc \& \bigcirc \& 1 \& \bigcirc

\hline 4505 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．09\％ \& 0 \& 1 \& 216929 \& 1 \& 0 \& \& \＄275621 \& \& 0 \& 1 \& 0

\hline 4506 \& 0 \& 0 \& 0 \& 0 \& 1 \& ${ }^{1.111 \%}$ \& 0 \& 1 \& 72310 \& 0 \& 1 \& 0 \& \＄7798299 \& 0 \& 0 \& 1 \&

\hline 4507
4508 \& 1 \& ${ }_{0}^{1}$ \& 0 \& 0 \& 0 \& 1．13\％ \& 0 \& 1 \& 27443
137214 \& 0 \& 1 \& 0 \& S622 304
$\$ 14635$ \& 0 \& 0 \& 1 \& 0

\hline 4508
4509 \& ${ }_{0}$ \& ${ }_{0}$ \& 0 \& 1 \& 1 \& ${ }_{1}^{1.11 \%}$ \& ${ }_{0}$ \& 1 \& ${ }_{36590}^{13724}$ \& 1 \& ${ }_{0}$ \& ${ }_{0}$ \& （10 \& 0 \& ${ }_{0}$ \& 1 \& \bigcirc

\hline 4510 \& 0 \& 1 \& － \& 0 \& 0 \& 1．13\％ \& 0 \& 1 \& 32670 \& 0 \& 1 \& 0 \& \＄850 014 \& 0 \& 0 \& 1 \& 0

\hline 4511 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．09\％ \& 0 \& 1 \& | 148975 |
| :--- |
| 15574 |
| 18129 | \& 0 \& 1 \& 0 \& \＄1978099 \& 0 \& 0 \& 1 \&

\hline ${ }_{4512}^{4512}$ \& ${ }_{0}$ \& \bigcirc \& \bigcirc \& ${ }_{0}$ \& 1 \& （1．30\％ \& ${ }_{0}$ \& 1 \& 155074
114127 \& 1 \& ${ }_{0}$ \& ${ }_{0}$ \& \＄235479
$\$ 91003$ \& 0 \& 0 \& 1 \& \bigcirc

\hline 4514 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．11\％ \& － \& 1 \& 215622 \& 0 \& 1 \& 。 \& \＄1383854 \& － \& 0 \& 1 \& 0

\hline 4515 \& 0 \& 0 \& － \& 0 \& 0 \& 1．12\％ \& － \& 1 \& 65340 \& 0 \& 1 \& 0 \& \＄1416037 \& 0 \& 0 \& 1 \& 0

\hline 4516
4517 \& 0 \& \bigcirc \& \bigcirc \& ${ }_{0}^{1}$ \& ${ }_{1}$ \& 1.11%
1.91%
1 \& ${ }_{1}$ \& 1 \& 65340
106286 \& ${ }_{0}^{1}$ \& 0 \& 0 \& 5233376
S565093 \& 0 \& 0 \& 1 \& 0

\hline 4518 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．11\％ \& 0 \& 1 \& 43560 \& 0 \& 1 \& 0 \& \＄1154147 \& 0 \& 0 \& 1 \& 0

\hline 4519 \& 0 \& 0 \& － \& 0 \& 0 \& 1．13\％ \& － \& 1 \& 16988 \& 0 \& － \& 1 \& \＄261067 \& － \& 0 \& 1 \& 0

\hline 4520 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．116\％ \& 0 \& 0 \& 192100 \& 1 \& ， \& 0 \& \＄283 117 \& 0 \& 0 \& 1 \& 0

\hline ${ }_{4522}$ \& \bigcirc \& ${ }_{0}^{1}$ \& ${ }_{0}$ \& ${ }_{1}$ \& ${ }_{0}$ \& （1．1．18\％ \& ${ }_{0}$ \& 1 \& 22200
7884 \& ${ }_{0}$ \& ${ }_{0}^{1}$ \& 0 \& ${ }_{\substack{\text { ¢ }}}^{511107683}$ \& 0 \& ${ }_{0}$ \& 1 \& \bigcirc

\hline 4523 \& 0 \& \& 0 \& 0 \& 1 \& 1．11\％ \& 0 \& 1 \& 130680 \& 1 \& 0 \& 0 \& S225848 \& 0 \& 0 \& \& 0

\hline 4524 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．48\％ \& 0 \& 1 \& 187744 \& 1 \& － \& 0 \& \＄179569 \& 0 \& 0 \& 1 \& 0

\hline 4525
4526 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．09\％ \& 0 \& 1 \& 88427
200376 \& 1 \& 0 \& \& \＄777069 \& 0 \& 0 \& 1 \& \bigcirc

\hline ${ }_{4527}$ \& 0 \& 1 \& 0 \& ${ }_{0}$ \& ${ }_{0}$ \& ${ }_{1.10 \%}^{1.12 \%}$ \& 0 \& 1 \& ${ }_{132}^{200376}$ \& 1 \& 0 \& 0 \& \& \bigcirc \& 0 \& 1 \& \bigcirc

\hline 4528 \& 0 \& \& 0 \& 0 \& 1 \& 1．10\％ \& 0 \& 1 \& 67954 \& \& 0 \& 0 \& S649411 \& 0 \& 0 \& 1 \& 0

\hline 4529 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．10\％ \& 0 \& 1 \& ${ }^{205168}$ \& 0 \& 1 \& 0 \& \＄1388096 \& 0 \& 0 \& 1 \&

\hline 4530
4531 \& 0 \& 0 \& 0 \& 0 \& 1 \& －${ }_{\text {1．1．0\％}}^{1.09}$ \& 0 \& ${ }_{1}^{1}$ \& 102366
177725 \& 0 \& ${ }_{0}^{1}$ \& 0 \& \＄2 141144
$\$ 410290$ \& 0 \& 0 \& 1 \& 0

\hline 4532 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．76\％ \& 1 \& 1 \& 152460 \& 0 \& 1 \& 0 \& \＄2296845 \& － \& 0 \& 1 \& 0

\hline 4533 \& \& 0 \& 0 \& \& 1 \& 1．12\％ \& 0 \& 1 \& 139392 \& 0 \& 0 \& 0 \& 5480149 \& 0 \& 0 \& 1 \& 0

\hline 4534 \& 0 \& \& 0 \& 0 \& 0 \& ${ }^{1.12 \%}$ \& 0 \& 1 \& 174240 \& 1 \& 0 \& 0 \& \＄129295 \& 0 \& 0 \& 1 \& 0

\hline 4535
4536 \& \bigcirc \& 0 \& 0 \& 1 \& \bigcirc \& 1．12\％ \& 0 \& 1 \& 89298
29621 \& ${ }_{1}$ \& \bigcirc \& ${ }_{0}^{1}$ \& \＄620035
$\$ 286074$ \& 0 \& \bigcirc \& 1
1 \& \bigcirc

\hline 4537 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．09\％ \& 0 \& 1 \& 55321 \& \& 1 \& 0 \& \＄1690377 \& 0 \& 0 \& 1 \& 0

\hline 4538 \& 0 \& 1 \& 0 \& 0 \& \& 1．09\％ \& \& 1 \& 55757 \& \& 0 \& 0 \& 5865689 \& 0 \& 0 \& 1 \& 0

\hline 4539
4540 \& 0 \& ${ }_{1}$ \& 0 \& 0 \& ${ }_{0}^{1}$ \& 1．120\％ \& 0 \& 1 \& 57499
116305 \& 0 \& ${ }_{0}^{1}$ \& 0 \& $\$ 1678103$
$\$ 561182$ \& 0 \& 0 \& 1 \& 0

\hline 4541 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．80\％ \& 1 \& \& 65776 \& 1 \& 0 \& 0 \& \＄226789 \& 0 \& 0 \& 1 \& 0

\hline 4542
4543 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．09\％ \& 0 \& 1 \& ${ }_{5}^{65776}$ \& － \& 0 \& 0 \& $\begin{array}{r}5874667 \\ \$ 801554 \\ \hline\end{array}$ \& 0 \& 0 \& 1 \&

\hline 4543
4544 \& \& 1 \& 0 \& ， \& 1 \& ${ }^{1.09 \%}$ \& 0 \& 1 \& 55321
108900 \& 0 \& 0 \& 0 \& \＄801564 \& 0 \& 0 \& 1 \& 0

\hline 4544
4545 \& 0 \& 0 \& 0 \& 0 \& 1 \& ${ }_{\text {line }}^{1.11 \% \%}$ \& 0 \& 1 \& 108900
62726 \& 1 \& \bigcirc \& \bigcirc \& \＄100575
$\$ 15214$ \& \bigcirc \& \bigcirc \& 1 \& \bigcirc

\hline 4546 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 21780 \& 0 \& 1 \& 0 \& 5467898 \& 0 \& 0 \& 1 \& 0

\hline 4547
4548 \& \bigcirc \& 0 \& 0 \& 0 \& \bigcirc \& ${ }_{\text {c }}^{1.120 \%}$ \& 0 \& 1 \& 84071
167706 \& ${ }_{1}$ \& \bigcirc \& 1 \& 5795975
S166268 \& 0 \& 0 \& 1 \& \bigcirc

\hline 4548
4549
4550 \& \bigcirc \& 0 \& 0 \& 1 \& \bigcirc \& 1．12\％
1．14\％
1.10% \& 0 \& 1 \& 167706
25700
30056 \& 1 \& － \& 0
0
0 \& \＄166268
$\$ 13168$
S841122 \& \bigcirc \& \bigcirc \& 1 \& \bigcirc

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline observation \& PROPERTY DURESS \(=1\) \& LTV＿9\％ \& LTV 81\％－90\％ \& LTV 70\％－78\％ \& \begin{tabular}{l}
Ltv below \\
70\％
\end{tabular} \& \begin{tabular}{l}
totaltax \\
burden
\end{tabular} \& parcelin SCEIP \(=1\) \& CONVENTIONAL \& Lot SIIE \& sold PRIOR 2000 \& SOLD DURING \& SOLD 2008－2012 \& PRICE ADJUST．TO \& \begin{tabular}{l}
ZIP CODE \\
295403
\end{tabular} \& \begin{tabular}{l}
ZIP CODE \\
95404
\end{tabular} \& ZIP CODE
\[
95472
\] \& \begin{tabular}{l}
ZIP CODE \\
94928
\end{tabular} \\
\hline 4551 \& \({ }_{0}\) \& 0 \& 1 \& 0 \& 0 \& 1．13\％ \& \& \& 30056 \& \& － \& 0 \& S105883 \& 0 \& \& \& \\
\hline 4552 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．12\％ \& 。 \& 1 \& 37897 \& 0 \& 0 \& 1 \& \＄447736 \& 0 \& 0 \& 1 \& 0 \\
\hline 4553 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．13\％ \& 0 \& 1 \& 37897 \& － \& 0 \& 0 \& 5381386 \& 0 \& 0 \& 1 \& 0 \\
\hline 4554 \& 0 \& 0 \& 0 \& \& 0 \& 1．10\％ \& 0 \& 1 \& 105415 \& 1 \& 0 \& 0 \& \＄289838 \& 0 \& 0 \& 1 \& 0 \\
\hline 4555 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．10\％ \& 0 \& 1 \& 216929 \& 0 \& 1 \& 0 \& 5990383 \& 0 \& 0 \& 1 \& 0 \\
\hline 4556 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．10\％ \& 0 \& 1 \& 48352 \& 0 \& 0 \& 0 \& 556962 \& 0 \& 0 \& 1 \& 0 \\
\hline 4557 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．09\％ \& 0 \& 1 \& 55757 \& 0 \& 1 \& 0 \& \＄1277360 \& 0 \& 0 \& 1 \& 0 \\
\hline 4558 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．13\％ \& 0 \& 1 \& 44867 \& 1 \& 0 \& 0 \& \＄219473 \& 0 \& 0 \& 1 \& 0 \\
\hline 4559 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．27\％ \& 0 \& \& 44867 \& \& 0 \& \& 5461888 \& 0 \& 0 \& 1 \& 0 \\
\hline 4560 \& 0 \& 1 \& 0 \& 0 \& 0 \& \({ }^{1.10 \%}\) \& 0 \& 1 \& 44867 \& 0 \& 1 \& 0 \& \＄1076164 \& 0 \& 0 \& 1 \& 0 \\
\hline 4561 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．10\％ \& \& 1 \& 187308 \& 1 \& \& 0 \& 5248438 \& \& 0 \& 1 \& 0 \\
\hline 4562 \& 0 \& 0 \& 0 \& 0 \& 1 \& \({ }_{\text {1．10\％}}\) \& 0 \& 1 \& \(\begin{array}{r}74052 \\ \hline 14563\end{array}\) \& 1 \& 0 \& 1 \& \＄569089 \& 0 \& 0 \& 1 \& 0 \\
\hline 4564 \& 0 \& \& 0 \& 0 \& 0 \& 1．09\％ \& \({ }_{0}\) \& 1 \& 179032 \& \({ }_{0}\) \& 1 \& 0 \& \＄ 518012121 \& 。 \& 。 \& 1 \& \(\bigcirc\) \\
\hline 4565 \& 0 \& 0 \& \& \& 1 \& 1．11\％ \& 0 \& 1 \& 179032 \& 1 \& 0 \& 0 \& S198525 \& 。 \& 0 \& 1 \& 0 \\
\hline 4566 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．10\％ \& 0 \& 1 \& 179032 \& 1 \& 0 \& 0 \& \＄214934 \& 0 \& 0 \& 1 \& 0 \\
\hline 4567 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．10\％ \& 0 \& 1 \& 206910 \& 0 \& 0 \& 0 \& \＄800249 \& 。 \& 。 \& 1 \& 0 \\
\hline 4568 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．10\％ \& 0 \& 1 \& 108900 \& 0 \& 0 \& 0 \& \＄548393 \& 0 \& 。 \& 1 \& 0 \\
\hline 4569 \& 0 \& 0 \& \& 0 \& 1 \& \({ }^{1.111 \%}\) \& 0 \& 1 \& 108464 \& 0 \& 0 \& 0 \& \＄863578 \& 0 \& 0 \& 1 \& 0 \\
\hline 4570 \& 0 \& 0 \& 0 \& \& 0 \& 1．11\％ \& 0 \& 1 \& 21780 \& 1 \& 0 \& \& \＄149822 \& 0 \& 0 \& 1 \& 0 \\
\hline 4571 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．12\％ \& 0 \& 1 \& 43560 \& 1 \& 0 \& 0 \& \＄88991 \& 0 \& 0 \& 1 \& \\
\hline 4572 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．10\％ \& 0 \& 1 \& 43560 \& 0 \& 0 \& 1 \& 5612039 \& 0 \& 0 \& 1 \& 0 \\
\hline 4573
4574 \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }_{0}^{1}\) \& \(\bigcirc\) \& 1 \& －\({ }_{\text {1．1．0\％}}\) \& \(\bigcirc\) \& 1 \& 58370
35284 \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }_{0}^{1}\) \& S440 000
\(\$ 441318\) \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }_{1}^{1}\) \& 0 \\
\hline 4575 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．07\％ \& 0 \& 1 \& 416434 \& 0 \& 1 \& 0 \& \＄1596159 \& 0 \& 0 \& 1 \& 0 \\
\hline 4576 \& 0 \& 0 \& 0 \& \& 1 \& 1．07\％ \& 0 \& 1 \& 16553 \& 1 \& 0 \& 0 \& \＄125698 \& － \& － \& 1 \& 0 \\
\hline 4577 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．07\％ \& 0 \& 1 \& 77537 \& 0 \& 0 \& 1 \& \＄354338 \& 0 \& 0 \& 1 \& 0 \\
\hline 4578 \& 0 \& 1 \& 0 \& 0 \& － \& 1．06\％ \& 0 \& 1 \& 435600 \& 0 \& 0 \& 1 \& \＄1172892 \& 0 \& 0 \& 1 \& 0 \\
\hline 4579 \& 0 \& \& － \& 1 \& 0 \& 1．07\％ \& 0 \& 1 \& 431680 \& 1 \& 0 \& ， \& \＄232775 \& 0 \& 0 \& 1 \& 0 \\
\hline 4580 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．19\％ \& 0 \& 1 \& 19320 \& 0 \& 0 \& 1 \& \＄232685 \& 0 \& 0 \& 1 \& － \\
\hline \({ }_{4}^{4581}\) \& 0 \& 0 \& \& 0 \& 0 \& 1．37\％ \& 0 \& 1 \& \({ }_{4}^{436} 036\) \& 1 \& 0 \& 0 \& \＄147790 \& 0 \& 0 \& 1 \& 0 \\
\hline 4582
4583 \& \(\bigcirc\) \& \({ }_{0}^{1}\) \& \({ }_{0}\) \& \({ }_{1}^{0}\) \& \(\bigcirc\) \& 1．09\％ \& \({ }_{0}\) \& 1 \& 661676
88427 \& \(\bigcirc\) \& \({ }_{0}\) \& \({ }_{1}^{0}\) \& \＄886607 \& 0 \& 0 \& 1 \& 0 \\
\hline 4584 \& 0 \& － \& 0 \& \& 1 \& 1．07\％ \& 0 \& 1 \& 26136 \& 1 \& 0 \& 0 \& \＄117204 \& 。 \& 。 \& 1 \& 0 \\
\hline 4585 \& 0 \& 0 \& － \& 0 \& 1 \& 1．07\％ \& 0 \& 1 \& 140263 \& 1 \& 0 \& 0 \& \＄134 100 \& 0 \& 0 \& 1 \& 0 \\
\hline 4586 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．06\％ \& 0 \& 1 \& 151153 \& \& 0 \& 1 \& 5789208 \& 0 \& 0 \& 1 \& 0 \\
\hline 4587
4588
4 \& 0 \& 0 \& 0 \& 1 \& 0 \& \({ }^{1.07 \%}\) \& 0 \& 1 \& －622037 \& 0 \& 1 \& 0 \& \({ }_{\text {S3 }} 5602443\) \& 0 \& 0 \& 1 \& － \\
\hline 4588
4589 \& \(\bigcirc\) \& 0 \& \({ }_{0}\) \& \(\bigcirc\) \& \(\bigcirc\) \& － \& \(\bigcirc\) \& 1 \& 87991
152460 \& 1 \& 0 \& \(\bigcirc\) \& \＄96146 \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \& 0 \\
\hline 4590 \& \& 1 \& － \& \& 0 \& 1．13\％ \& 0 \& 1 \& \({ }_{95832}\) \& 1 \& 0 \& 。 \& \({ }_{\text {S22 } 585}\) \& 。 \& 。 \& 1 \& － \\
\hline 4591 \& － \& \& 0 \& 1 \& \& 1．14\％ \& 0 \& 1 \& 40075 \& 1 \& 0 \& 0 \& \＄154304 \& 0 \& 0 \& 1 \& 0 \\
\hline 4592 \& 0 \& 0 \& \& 1 \& 0 \& 1．10\％ \& 0 \& 1 \& 90169 \& \& 0 \& 1 \& \＄836560 \& 0 \& 0 \& 1 \& 0 \\
\hline 4593 \& 0 \& 0 \& 0 \& 1 \& 0 \& \({ }^{1.12 \%}\) \& 0 \& 1 \& 29621 \& 0 \& 1 \& 0 \& \({ }_{5662855}\) \& 0 \& 0 \& 1 \& 0 \\
\hline 4594
4595 \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }_{0}^{0}\) \& \(\bigcirc\) \& 1 \& \({ }_{\text {l }}^{1.118 \%}\) \& 0 \& 1 \& 43560
247421 \& \({ }_{1}^{0}\) \& 0 \& \(\bigcirc\) \& 5648986
\(\$ 71551\) \& \(\bigcirc\) \& 0 \& 1 \& 0 \\
\hline 4596 \& 0 \& 0 \& 0 \& － \& 1 \& 1．11\％ \& 0 \& 1 \& 1307 \& 0 \& 0 \& 0 \& \＄750264 \& 。 \& 0 \& \& 0 \\
\hline 4597 \& 0 \& \& 0 \& 0 \& \& 1．07\％ \& 0 \& 1 \& 217800 \& 1 \& 0 \& 0 \& \＄204769 \& 0 \& 0 \& 1 \& 0 \\
\hline 4598 \& 0 \& 0 \& 0 \& 0 \& 0 \& \({ }^{1.144 \%}\) \& 0 \& 1 \& \({ }^{43560}\) \& \& 0 \& 0 \& 594103 \& 0 \& 0 \& 1 \& 0 \\
\hline 4599 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．15\％ \& 0 \& 1 \& 87120
73560 \& 0 \& 0 \& 0 \& \(\begin{array}{r}\text { S320 } 26 \\ \$ 10626 \\ \hline\end{array}\) \& 0 \& 0 \& 1 \& 0 \\
\hline 4600
4601 \& \(\bigcirc\) \& 0 \& 。 \& \({ }_{0}^{1}\) \& 0 \& －\({ }_{\text {1．1．13\％}}^{1.10}\) \& 0 \& 1 \& 43560
156816 \& \({ }_{0}^{1}\) \& 0 \& \(\bigcirc\) \& \＄106 163
\(\$ 424305\) \& \(\bigcirc\) \& 0 \& 1 \& \(\bigcirc\) \\
\hline 4602 \& O \& 1 \& 0 \& 0 \& 0 \& 1．09\％ \& 0 \& 1 \& 11761 \& 0 \& 0 \& 1 \& \＄150616 \& 0 \& 0 \& 1 \& 0 \\
\hline 4603 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 47880 \& 1 \& 0 \& 0 \& \＄151636 \& 0 \& 0 \& 1 \& 0 \\
\hline 4604 \& 0 \& \& \& 0 \& 0 \& 1．10\％ \& 0 \& 1 \& 237402 \& 0 \& 1 \& 0 \& \＄1247 727 \& 。 \& － \& 1 \& 0 \\
\hline 4605 \& 0 \& 0 \& 0 \& － \& 1 \& \({ }^{1.11 \%}\) \& 0 \& 1 \& \({ }_{2}^{228254}\) \& 1 \& 0 \& 0 \& \＄222134 \& 0 \& 0 \& 1 \& 0 \\
\hline 4606
4607 \& 0 \& \(\bigcirc\) \& \({ }_{1}^{0}\) \& \(\bigcirc\) \& 0 \& －\({ }_{\text {1．12\％}}^{1.12 \%}\) \& 0 \& 1 \& 43966
46609 \& 1 \& 0 \& \(\bigcirc\) \& \＄259 725
\(\$ 190875\) \& 0 \& 0 \& 1 \& \(\bigcirc\) \\
\hline 4608 \& 0 \& 0 \& 0 \& － \& 0 \& 1．10\％ \& 0 \& 1 \& 43560 \& 0 \& 0 \& 0 \& \＄679 726 \& 。 \& 0 \& ， \& 。 \\
\hline 4699 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．10\％ \& 0 \& 1 \& 28749 \& 0 \& 1 \& 0 \& 5857812 \& 0 \& 0 \& 1 \& 0 \\
\hline \({ }_{4611}^{4610}\) \& \(\bigcirc\) \& \({ }_{1}\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& － \(1.70 \%\) \& \({ }_{0}^{1}\) \& 1 \& 87120
87120 \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }_{1}\) \& S604 505
S76058 \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }_{1}^{1}\) \& \(\bigcirc\) \\
\hline 4612 \& \& 1 \& \(\bigcirc\) \& 0 \& \& \({ }^{1.12 \%}\) \& 0 \& 1 \& \({ }_{43560}^{8720}\) \& 1 \& 0 \& \({ }_{0}^{1}\) \& \＄99458 \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \& 0 \\
\hline 4613 \& 0 \& 0 \& 1 \& 0 \& 0 \& 1．12\％ \& 0 \& 0 \& 253519 \& 0 \& 0 \& 1 \& \＄609 414 \& 0 \& 0 \& 1 \& － \\
\hline 4614 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．13\％ \& 0 \& 1 \& 22216 \& 1 \& 0 \& 0 \& \＄145498 \& 0 \& 0 \& 1 \& \\
\hline 4615 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．13\％ \& 0 \& 1 \& 15246 \& 0 \& 1 \& 0 \& \＄1068736 \& 0 \& 0 \& 1 \& 0 \\
\hline 4616 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 1 \& \begin{tabular}{l}
13668 \\
\hline 1338
\end{tabular} \& 0 \& 0 \& 1 \& 537729

$\$ 35212$ \& 0 \& 0 \& 1 \& 0

\hline ${ }_{4618}^{4617}$ \& \bigcirc \& ${ }_{1}^{0}$ \& 0 \& 1 \& \bigcirc \& －${ }_{\text {1．114\％}}^{1.14 \%}$ \& 0 \& 1 \& 13430

13068 \& \bigcirc \& 0 \& ${ }_{0}^{1}$ \& | \＄355 412 |
| :--- |
| $\$ 729$ |
| 140 | \& \bigcirc \& \bigcirc \& 1

1 \& \bigcirc

\hline 4619 \& 0 \& 1 \& 0 \& 0 \& \& 1．20\％ \& 0 \& 1 \& 13068 \& 1 \& 0 \& 0 \& \＄42483 \& 0 \& 0 \& 1 \&

\hline 4620 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．15\％ \& 0 \& 1 \& 13068 \& 1 \& 0 \& 0 \& \＄102 950 \& 0 \& 0 \& 1 \&

\hline ${ }_{4}^{4621}$ \& 0 \& 1 \& 0 \& 0 \& 0 \& ${ }_{1}^{1.11 \%}$ \& 0 \& 1 \& ${ }^{1293773}$ \& 1 \& 0 \& ${ }^{0}$ \& ${ }_{\substack{563877 \\ \$ 554013}}$ \& \bigcirc \& 0 \& 1 \& \bigcirc

\hline ${ }_{4623}^{4622}$ \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& （1．09\％ \& ${ }_{1}$ \& 1 \& | 31799 |
| :--- |
| 20988 | \& \bigcirc \& ${ }_{1}$ \& ${ }_{0}^{1}$ \& （ \& \bigcirc \& \bigcirc \& 1 \& \bigcirc

\hline ${ }_{4624}$ \& 0 \& 1 \& － \& 0 \& \& 1．09\％ \& 1 \& 1 \& ${ }_{223027}^{20888}$ \& 0 \& ${ }_{0}$ \& \bigcirc \& \＄885689 \& \bigcirc \& － \& 1 \& 0

\hline 4625 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．10\％ \& 0 \& 1 \& 43560 \& 0 \& 0 \& 0 \& \＄656 319 \& 0 \& 0 \& 1 \& 0

\hline 4626 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．11\％ \& 0 \& 1 \& 101495 \& 0 \& 0 \& 1 \& 546822 \& 0 \& 0 \& 1 \&

\hline 4627 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．09\％ \& 0 \& 1 \& 43560 \& 0 \& 0 \& 0 \& 5687421 \& 0 \& 0 \& 1 \& 0

\hline 4628 \& 0 \& 0 \& 1 \& 0 \& 0 \& 1．09\％ \& O \& 1 \& 87991 \& 0 \& 1 \& 0 \& \＄153224 \& 0 \& 0 \& 1 \& 0

\hline 4629
4630 \& ${ }_{0}$ \& 0 \& 0 \& 0 \& 1 \& 1．09\％ \& 0 \& 1 \& 130680
87120 \& \bigcirc \& 1 \& \bigcirc \& $\$ 1575255$
$\$ 667777$ \& \bigcirc \& \bigcirc \& 1 \& 0

\hline 4631 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．10\％ \& 0 \& 1 \& 43124 \& 0 \& 0 \& 0 \& \＄391709 \& 0 \& 0 \& 1 \& 0

\hline 4632 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．09\％ \& 0 \& 1 \& 108900 \& 0 \& － \& 0 \& \＄731026 \& 0 \& 0 \& 1 \& 0

\hline ${ }_{4}^{4633}$ \& 0 \& 0 \& 0 \& － \& 0 \& ${ }^{1.111 \%}$ \& \& 1 \& ${ }^{206910}$ \& \bigcirc \& 0 \& 0 \& \＄8845731 \& 0 \& 0 \& 1 \& 0

\hline 4634
4635 \& \bigcirc \& ${ }_{1}^{0}$ \& \bigcirc \& \bigcirc \& \bigcirc \& ${ }_{\text {l }}^{1.109 \%}$ \& \bigcirc \& 1 \& ${ }^{342817} 4$ \& \bigcirc \& 1 \& \bigcirc \& $\$ 1643850$
$\$ 577126$ \& \bigcirc \& \bigcirc \& 1 \& 0

\hline ${ }_{4636}$ \& 0 \& 1 \& － \& ${ }_{0}$ \& \& ${ }_{\text {1．13\％}}^{\text {1．13\％}}$ \& 0 \& 1 \& 43560 \& 1 \& － \& ${ }_{0}$ \& ¢ ${ }_{\text {S }}$ \& － \& 0 \& 1 \& 0

\hline 4637 \& \& 1 \& 0 \& \& 0 \& 1．13\％ \& 0 \& 1 \& 124146 \& 1 \& 0 \& 0 \& \＄152 214 \& 0 \& 0 \& 1 \& 0

\hline 4638

4639 \& 0 \& 0 \& 0 \& \bigcirc \& 1 \& － $1.1 .10 \%$ \& 0 \& ${ }_{0}^{1}$ \& $\begin{array}{r}134240 \\ \hline 6540\end{array}$ \& 0 \& 0 \& 0 \& | S398663 |
| :---: |
| 54900 | \& 0 \& 0 \& 1 \& 0

\hline 4639
4640 \& \bigcirc \& ${ }_{0}^{1}$ \& 0 \& ${ }_{1}^{0}$ \& ${ }_{0}$ \& ${ }^{1.1 .12 \%}$ \& 0 \& ${ }_{1}$ \& 6530
58806 \& ${ }_{0}$ \& \bigcirc \& ${ }_{0}^{1}$ \& \＄549000 \& \bigcirc \& \bigcirc \& 1 \& ${ }_{0}$

\hline 4641 \& 0 \& 0 \& 1 \& \& 0 \& 1．10\％ \& － \& 1 \& 268765 \& 1 \& 0 \& 0 \& \＄292097 \& 0 \& 0 \& 1 \& 0

\hline 4642 \& 0 \& 1 \& 0 \& － \& 0 \& 1．15\％ \& 0 \& 1 \& ${ }^{31363}$ \& 0 \& 0 \& 1 \& \＄362 871 \& 0 \& 0 \& 1 \& 0

\hline 4643
4644 \& 0 \& 0 \& 0 \& 0 \& 0 \& ${ }^{1.111 \%}$ \& 0 \& 1 \& 72745
93654 \& 0 \& 0 \& 1 \& $\$ 493926$
$\$ 1838170$ \& 0 \& 0 \& 1 \& 0

\hline ${ }_{4645}^{4644}$ \& 0 \& 1 \& ${ }_{0}$ \& 0 \& 0 \& ${ }_{1.08 \%}^{1.17 \%}$ \& ${ }_{0}$ \& 1 \& 93654
217800 \& 1 \& 1 \& \bigcirc \& \＄1838170 \& \bigcirc \& \bigcirc \& 1 \& 0

\hline 4646 \& 0 \& 1 \& － \& 0 \& － \& 1．1．16\％ \& 0 \& 1 \& 43560 \& 1 \& 0 \& 0 \& 580673 \& 0 \& 0 \& 1 \& 0

\hline 4647
4648 \& 0 \& 1 \& \bigcirc \& \bigcirc \& 0 \& 1．14\％ \& 0 \& 1 \& $\begin{array}{r}130680 \\ \hline 25641\end{array}$ \& 1 \& 0 \& 0 \& \＄507027 \& \bigcirc \& 0 \& 1 \&

\hline 4648
4649 \& \bigcirc \& 0 \& 0 \& \bigcirc \& \bigcirc \& ${ }^{1.12 \%}$ \& \bigcirc \& 1 \& 225641
135907 \& \bigcirc \& 0 \& 1 \& （ 5 \＄353802 \& \bigcirc \& \bigcirc \& 1 \& 0

\hline 4650 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．10\％ \& 0 \& 1 \& ${ }^{229} 126$ \& 0 \& 0 \& 1 \& \＄725857 \& 0 \& \& 1 \& 0

\hline ${ }_{4}^{4651}$ \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．13\％ \& 0 \& 1 \& ${ }_{5}^{5143}$ \& 0 \& 0 \& 0 \& 5352757 \& 0 \& \& 1 \& 0

\hline 4652
4653 \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& 1 \& ${ }^{1.12 \%}$ \& \bigcirc \& 1 \& 71003
130680 \& 1 \& ${ }_{1}$ \& \bigcirc \& （ $\begin{aligned} & \text { \＄149745 } \\ & \text { S114230 }\end{aligned}$ \& \bigcirc \& \bigcirc \& 1 \& 0

\hline 4654 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．09\％ \& 0 \& 1 \& 130680
13572 \& ${ }_{0}$ \& ${ }_{0}$ \& \bigcirc \& \＄142330 \& 0 \& ${ }_{0}$ \& 1 \& ${ }_{0}$

\hline 4655 \& － \& － \& 0 \& － \& － \& 1．10\％ \& － \& 1 \& 150282 \& － \& 1 \& － \& \＄1570296 \& 0 \& 0 \& 1 \& 0

\hline 4656 \& 0 \& 1 \& 1 \& 0 \& 0 \& 1．75\％ \& \& 1 \& ${ }^{175982}$ \& 1 \& 0 \& 0 \& \＄150565 \& － \& O \& 1 \& 0

\hline ${ }_{4658}^{4657}$ \& 0 \& ${ }_{0}^{1}$ \& 0 \& 0 \& 0 \& 1．1．2\％ \& 0 \& 1 \& 200376
16988 \& 0 \& 0 \& 0 \& \& 0 \& ${ }_{0}$ \& 1 \& 0

\hline 4659 \& 0 \& \& 1 \& 0 \& 0 \& 1．19\％ \& 0 \& 1 \& 14810 \& 1 \& 0 \& 0 \& \＄68633 \& 0 \& 0 \& 1 \& 0

\hline 4660 \& 0 \& － \& 0 \& 0 \& 0 \& 1．10\％ \& 0 \& 1 \& 20473 \& 0 \& 0 \& 0 \& 5452215 \& 0 \& 0 \& 1 \& 0

\hline 4661
4662 \& \bigcirc \& ${ }_{0}^{1}$ \& \bigcirc \& \bigcirc \& \bigcirc \& 1．15\％ \& \bigcirc \& 1 \& ${ }_{51836}^{22216}$ \& ${ }_{1}$ \& ${ }_{0}^{1}$ \& \bigcirc \& \＄1048111 \& \bigcirc \& 0 \& 1 \& 0

\hline 4663 \& \& \& \& \& \& 1．12\％ \& \& 1 \& 1438748
1 \& 1 \& 0 \& \bigcirc \& － \& 0 \& 0 \& 1 \& \bigcirc

\hline 4664 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．10\％ \& 0 \& 0 \& 19602 \& 0 \& 0 \& 1 \& \＄626245 \& 0 \& 0 \& 1 \&

\hline ${ }_{4}^{4665}$ \& 0 \& － \& 0 \& 1 \& ， \& ${ }^{1.111 \%}$ \& 0 \& 1 \& 19602 \& 0 \& ， \& \& \＄282772 \& 0 \& 0 \& 1 \& 0

\hline 4666
467 \& 0 \& 0 \& 0 \& 1 \& ${ }_{1}^{0}$ \& ${ }^{1.14 \%}$ \& 0 \& 1 \& 19602
19602 \& ${ }_{0}^{1}$ \& 0 \& 0 \& \＄112309
$\$ 1154629$ \& \bigcirc \& 0 \& 1 \& 0

\hline 4668 \& 0 \& － \& 1 \& \& 0 \& 1．15\％ \& \& 1 \& 19602 \& 1 \& 0 \& 0 \& \＄152416 \& 0 \& 0 \& 1 \& 0

\hline 4669
4670 \& 0 \& 0 \& 1 \& 0 \& － \& ${ }_{\text {1．111\％}}$ \& 0 \& 1 \& 19602
18295 \& 0 \& 0 \& 0 \& \& － \& 0 \& 1 \& 0

\hline ${ }_{4671}^{4670}$ \& 0 \& ${ }_{0}^{1}$ \& \bigcirc \& \bigcirc \& 0 \& ${ }^{1.111 \%}$ \& \bigcirc \& 1 \& 18295
20038 \& \bigcirc \& 1 \& \bigcirc \& $\$ 1068736$
S859920
S \& \bigcirc \& \bigcirc \& 1 \& \bigcirc

\hline 4672 \& \& 1 \& \& \& \& 1．15\％ \& \& ， \& 16988 \& \& \& 1 \& \＄375000 \& 0 \& 。 \& 1 \& 0

\hline 4673 \& 0 \& 0 \& 0 \& 0 \& 1 \& ${ }^{1.111 \%}$ \& 0 \& 1 \& ${ }^{16553}$ \& 0 \& \& \& \＄171860 \& 0 \& 0 \& 1 \& 0

\hline 4674
4675 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．13\％ \& 0 \& 1 \& 16533
16988 \& 1 \& 0 \& 0 \& \＄123597 \& 0 \& 0 \& 1 \& 0

\hline 4675
4676 \& 0 \& ${ }_{1}^{0}$ \& \bigcirc \& \bigcirc \& ${ }_{0}^{1}$ \& －${ }_{\text {1．13\％}}^{1.13 \%}$ \& \bigcirc \& 1 \& 16988
27878 \& 1 \& 0 \& 0 \& ${ }_{\substack{\text { S124787 } \\ \$ 173140}}$ \& 0 \& \bigcirc \& 1 \& \bigcirc

\hline 4677 \& \& \& \& 1 \& \& 1．14\％ \& 0 \& ， \& 75794 \& ， \& 0 \& \& \＄449 061 \& － \& 。 \& 1 \& 0

\hline 4678 \& 0 \& 0 \& 0 \& \& 1 \& 1．09\％ \& \& 1 \& 83200 \& 1 \& 0 \& 0 \& \＄478045 \& \& \& 1 \& 0

\hline \& \& \& \& \& \& \& \& \& \& \& \& 0 \& \＄1 107083
$\$ 1675988$ \& \& \& \&

\hline
\end{tabular}

observation	PROPERTY DURESS $=1$	LTV＿90\％	LTV 81\％－9\％	LTV 70\％．78\％	$\begin{gathered} \text { LTV BELOW } \\ 70 \% \end{gathered}$	total tax burden	PARCEL IN SCEIP＝ 1	conventional LOAN $=1$	Lot size	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	sold during 2004＿2007	Sold 2008－2012	PRICE ADJUST．To 2012	$\begin{gathered} \text { ZIP CODE } \\ \text { Z95403 } \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95404 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
4681	${ }_{0}$	1	0	0	0	1．21\％	0	0	22216	0	－	1	S404654				
4682	0	0	0	0	1	1．14\％	0	1	81022	1	0	0	\＄106549	0	－	1	0
4683	0	0	0	0	1	1．13\％	0	1	26136	0	0	1	5418763	0	0	1	0
4684	0	0	1	0	0	1．13\％	0	1	7841	0	1	0	5946883	0	0	1	0
4685	0	0	0	0	1	1．12\％	0	1	23522	0	0	0	\＄369 922	0	0	1	0
4686	0	0	0	0	1	1．11\％	0	1	28750	1	0	0	\＄167522	0	0	1	0
4687	0	0	0	0	1	1．10\％	0	1	27878	0	0	1	\＄509692	0	0	1	0
4688	0	0	0	0	0	1．12\％	0	1	27878	0	0	1	\＄564539	0	0	1	0
4689	0	0	0	0	0	1．12\％	0	1	23522	1	0	0	\＄155 258	0	0	1	0
4690	0	1	0	0	0	1．65\％	1	1	72745	0	1	0	5971214	0	0	1	0
4691	0	1	0	0	0	${ }^{1.52 \%}$		1	60548	0	1	0	\＄981497	0	0	1	0
4692 4693	0	0	0	0	1	1．16\％	0	1	42253 23522	1	0	0	S88502 $\$ 56568$	\bigcirc	\bigcirc	1	0
4694	0	0	0	1	${ }_{1}$	${ }_{\substack{1.11 \% \\ 110 \%}}$	${ }_{0}$	1	${ }_{5}^{23522}$	\bigcirc	${ }_{1}$	1	（ 5565888	\bigcirc	\bigcirc	1	\bigcirc
4695	0	1	0	0	0	1．10\％	0	1	43560	0	0	0	\＄463561	0	－	1	－
4696	0	0	1	0	0	1．13\％	0	1	87120	0	0	0	\＄128870	0	0	1	0
4697	0	0	0	0	1	1．09\％	0	1	121097	0	0	0	\＄592431		0	1	0
4698	0	0	0	0	1	1．10\％	0	1	36155	0	0	0	5487084	0	0	1	0
4699	0	0	0	0	0	1．10\％	0	1	${ }_{6}^{67082}$	1	0	0	\＄182656	0	0	1	0
4700	1	0	1	0	0	1．10\％	0	1	${ }^{73616}$	0	1	0	\＄1394992	0	0	1	0
4701	0	0	0	0		1．10\％	0	1	98881	0	0	0	5445019	0	0	1	0
4702	0	0	0	0	0	1．09\％	0	1	435600	0	0	1	\＄1290000	0	0	1	0
4703 4704	\bigcirc	${ }_{0}^{1}$	\bigcirc	0	\bigcirc	${ }_{\text {1．1．1\％}}^{1.10 \%}$	\bigcirc	1	20038 70132	\bigcirc	：	${ }_{0}^{1}$	\＄567717	0	\bigcirc	1	\bigcirc
4705	。	0	。	1	。	1．13\％	0	1	65340	1	0	0	\＄57976	0	0	1	0
4706	0	0	1	0	0	1．14\％	0	1	66211	0	1	0	\＄1006439	0	0	1	0
4707	0	0	0	0	1	1．10\％	0	1	117612	1	0	0	\＄212326	0	0	1	0
4708	0	0	0	0	0	1．14\％	0	1	18295	1	0	0	\＄109 189	0	0	1	0
4709	－	0	0	1	－	1．17\％	0	1	13504	0	0	0	\＄346516	0	0	1	0
4710	0	0	1	0	0	1．11\％	0	1	39640	1	0	0	5233753	0	0	1	0
4711	0	0	0	0	0	${ }^{1.1 .13 \%}$	0	1	${ }^{42253}$	1	0	0	\＄127859	0	0	1	0
4712	0	0	0	0	1	1．10\％	0	1	129809	\bigcirc	1	0	\＄1459337	0	0	1	0
4713	0	0	0	0	0	1．12\％	0	1	229561	0	1	0	\＄1146349	0	0	1	0
4714	0	1	\bigcirc	0	0	1．10\％	0	1	49223	0	1	0	\＄1350454	0	0	1	0
4715 4716	\bigcirc	0	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }_{\text {1．1．10\％}}^{1.129}$	\bigcirc	1	40511 96268	0 1	\bigcirc	${ }_{0}^{1}$	$\$ 650000$ $\$ 225848$	${ }_{0}$	\bigcirc	1	0
4717	0	0	0	0	1	1．11\％	0	1	204732	0	0	0	\＄888981	0	0	1	0
4718	0	0	0	0	1	1．10\％	0	1	108029	0	0	1	\＄914300	0	0	1	0
4719	0	1	0	0	0	1．10\％	0	1	${ }^{61855}$	0	1	0	\＄1498 105	0	0	1	0
4720	0	0	0	0	1	1．10\％	0	1	172062	0	0	0	\＄719648	0	0	1	0
4721	0	0	1	0	0	${ }^{1.14 \%}$	0	1	$\begin{array}{r}325393 \\ 376794 \\ \hline\end{array}$	1	0	0	S159 284 $\$ 966377$	0	0	1	0
4723	0	0	0	1	0	1．13\％	0	1	81893	1	0	0	\＄182502	0	0	1	0
4724	0	0	0	0	0	1．10\％	0	1	424274	1	0	0	\＄414054	0	0	1	0
4725	0	1	－	0	0	1．08\％	0	1	98010	0	1	0	\＄1557319	0	0	1	0
4726	0	0	0	0	1	1．09\％	0	1	144184	0	0	0	\＄587796	0	0	1	0
${ }_{4}^{4727}$	\bigcirc	${ }_{1}^{0}$	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }_{\text {l }}^{1.1 .10 \%}$	\bigcirc	${ }_{0}^{1}$	402059 21780	\bigcirc	0	1	5969523 $\$ 321052$	\bigcirc	\bigcirc	1	\bigcirc
4729	0	0	0	0	0	1．10\％	0	1	43560	0	0	1	\＄531507	0	0	1	0
4730	0	0	0	0	0	${ }^{1.13 \%}$	0	1	$\begin{array}{r}28160 \\ \hline 6162\end{array}$	0	1	0	\＄514687	0	0	1	0
4731	0	0	0	0	1	1．13\％	0	1	${ }^{63162}$	1	0	0	\＄157954	0	0	1	0
4732	0	1	0	0	0	1．10\％	0	1	${ }^{56628}$	\bigcirc	0	0	\＄683574	0	0	1	0
4733 4734	${ }_{0}$	${ }_{1}^{0}$	0	0	\bigcirc	1．1．10\％	\bigcirc	1	16553 14810	${ }_{0}$	1	${ }_{0}$	$\$ 1022259$ $\$ 821239$	\bigcirc	\bigcirc	1	\bigcirc
4735	0		0	0	1	1．11\％	0	1	15246	0	1	0	5715883	0	0	1	0
4736	0	－	0	0	1	1．12\％	0	1	13504	0		0	\＄259594	－	0	1	0
4737	0	0	0	0	1	1．12\％	0	1	37026	1	0	0	\＄166051	－	0	1	0
4738	0	0	0	0	1	1．11\％	0	1	139828	0	0	1	\＄526748		0	1	0
4739 4740	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{0}^{1}$	（1．10\％	\bigcirc	1	111078 87556	${ }_{0}^{1}$	${ }_{1}^{0}$	\bigcirc	S285315 S1415606	\bigcirc	\bigcirc	1	\bigcirc
4741	0	0	0	0	0	1．09\％	0	1	90605	1	0	0	\＄285857	0	0	1	0
4742	0	0	0		0	1．09\％	0	1	92783		0	1	${ }_{5888933}$	0	0	1	0
4743	0	0	0	1		1．09\％	0	1	92783	1	0	0	5470205	0	0	1	0
4744	0	0	0	1	0	1．11\％	0	1	137650 52727	1	0	0	S248433 $\$ 389793$	0	0	1	\bigcirc
4745 4776	\bigcirc	${ }_{0}^{1}$	0	\bigcirc	\bigcirc	${ }^{1.120 \%}$	\bigcirc	1	52272 14375	${ }_{1}^{1}$	\bigcirc	${ }_{0}^{1}$	5389793 $\$ 37788$	\bigcirc	\bigcirc	1	\bigcirc
4747	0	1	0	0	0	1．20\％	0	0	14500	0	0	1	\＄206846	0	0	1	0
4748	0	0	0	0	1	${ }^{1.11 \%}$	0		152460	1	0	0	\＄188745	0	0	1	0
4749		0	0	0	0	1．14\％	0	1	53143	0	0	1	5374500	0	0	1	0
4750	0	1	0	0	0	1．14\％	0	1	10800	0	0	0	\＄524544	0		1	0
4751 4752	\bigcirc	\bigcirc	${ }_{1}^{0}$	\bigcirc	${ }_{0}^{1}$	${ }^{1.111 \%}$	\bigcirc	1	23958 24354	\bigcirc	${ }_{0}^{1}$	${ }_{0}^{0}$	S934235 $\mathbf{5} 59951$	\bigcirc	\bigcirc	1	\bigcirc
4753	0	1	0	0	0	1．15\％	0	1	22350	0	0	0	\＄192 603	0	0	1	0
4754		0	0		1	1．15\％	0	1	${ }^{30928}$		0	0	\＄86606		0	1	0
4755		0	0		1	1．11\％	0	1	5272	0	0	1	549784	0	0	1	0
4756	0	1	0	0	0	1．10\％	0	1	57935	0	0	0	\＄460575		0	1	\bigcirc
4757 4758	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }_{1}^{0}$	\bigcirc	${ }_{\text {1．13\％}}^{1.10 \%}$	0	1	72745 41382	${ }_{0}$	${ }_{0}^{1}$	${ }_{1}^{0}$	$\$ 1171256$ $\$ 430763$	\bigcirc	\bigcirc	1	\bigcirc
4759		0	0	1	0	1．10\％	O	1	98010	1	0	0	\＄105990	0	0	1	0
4760	0	1	0	0	0	1．10\％	0	1	32234	，	1	－	5831333	0	－	1	0
4761	0	0	0	0	0	1．10\％	0	1	152460	－	1	0	\＄1450482	0	0	1	0
4762	0	0	0	0	1	1．15\％	0	1	75794	1	0	0	\＄56894	0	0	1	0
4763 4764	\bigcirc	\bigcirc	0	\bigcirc	${ }_{0}^{1}$	－	\bigcirc	1	195584 162914	${ }_{1}^{1}$	${ }_{0}^{0}$	0	S637459 $\$ 217567$	\bigcirc	\bigcirc	1	\bigcirc
4765	0	0	1	0	0	1．10\％	0	1	158558	0	1		\＄1290617	0	0	1	0
4766	0	0	0	1	0	1．14\％	0	1	47045	1	0	1	\＄107326	0	0	1	
4767 4768	0	0	0	0	1	1．09\％	0	1	120226	0	0	1	\＄983927		0	1	0
4768 4769	${ }_{0}$	0	0	1	1	${ }_{1.11 \%}^{1.10 \%}$	0	1	88427 108464	1	\bigcirc	${ }_{0}$	\＄1006764 $\$ 115822$	0	0	1	\bigcirc
4770	0	0	－	1	0	1．09\％	0	1	89298	0	0	0	\＄761682	0	0	1	0
4771	0	0	0	0	0	${ }^{1.51 \%}$	1	1	87556	0	0	0	\＄561182	0	0	1	
4772 4773	${ }_{0}$	0 1	\bigcirc	${ }_{0}^{1}$	${ }_{0}$	－${ }_{\text {1．09\％}}$	${ }_{0}$	1	89298 133294	0	${ }_{1}$	\bigcirc	S908 484 S2099972	0	0	1	\bigcirc
4774	0	0	0	0	0	1．10\％	－	1	96268	0	1	。	\＄843739	－	0	1	0
4775	0	0	－	0	0	1．10\％	0	1	23522	0	0	0	\＄546933	0	0	1	0
4776 4777	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1.12% 1.13% 1.1	\bigcirc	1	21344 14810	\bigcirc	${ }_{0}$	${ }_{0}^{1}$	5409970 $\$ 493622$	0	0	1	0
4778	0	0	0	1	0	1．12\％	0	1	126760	0		0	\＄604505	0	0	1	0
4779	0	1	－	0	0	1．12\％	－	1	${ }^{82328}$	1	0	0	\＄125 160	0	0	1	0
4780	\bigcirc	\bigcirc	0	0	1	1．15\％		1	102802	1	0	0	\＄60581	0	0	1	0
4781 4782	\bigcirc	0	${ }_{0}$	${ }_{0}$	${ }_{0}$	（1．11\％	${ }_{0}$	${ }_{0}^{1}$	${ }_{539273}^{11761}$	0	${ }_{0}^{1}$	1	S7517 S450	\bigcirc	${ }_{0}$	1	\bigcirc
4783	0	0	0	0	1	1．18\％	0	1	6098	0	1	0	\＄566243	0	0	1	0
4784	0	0	0	0	1	2．21\％	1	1	914760	1	，	0	\＄118953	0	0	1	0
4785 4786	0	0	1	0	0	1．13\％	0	1	23087 64904		0	0	\＄119478	0	0	1	\bigcirc
47887 4787	0	0	0	${ }_{0}$	${ }_{0}$	1．1．9\％	0	1	64904 35719	0	1	0	S599426 $\$ 59290$	${ }_{0}$	${ }_{0}$	1	${ }_{0}$
4788	0	1	0	0	0	1．12\％	0	0	18295	0	0	1	\＄341396	0	0	1	0
4789	0	0	0	0	0	1．11\％	0	1	14810			，	\＄509500	0	0	1	
4790 4791	0	${ }_{0}^{1}$	0	0	0	${ }^{1.1 .11 \%}$	0	1	17424 13939	0	0	${ }_{1}^{1}$	5468560 $\$ 661361$	0	0	1	\bigcirc
4792		0		－	0	1．11\％		1	14375	0	0	1	\＄385000	－	0	1	0
4793	0	1	0	0		1．10\％		1	47045	0	1	0	\＄1482544	0	0	1	0
4794 4795	\bigcirc	0	0	0	0	－ 1.09%	\bigcirc	1	43560 43560	${ }_{1}$	1	\bigcirc	¢	\bigcirc	\bigcirc	1	\bigcirc
4795 4796	\bigcirc	0	0	0	${ }_{0}^{1}$	1．1．11\％	0	1	43560 47916	1	\bigcirc	0	$\$ 171697$ $\$ 212823$	0	\bigcirc	1 1	0
4797		0	0		0	1．11\％		1	${ }^{43560}$	1	0	0	S16361 S20477		0	1	\bigcirc
4798		0	0	－	1	${ }^{1.111 \%}$	，	1	54450 43550	1	0	0	${ }_{\text {S }} 5204177$	0	\bigcirc	1	0
4799 4800	0	\bigcirc	0	0	${ }_{0}^{1}$	－	${ }_{1}$	1	43560 89734	0	\bigcirc	0	S740978 $\$ 299828$	0	0	1	\bigcirc
4801	0	1	0	0	0	1．10\％			43560	1	0	0	\＄289971	0	0	1	0
4802 4883	0	0	0	0		${ }^{1.11 \%}$	0	1	44867 43550	－	1	0	$\$ 1388096$ $\$ 58689$	－	0	1	0
4803 4804	0	0	0	0	0	${ }^{1.09 \%}$		1	43500 16117	0	0	1	$\$ 586899$ $\$ 12642$ 18	\bigcirc	0	1	\bigcirc
4804 4805	0	${ }_{0}$	${ }_{0}$	0	1	${ }_{\text {1．12\％}}^{1.13 \%}$	${ }_{0}$	1	${ }_{38}^{1688}$	1	1	${ }_{0}^{\circ}$		${ }_{0}$	${ }_{0}$	1	${ }_{0}$
4806	0	0	0	0	0	1．11\％	－	1	32234	0	1	0	\＄1028595	0	0	1	0
4807 4808	\bigcirc	0	0	0	1	${ }^{1.11 \%}$	0	1	23522 2489	0	0	\bigcirc		0	0	1	0
4808 4889 4810	\bigcirc	0	0	1	\bigcirc		0	1	24829 33977 23522	\bigcirc	${ }_{1}^{1}$	0	（	\bigcirc	\bigcirc	1	\bigcirc

observation	PROPERTY DURESS $=1$	LTV＿90\％	LTV 81\％－9\％	LTV 70\％．78\％	$\begin{gathered} \text { LTV BELOW } \\ 70 \% \end{gathered}$	total tax burden	PARCEL IN SCEIP＝ 1	conventional LOAN $=1$	Lot SIIE	sold PRIOR＿2000	sold during 2004＿2007	Sold 2008－2012	PRICE ADJUST．To 2012	$\begin{gathered} \text { ZIP CODE } \\ \text { Z95403 } \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95404 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
4811	${ }_{0}$	1	0	0	0	1．11\％	0	0	20473	0	－	1	\＄300000				
4812	0	0	0	0	1	1．13\％	0	1	13939	1	0	0	\＄191971	0	0	1	0
4813	0	0	0	0	1	1．10\％	0	1	60113	0	0	0	5440383	0	0	1	0
4814	0	0	0	1	0	1．10\％	0	1	25265	0	0	0	\＄366214	0	0	1	0
4815	0	0	0	0	1	1．09\％	0	1	43560	0	1	0	\＄885 106	0	0	1	0
4816	0	0	0	0	1	1．10\％	0	1	106286	0	0	1	5907177	0	0	1	0
4817	0	0	0	0	0	${ }^{1.112 \%}$	0	1	22651	1	0	0	\＄55899	0	0	1	0
4818	0	1	0	0	0	1．13\％	0	1	13939	0	1	0	\＄72461	0	0	1	0
4819	0	0	0	0	1	1．10\％	0	1	14375	0	1	0	\＄1160610	0	0	1	0
4820	0	1	0	0	0	1．13\％	0	1	${ }^{36155}$	0	1	0	\＄1117681	0	0	1	0
4821	0	0	0	0	1	1．12\％	－	1	30492	0	0	0	\＄745556	0	0	1	0
4822 4823	0	1	0	0	1	1．11\％	0	1	199069 45738	0	\bigcirc	1	S950000 S174078	0	\bigcirc	1	0
4823	0	0	${ }_{1}$	\bigcirc	${ }_{0}^{1}$	${ }^{1.111 \%}$	0	1	45738 16553	1	0	0	\＄174078	0	0	1	\bigcirc
4824 4825	${ }_{0}$	\bigcirc	1	${ }_{0}$	\bigcirc	${ }^{1.13 \%}$	0	1	1653 133729	1	\bigcirc	\bigcirc	\＄379 193 $\$ 25508$	\bigcirc	\bigcirc	1	\bigcirc
4826	0	0	0	0	0	1．11\％	0	1	105851	0	0	0	S641 251	0	0	1	0
4827	0	0	0	0	1	1．10\％	0	1	135907	1	0	0	5230738		0	1	0
4828	0	0	0	0	1	1．10\％	0	1	21780	0	0	0	549941	0	0	1	0
4829	0	0	0	0	1	1．11\％	0	1	${ }_{2}^{21780}$	0	0	1	S577282 $\mathbf{S 1 2 3 6 2 4 3}$	0	0	1	0
4830	0	0	1	0	0	1．09\％	0	1	${ }^{21780}$	0	1	\bigcirc	\＄1236243	0	0	1	0
4831	0	0	1	0	0	1．10\％	0	1	99317	0	1	0	\＄1509355	0	0	1	0
4832	0	0	0	0	0	${ }^{1.12 \%}$	0	1	110642	1	0	0	\＄109562	0	0	1	0
4833 4834	\bigcirc	\bigcirc	\bigcirc	0	0 1	${ }_{\text {1．1．10\％}}^{1.10 \%}$	\bigcirc	1	31363 53579	${ }_{0}^{1}$	：	${ }_{1}$	$\$ 215308$ $\$ 832158$ 25	0	\bigcirc	1	\bigcirc
4835	0	1	0	－	0	1．11\％	0	1	${ }_{29} 2921$	1	0	${ }_{0}$	\＄275534	0	0	1	0
4836	1	1	0	0	，	1．16\％	0	1	${ }^{24394}$	1	0	0	\＄154329	0	0	1	0
4837	0	0	0	0	1	1．15\％	0	1	59677	0	0	1	5361217	0	0	1	0
4838	0	0	0	1	0	1．11\％	0	1	17860	0	0	0	\＄366214	0	0	1	0
4839	0	1	0	0	0	2．15\％	1	0	28314	0	0	1	5428427	0	0	1	0
4840	0	0	1	0	0	1．09\％	0	1	91476	1	0	0	\＄301610	0	0	1	0
4841	0	0	0	0	1	1．11\％	0	1	101059	0	0	1	\＄694722	0	0	1	0
4842	0	0	0	0	1	${ }^{1.11 \%}$	0	1	43560	1	0	0	\＄165913	0	0	1	0
4843	0	0	0	0	1	${ }^{1.14 \%}$	0	1	${ }^{43560}$	0	0	1	${ }_{\$ 681132}$		0	1	0
4844 4845	${ }_{0}$	${ }_{0}$	\bigcirc	${ }_{0}^{1}$	1	－${ }_{\text {1．1．13\％}}^{1.12 \%}$	0	1	35719 117612	${ }_{0}^{1}$	${ }_{1}$	0	（ $\begin{aligned} & \text { S1899545 } \\ & \text { S1 } 192484\end{aligned}$	${ }_{0}$	0	1	0
4846	0	0	0		1	1．10\％	0	1	108464	。	${ }_{0}$	－	\＄551761	0	。	1	0
4847		0	0	0	0	1．10\％	－	1	94961	0	1	0	\＄1130610	0	0	1	0
4848	0	0	1	0	0	1．09\％	0	1	${ }_{103237}$	0	1	0	\＄1762477	0	0	1	0
4849	0	0	0	0	0	1．09\％	0	1	54014	0	1	0	\＄1358768	0	0	1	0
4850	0	1	0	0	0	1．22\％	0	1	104544	0	1	0	\＄7759711	0	0	1	0
4851 4852	\bigcirc	\bigcirc	${ }_{1}$	${ }_{0}$	${ }_{0}^{1}$	${ }_{\substack{1.14 \% \\ 1.12 \%}}^{1.20}$	\bigcirc	1	20909 55757	1	\bigcirc	\bigcirc	$\$ 127392$ $\$ 115682$	0	\bigcirc	1	0
4853	0	0	0	1	0	1．12\％	0	1	87120	1	0	0	\＄135166	0	0	1	0
4854	0	0	0	0	0	1．10\％	0	1	174240	\bigcirc	0	0	${ }_{5689895} 137$	0	0	1	0
4855	0	0	－	1	0	1．14\％	0	1	${ }^{73181}$	0	1	0	583447	0	0	1	0
4856	0	0	0	1	0	1．11\％	0	1	84506	0	0	1	5866208	0	0	1	0
4857 4858	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	${ }_{\text {1．1．15\％}}$	\bigcirc	1	21344 4356	\bigcirc	${ }_{0}^{1}$	\bigcirc	$\$ 1068736$ $\$ 34280$	\bigcirc	\bigcirc	1	\bigcirc
4859		0	0	0	1	1．10\％	0	1	134600	0	0	1	S632097	0	0	1	0
4860	1	0	0	1	0	${ }^{1.111 \%}$	0	1	${ }^{65342}$	0	0	0	S620 625 $\$ 229449$	0	0	1	\bigcirc
4861	0	0	1	0	0	1．13\％	0	1	256568	1	0	0	\＄229449	0	0	1	0
4862	0	0	0	0	1	1．09\％	0	1	$\begin{array}{r}95832 \\ \hline 2588 \\ \hline\end{array}$	0	0	0	\＄686495	0	0	1	0
4863 4864	${ }_{0}$	${ }_{0}^{1}$	0	${ }_{0}$	${ }_{1}$	1．1．10\％	\bigcirc	1	25880 337154	\bigcirc	1	\bigcirc	\＄ $\begin{gathered}\text { S772 } 031 \\ \$ 1200814\end{gathered}$	\bigcirc	0	1	\bigcirc
4865	0	0	0	1	0	1．18\％	0	1	202544	1	0	0	\＄89 121	0	0	1	0
4866	0	1	0	0	0	1．14\％	0	1	44431	0	1	0	5481934	－	0	1	0
4867	1	0	0	1	0	1．12\％	0	1	142441	0	0	0	5287408	－	0	1	0
4868	0	1	0	0	0	1．15\％	0	1	65340	0	1	0	5616065	0	0	1	0
4869 4870	\bigcirc	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	\bigcirc	${ }^{1.09 \%}$	\bigcirc	${ }_{1}^{1}$	80150 47480	${ }_{1}^{0}$	\bigcirc	${ }_{0}^{1}$	S405 658 $\$ 202140$	\bigcirc	\bigcirc	1	\bigcirc
4871	0	0	0	0	1	1．11\％	0	1	64469	0	0	1	S517114	0	0	1	0
4872	0	0	0	0	1	1．10\％	0	1	${ }_{6}^{63988}$	－	0	1		0	0	1	\bigcirc
4873	0	0	0	0	1	1．10\％	0	1	88427	0	0	0	5426476	0	0	1	0
4874	0	0	0	0	0	1．10\％	0	1	66647	0	0	0	\＄397736		0	1	\bigcirc
4875 4876	\bigcirc	\bigcirc	0	0 1	1	${ }^{1.09 \%}$	\bigcirc	1	109771 87120	${ }_{0}$	${ }_{0}^{1}$	\bigcirc	$\underset{\substack{\text { S1 } \\ \text { S936 } 22718}}{ }$	\bigcirc	\bigcirc	1	\bigcirc
4877	0	0	0	0	1	1．11\％	0	1	47480	1	0	0	\＄255961	0	0	1	0
4878		1	0		0	1．10\％	0	1	47480	0	1	0	\＄1232796	0	0	1	0
4879		0	0	0	0	1．09\％	0	1	87991	－	0	0	\＄650562	0	0	1	0
4880	0	0	0	0	0	1．10\％	0	1	87991	0	1	0	\＄1662666	0		1	0
4881 4882	\bigcirc	${ }_{0}^{1}$	\bigcirc	\bigcirc	${ }_{1}^{0}$	1．1．10\％	\bigcirc	1	54886 54886	\bigcirc	${ }_{0}^{1}$	${ }_{0}^{0}$	¢1405294	\bigcirc	\bigcirc	1	\bigcirc
4883	0	0	0	0	1	1．10\％	0	1	49658	1	0	0	\＄252197	0	0	1	0
4884		0	0		1	${ }^{1.111 \%}$	0	1	${ }^{41382}$	1	0		\＄197550		0	1	0
4885		0	0		0	1．11\％	0	1	${ }^{39} 940$	1	0	0	\＄234 105	0	0	1	0
4886	0	0	0	0	1	1．10\％	0	1	${ }^{37897}$	0	0	0	5397709			1	\bigcirc
4887 4888	\bigcirc	\bigcirc	${ }_{0}^{1}$	\bigcirc	${ }_{1}^{1}$	1．09\％	0	1	74888 16172	\bigcirc	1	\bigcirc	（ 54747488	${ }_{0}$	\bigcirc	1	\bigcirc
4889		0	0	1	0	1．09\％	O	1	131987		1	0	\＄1524110	0	0	1	0
4890		1	0	0	0	1．18\％	0	0	15246		0		\＄143037		0	，	0
4891		0	0	1	0	1．09\％	0	1	56192	－	0	1	5880881	0	0	1	0
4892	0	0	0	0	1	1．09\％	0	1	${ }^{43996}$	0	1	0	\＄1 146349	0		1	－
4893 4894	\bigcirc	\bigcirc	${ }_{1}^{0}$	\bigcirc	\bigcirc	${ }^{1.1 .13 \%}$	\bigcirc	1	56192 148975	${ }_{0}^{1}$	${ }_{1}^{0}$	${ }_{0}$		\bigcirc	\bigcirc	1	\bigcirc
4895	0	0	0	0	1	1．09\％	0	1	91476	0	0	1	\＄849856		0	1	0
4896	0	0	0	1	0	${ }^{1.111 \%}$	0	1	${ }^{47045}$	0	1	，	\＄966988	0	0	1	
4897 4898	0	\bigcirc	0	${ }_{0}^{1}$	0	${ }_{\text {l }}^{\text {0．1．3\％}}$	0	1	23522 38788	1	0	0	\＄162224		0	1	0
4899	0	0	0	${ }_{0}$	1	－${ }^{\text {0．35\％}}$	${ }_{0}$	1	38758 36640	0	\bigcirc	1		\bigcirc	\bigcirc	1	\bigcirc
4900	0	0	－	0	1	1．10\％	0	1	67518		0	1	\＄649620	0	0	1	0
4901	0	0		1	1	1．09\％	0	1	${ }_{\substack{63162 \\ 51936}}$	1	0	，	5430993 $\$ 42926$	0	0	1	
4902 4903	\bigcirc	${ }_{0}^{1}$	\bigcirc	\bigcirc	${ }_{0}$	1．1．9\％	0	1	51836 48352	1	0	${ }_{1}^{0}$	$\$ 128026$ $\$ 73683$	0	0	1	\bigcirc
4904	－	0	0	0	1	1．11\％	0	1	44431	1	0	${ }_{0}$	\＄115375			1	0
4995	0	0	0	1	0	1．12\％	0	1	108029	1	0	0	\＄134100	0	0	1	
4906 4907	0	\bigcirc	0	\bigcirc	\bigcirc	－	${ }_{1}$	1	24394 23087	1	\bigcirc	0	5300378 $\$ 506811$	0	0	1	0
4908	0	0	0	0	0	1．10\％	1	1	43560	0	。	1	\＄559553	0	0	1	0
4909	0	0	－	0	0	1．12\％	－	1	${ }^{60984}$	1	－	0	\＄185887	－	0	1	0
4910	0	1	0	0	0	${ }^{1.111 \%}$	－	1	${ }_{16117}^{1696}$	0	1		\＄1205433	0	0	1	0
49912	\bigcirc	0	${ }_{0}$	${ }_{0}$	\bigcirc	（1．12\％	${ }_{0}$	1	${ }_{42689}^{43966}$	${ }_{0}^{1}$	${ }_{0}$	0	5126098 5456888	0	${ }_{0}$	1	\bigcirc
4913	0	0	0	0	0	1．10\％	－	1	30928	0	1	0	\＄1385555	0	0		0
4914	0	0	0	0	1	1．10\％	0	1	154638	0	1	0	\＄1400628	0	0	1	0
4915 4916	0	1	0	0	0	${ }^{1.27 \%}$	1	1	48787 267894	－	，	0	5852864 $\$ 19139$	0	0	1	\bigcirc
${ }_{4917}$	0	0	0	1	1	${ }^{1.109 \%}$	0	1	261894 4609	0	1	1	\＄1933139	${ }_{0}$	${ }_{0}$	1	${ }_{0}$
4918	0		0	0	1	1．10\％	0	1	43560	1	0	0	\＄209955	0	0	1	0
4919	0	0	0	0	1	1．10\％	0	1	58370	1	0	1	\＄66974	0	0	1	
4920 4921	0	\bigcirc	${ }_{0}^{1}$	0	${ }_{1}$	－${ }_{\text {1．111\％}}^{1.10 \%}$	0	1	67082 72310	${ }^{1}$	0	${ }_{0}^{1}$	$\$ 1006674$ $\$ 185855$	0	0	1	\bigcirc
4922	0	0		1	，	1．72\％	1	1	43560	1	0	0	\＄137266	－	0	1	0
4923	0	0	0			1．11\％	0	1	39640	1	0	0	\＄167522	0	0	1	0
${ }_{4}^{4924}$	\bigcirc	0	\bigcirc	1	0	－ 1.11%	\bigcirc	1	39640 61420	0	1	${ }_{1}$		\bigcirc	\bigcirc	1	\bigcirc
${ }_{4926}$	0	0	0	0	${ }_{0}^{1}$	${ }^{1.1 .13 \%}$	\bigcirc	1	61420 80150	${ }_{1}^{0}$	0	${ }_{0}^{1}$		0	\bigcirc	1	\bigcirc
4927		0	0	0	0	1．11\％		1	${ }_{2} 21344$	0	1	0	\＄1265474	0	0	1	\bigcirc
4928	0	0	0	0		1．11\％		1	45302	0	1	0	\＄993502	0		1	0
4929 4930	0	\bigcirc	0	${ }_{1}$	${ }_{0}^{1}$	（1．11\％\％	0	1	53579 28314	0	0	${ }_{0}^{1}$	\＄752 350 $\$ 920198$	0	0	1	\bigcirc
4931		0	0		1	1．15\％			32670	1	0	0	\＄60818	0	0	1	0
4932	0	0	0	1		${ }^{1.12 \%}$	0	1	57499 43996	，	0	0	\＄154649	0	0	1	
4933 4934	0	0	0	1	0	1．10\％		1	43996 71874	0	0	0	\＄713071	0	0	1	\bigcirc
4934 4935	0	\bigcirc	\bigcirc	0	1	1．10\％	0	1	${ }_{25} 2185$	1	1	\bigcirc	¢974787	0	0	1	0
4936	0	0	0	0	1	1．13\％	－	1	23087	0	0	1	5424736	0	0	1	0
4937 4938	\bigcirc	0	0	0	\bigcirc	1．11\％	0	1	2038 19602	1	0	0	\＄105090	0	0	1	0
4938 4939 4990	0	0	0	1	0	（	－	1	19602 20000 18731	－	0	1	（	0	0	1 1 1	－

observation	Property	LTV＿90\％	LTV 81\％－90\％	LTv 70\％－78\％	Lrv below	total tax	parcelin	CONVENTIONAL	Lot SIIE	sold	sold during	SOLD 2008－2012	Price adust．to	2IP CODE	ZIP CODE	ZIP CODE	ZIP CODE
	DURESS $=1$				70\％					PRIOR＿2000	2004＿2007		2012	295403	95404	95472	94928
4941	0	0	0	1	0	1．1．10\％	\bigcirc	1	20038 11785	${ }^{\circ}$	0	0	$\begin{array}{r}5834792 \\ \$ 220804 \\ \hline\end{array}$	\bigcirc	\bigcirc	1	0
4942	0	0	0	0	0	1．13\％	0	1	17860	1	0	0	5220804	0	0	1	0
4943	0	0	0	0	1	1．11\％	0	1	24829	1	0	0	\＄174702	0	0	1	0
4944	0	0	0	0	1	1．10\％	0	1	19166	0	0	1	\＄55572	0	0	1	0
4945	0	0	0	0	0	1．11\％	0	1	19602	0	0	1	\＄61900	0	0	1	0
4946	0	0	0	0	1	1．11\％	0	1	22216	0	1	0	\＄1246999	0	0	1	0
4947	0	0	0	0	1	1．09\％	0	1	54450	1	0	0	\＄211 141	0	0	1	0
4948	0	0	0	1	0	1．09\％	0	1	54886	0	0	1	\＄901952	0	0	1	0
4949	0	0	0	1	0	1．11\％	0	1	54886	1	0	0	5247680	0	0	1	0
4950	0	0	1	0	0	1．13\％	0	1	43560	1	0	0	\＄156292	0	0	1	0
4951	0	0	0	0	0	1．12\％	0	1	39640	1	0	0	\＄263489	0	0	1	0
4952	0	1	0	0	，	${ }^{1.09 \%}$		1	${ }^{47480}$	0	1	0	\＄1459451	0	0	1	0
4953 4954	\bigcirc	0	0	\bigcirc	${ }_{1}^{0}$	（1．12\％	0	1	47045 33977	${ }_{0}^{1}$	${ }_{1}^{1}$	\bigcirc		\bigcirc	\bigcirc	1	0
4955	0	。	。	0	1	1．09\％	0	1	68825	0	${ }_{0}$	1	\＄881091	0	－	1	$\stackrel{0}{0}$
4956	0	0	0	0	1	1．10\％	0	1	54014	0	1	0	\＄1407 337	0	0	1	0
4957	0	0	0	1	0	1．11\％		1	24829	1	0	0	\＄161346	0	0	1	0
4958	0	1	0	0	0	1．11\％	0	1	54450	0	1	0	\＄935795	0	0	1	0
4959	0	0	0	0	1	1．09\％	0	1	${ }_{6}^{66211}$	\bigcirc	0	1	5784269 $\$ 109696$	0	0	1	0
4960	0	0	1	0	0	${ }^{1.12 \%}$	0	1	17860	0	1	0	\＄1098696	0	0	1	0
4961	0	0	0	1	0	1．22\％	0	1	21780	0	1	0	\＄623863	0	0	1	0
4962	0	0	0	0	1	1．11\％	0	1	21780	1	0	0	\＄240904	0	0	1	0
${ }_{4}^{4963}$	0	0	0	0	0	1．11\％	0	1	32670	1	0	\bigcirc	${ }_{\text {S }} \mathbf{5 1 9 3 6 1 6}$		0	1	0
${ }_{4965}^{4964}$	\bigcirc	1	\bigcirc	\bigcirc	${ }_{1}$	${ }^{1.09 \%}$	\bigcirc	1	50530 69696	1	1	\bigcirc	S1671903 $\$ 232775$	\bigcirc	\bigcirc	1	0
4966	0	0	－	0	1	1．09\％		1	69696	0	1	0	\＄1524110	0	0	1	0
4967	0	0	0	0	0	1．10\％	0	1	87556	1	0	0	\＄321328	0	0	1	0
4968	0	0	0	0	1	1．11\％		1	118883	0	1	0	\＄1295790	0	0	1	0
4969	0	0	0	0	1	1．11\％	0	1	871200	0	0	1	\＄653735	0	0	1	0
4970	0	0	0	0	1	1．15\％	0	1	143748	0	0	1	\＄614539	0	0	1	0
4971	0	0	0	0	1	1．13\％	0	1	217800	1	0	0	\＄215119	0	0	1	0
4972	0	0	0	0	0	1．10\％	0	1	217800	0	1	0	\＄1622045	0	0	1	0
4973	0	1	0	0	0	1．12\％	0	1	217800	0	1	0	\＄1920621	0	0	1	
4974	0	1	0	0	－	1．12\％	0	1	174240	0	0	0	\＄844528	0	0	1	0
4975 4976	\bigcirc	\bigcirc	\bigcirc	0 1	${ }_{0}^{1}$	${ }_{\text {l }}^{1.12 \%}$	\bigcirc	1	288674 29572	\bigcirc	${ }_{0}^{1}$	1		0	0	1	0
4977	0	1	0	0		${ }^{1.11 \%}$	0	1	108900	0	0	0	\＄522492	0	0	1	0
4978	0	0	0	0	1	1．13\％	0	1	37462	0	1	0	\＄922569	0	0	1	0
4979	0	1	0	0	0	1．10\％	0	1	${ }^{40946}$	0	1	0	\＄1341919	0	0	1	0
4980	0	0	0	－	0	1．17\％	0	1	40946	1	0	0	567973	0	0	1	0
4981	0	1	0	0	－	1．18\％	0	1	136778	1	0	0	\＄214652	0	0	1	0
${ }_{4}^{4982}$	0	0	0	0	O	1．12\％	0	1	108464 85558	0	0	1	\＄103387	0	0	1	0
4983	0	0	1	0	0	${ }^{2.37 \%}$	1	1	485258 204296	1	0	0	\＄214652	0	0	1	0
4984 4985	0	1	0	0	0	${ }_{\text {l }}^{1.111 \%}$	0	${ }_{1}^{1}$	204296 173369	1	0	\bigcirc	5388753 $\$ 47728$	0	0	1	\bigcirc
4986	0	0	－	，	1	1．12\％	0	1	235224	1	0	。	\＄372649	0	－	1	
4987		0	0	1	0	1．10\％	－	1	155945	1	0	0	537014	0	0	1	0
4988 4989	\bigcirc	\bigcirc	\bigcirc	1	\bigcirc	1.10% 1.16% 10	\bigcirc	1	148540 217800	1	${ }_{0}$	\bigcirc	5328545 $\$ 90399$	\bigcirc	0	1	\bigcirc
4990		0		0	1	1．15\％	0	1	87991	\bigcirc	0	。	\＄814389	－	0	1	0
4991	0	1	0	0	0	1．15\％	0	1	320602	0	0	0	\＄115 144	0	0	1	0
4992	0	0	－	0	1	1．13\％	0	1	41839	0	0	0	\＄590 577	0	0	1	
4993	0	0		0	0	1．15\％	0	1	257875	0	0	0	5801564	0	0	1	0
4994	0	－	0	0	0	1．13\％		1	47916 217800	1	0	0	$\$ 255814$ $\$ 60836$	0	0	1	0
4995 4996	0	\bigcirc	1	0	0	${ }_{\text {l }}^{\text {1．14\％}}$	0	1	217800 45302	${ }_{0}$	${ }_{0}$	${ }_{0}^{1}$	$\$ 608306$ $\$ 555734$	\bigcirc	\bigcirc	1	\bigcirc
4997	－	，		0	1	1．13\％	0	1	87120	1	0	0	\＄263489	－	0	1	0
4998	0	1	0	－	0	1．13\％	0	1	47916	0	1	0	\＄1153 110	0	0	1	0
4999	0	0	0	0	1	1．13\％	0	1	99752	0	1	0	\＄1 199984	0		1	0
5000 5001	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{1}$	${ }_{\text {1．12\％}}^{1.12 \%}$	\bigcirc	1	118483 104549	\bigcirc	1	\bigcirc	\＄1734352 $\$ 1333508$	\bigcirc	\bigcirc	1	\bigcirc
5002		0	0			1．14\％	0	1	181210	1	0	0	\＄176568		0	1	0
5003	0	0	0	1	0	1．10\％	0	1	174240	0	1	0	\＄1620485	0	0	1	0
5004	0	0	1	0	0	1．15\％	0	1	98010	1	0	0	\＄90039	0	0	1	0
5005	0	1	0	0	0	1．14\％	0	1	65340	1	0	0	535775	0		1	
5006	0	1	0	0	0	${ }^{1.111 \%}$	0	1	$\begin{array}{r}86684 \\ \hline 10581\end{array}$	1	0	0	5212823	0	0	1	0
5007 5008	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }_{1}^{0}$	0	${ }_{\text {1．13\％}}^{1.12 \%}$	0	1	105851 32000	0	\bigcirc	0		\bigcirc	${ }_{0}$	1	0
5009		1	－	0		1．12\％	0	1	87120		1	0	\＄1185 340	0	0	1	0
5010		0	0	0	0	1．12\％	0	1	231304	1	0	0	5236030	0	0	1	0
5011 5012	\bigcirc	\bigcirc	1	0	0	${ }_{\text {1．113\％}}$	0	1	－226512	1	\bigcirc	\bigcirc		0	0	1	0
5012 5013	\bigcirc	\bigcirc	${ }_{0}$	${ }_{1}$	${ }_{0}^{1}$	${ }^{1.11 \%}$	\bigcirc	1	272250 50094	1	\bigcirc	\bigcirc	S357592 $\$ 210164$	0	\bigcirc	1	\bigcirc
5014		0	－	0	1	1．12\％	0	1	232610	0	1	0	\＄2836328	0	0	1	0
5015		0	0	0	1	1．10\％	0	1	${ }^{311454}$	0	0	1	\＄800000	0	0	1	0
5016	0	0	0	0	0	1．10\％	0	1	32968	0	1	0	\＄1299984	0	0	1	0
5017	0	0	0	0	1	1．12\％	0	1	86249	1	0	0	\＄173844	0	0	1	0
${ }_{5018}^{5019}$	\bigcirc	\bigcirc	\bigcirc	1	0	1．10\％	0	1	52272 43560	0	0	1	\＄1491111	0	0	1	0
5019 5020	\bigcirc	0 1	0	0	\bigcirc	－ $1.1 .18 \%$	0	1 0	43560 169448	${ }_{0}$	\bigcirc	1	$\$ 559553$ $\$ 662709$	0	0	1	\bigcirc
5021	0	0	0	0	0	1．12\％	0	1	81457	1	0	0	\＄211515	0	0	1	
5022		0	0	1	0	1．13\％	0	1	28091	0	1	0	\＄2156222	0	0	1	0
5023	\bigcirc	0	0	1	0	1．09\％	0	1	${ }^{223898}$	\bigcirc	0	－	$\begin{array}{r}5877650 \\ \$ 5731 \\ \hline\end{array}$	0	0	1	0
5024 5025	\bigcirc	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	1．1．8\％	\bigcirc	1	${ }_{4}^{9140827}$	\bigcirc	${ }_{0}$	${ }_{1}^{0}$	$\begin{array}{r}\text { S537 } 731 \\ \mathbf{S 2 7 5 0 7 9 4} \\ \hline\end{array}$	\bigcirc	\bigcirc	1	0
5026	0	0	0		1	1．10\％	0	1	204296		0	\bigcirc	\＄311969	0	0		
5027	0	0	0	0	0	0．99\％	0	1	204732	－	1	0	\＄1677 398	0	0	1	0
5028 5029 5029	0	0	0	1	1	1．08\％	0	1	124146	\bigcirc	0	1	\＄1966746	0	0	1	0
5029 5030	\bigcirc	${ }_{0}^{1}$	0	0	${ }_{0}$	${ }_{\text {l }}^{\text {1．11\％\％}}$	0	1	27007 13068	\bigcirc	${ }_{0}^{1}$	\bigcirc		0	\bigcirc	1	${ }_{0}$
5031	0	0	0		1	1．10\％	0	1	230868		1		\＄2216888	0	0	1	0
5032	0	0	0	0	1	1．70\％	0	1	142877	0	0	1	\＄421724	0	0	1	0
5033 5034	0	1	0	0	0	1．11\％	0	1	53143	0	0	－	\＄546933	0	0	1	0
5034 5035	${ }_{1}^{0}$	0	0	0	${ }_{0}^{1}$	－	0	1	206474 217800	0	1	0	$\$ 1033274$ $\$ 1863590$	\bigcirc	\bigcirc	1	0
5036	0	1	0	－	0	1．12\％	0	1	140263	0	1	0	\＄947492	0	0	1	0
5037	0	0		0	1	${ }^{1.11 \%}$	0	1	284882		0		\＄488999	0	0	1	0
5038 5039	\bigcirc	${ }_{0}^{1}$	0	${ }_{1}$	\bigcirc	－${ }_{\text {1．1．13\％}}^{1.123}$	\bigcirc	1	317552 29621	${ }_{1}^{0}$	${ }_{0}^{1}$	0	¢ ${ }_{\substack{\text { \＄1006439 } \\ \$ 4587}}^{\text {S }}$	0	\bigcirc	1	0
5040	0	0	－	0	1	1．13\％	－	，	172062		0		\＄333 126	0	0	1	0
5041		1	0		0	1．09\％	－	1	139392	0	1	0	\＄1199340	0	0	1	0
5042	0	1	0	0	0	1．66\％	1	1	142006		1		\＄1108444	0	0	1	0
5043	0	1	0	0	0	${ }^{1.14 \%}$	0	0	57999 55321	O	0	1	\＄434900	0	0	1	0
5044 5045	0	${ }_{0}^{1}$	\bigcirc	${ }_{0}$	0 1	1．1．12\％	${ }_{0}$	1	55321 215622	0	${ }_{0}^{1}$	1 1		0	0	1	\bigcirc
5046	－	0	0		1	1．10\％		1	113692	0	0	0	\＄1020 872		0	1	0
5047	0	0	0	1	1	1．11\％	0	1	101930		0	1	\＄702874	0	0	1	0
5048 5049	\bigcirc	\bigcirc	0	\bigcirc	${ }_{0}^{1}$	－	\bigcirc	1	205603 335412	${ }_{1}$	\bigcirc	0	（ ${ }_{\text {S1 }} 1068000$	\bigcirc	\bigcirc	1	\bigcirc
5050		0	1		0	1．10\％		1	65340	1	0	。	\＄459 224	0	0	1	－
5051	－	0	0	0	1	1．09\％	－	1	128938 157270	0	1	0	\＄2183522	0	0	1	
5052 5053	－	0	0	0	1	${ }^{1.1 .13 \%}$	0	1	167270	1	0	－	\＄361357	0	0	1	0
5054 5054	0	${ }_{0}^{\circ}$	\bigcirc	1	${ }_{0}$	${ }^{1.09 \%}$	${ }_{0}^{0}$	1	66211 470012	${ }_{0}^{1}$	${ }_{1}^{0}$	0	${ }_{\text {S }}^{53824296}$	0	0	1	0
5055	0	0	0	0	，	1．13\％	0	1	24829	－	${ }_{0}$		\＄520772	0	0	1	0
5056 5057	－	0	0	0	1	${ }^{1.111 \%}$	0	1	${ }^{118919}$	1	0	－	\＄431789	0	0	1	0
5057 5058	0	－	0	1	0	1．1．18\％		1	47045 87120	1	0	\bigcirc	${ }^{\text {S }} 14631616$	0	0	1	\bigcirc
5058 5059	0	\bigcirc	1	1	0	${ }^{1.111 \%}$	0	1	88787	1	1	\bigcirc		${ }_{0}$	${ }_{0}$	1	${ }_{0}$
5060		0	0	0	0	1．12\％	0	1	10890		0	0	\＄259 725	0	0	1	
5061 5062	\bigcirc	0 1	\bigcirc	0	0	1．10\％	0	1	107593 31363	0	0	${ }_{1}$	S500 646 $\$ 401642$	－	0		0
5062 5063	0	1	0	0	0	－${ }_{\text {1．1．14\％}}^{1.12 \%}$	0	1	31363 6098	\bigcirc	\bigcirc	1	S401642 $\$ 89571$	0	\bigcirc	1	0
5064	\bigcirc	0	0	0		1．13\％	0	1	261360		0	1	\＄664 251	0	0	1	0
5065 5066	0	0	0		1	1．08\％	0		348880	0	0	0	\＄980707			1	
5066 5067	\bigcirc	\bigcirc	0	1	${ }_{0}$	1．1．8\％${ }_{\text {1．13\％}}$	0	1	131987 69696	\bigcirc	1	1		0	\bigcirc	1	0
5068	0	0	0	1	－	1．16\％		1	175982	1	0	\bigcirc	\＄147925	0	0	1	0
						${ }_{\text {1．11\％}}^{1.12 \%}$		${ }_{1}^{1}$	202118 39204		${ }_{1}$	0	S190 534 S1138 110	0	0	1	0

observation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％－90\％	LTV 70\％．78\％	$\begin{gathered} \text { LTV BELow } \\ 70 \% \end{gathered}$	total tax burden	parcel in SCEIP $=1$	CONVENTIONAL LOAN＝ 1	Lot size	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	sold during 20042007	Sold 2008－2012	PRICE ADJUST．TO 2012	$\begin{gathered} \text { ZIP CODE } \\ \text { Z95403 } \end{gathered}$	$\begin{aligned} & \text { ZIP CODE } \\ & 95404 \end{aligned}$	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	ZIP CODE 94928
5201	－ 1	0	0	0	\％	1．16\％	¢	－	17860	－	－	0	\＄107280	0	5	1	0
5202	0	1	0	0	0	1．30\％	0	0	19602	0	0	1	\＄486991	0	0	1	0
5203	0	0	0	0	0	1．13\％	0	1	43560	0	1	0	\＄1376318	0	0	1	0
5204	0	0	0	0	1	1．12\％	0	1	43560	1	0	0	\＄192808	0	0	1	0
5205	0	0	0	0	1	1．15\％	0	1	46174	0	0	0	\＄301315	0	0	1	0
5206 5027	0	0	1	0	0	1．18\％	0	1	39204	0	0	0	\＄199331	0	0	1	0
5207	0	0		1	0	1．13\％	0	1	47045	0	1	0	\＄1585292	0	0	1	0
5208	0	0		0	1	1．14\％	0	1	66211	0	0	1	\＄590 564	0	0	1	0
5209	0	0	0	0	0	1．12\％	0	1	57499	0	0	1	5760858	0	0	1	0
5210	0	1	0	0		1．1．6\％	0	1	78408	1	0		\＄67079	0	0	1	0
5211	0		0	0	1	1．13\％	0	1	13504	0	0	0	\＄384292	0	0	1	0
5212	0	0	0	0	0	1．14\％	0	1	71438	0	1	0	\＄1232888	0	0	1	0
5213	0			0	0	1．18\％	0	1	30928	0	0	1	\＄45000	0	0	1	0
5214	0		0	0	1	1．13\％	0	1	47045	0	0	0	\＄673314	0	0	1	0
5215	0	0	0	0	1	1．14\％	0	1	65776	0	1	0	\＄129261	0	0	1	0
5216	0	0	－	0	1	1．12\％	0	1	95396	0	1		\＄1102679	0	0	1	0
5217	0	1	－	0	0	1．15\％	0	1	103673	1	0	0	\＄205 522	0	0	1	0
5218	0	，	0	1	0	${ }^{1.14 \%}$	0	1	46609 47480	0	1	0	\＄1423106	0	0	1	0
5219	0	0		0	0	1．15\％	0	1	47480	1	0	0	S140 386 $\$ 5858$	0	0	1	0
5220	0	1	0	0	0	1．13\％	0	1	12197	0	0	0	S505 481 $\$ 16522$	0	0	1	0
5221	0	0	0	0	0	1．16\％	0	1	19602	1	0	0	\＄165622	0	0	1	0
5222	0	0	0	1	0	1．14\％	0	1	9583	0	1	0	\＄1387482	0	0	1	0
5223	0	0	0	1	0	1．13\％	0	1	217800	0	0	1	\＄574 458	0	0	1	0
5224	0	0	0	0	1	${ }^{1.14 \%}$	1	1	228690	1	0	0	\＄224410	0	0	1	0
5225	0	0	0	1	1	${ }^{1.14 \%}$	0	1	${ }^{21780}$	1	0	0	\＄187550	0	\bigcirc	1	\bigcirc
5226	0	0		0	0	1．12\％	0	1	44431	0	1	0	\＄906162	0	0	1	0
5227	0	0	0	0	0	1．11\％	0	1	41818	0	1	0	\＄1372999	0	\bigcirc	1	0
5228	0	1	0	0	0	1．13\％	0	0	13241	0	0	1	\＄547614	0	0	1	0
5229	0	0	0	0	0	1．14\％	0	1	18731	0	0	1	\＄437670	0	0	1	0
5230	0	1	0	0	0	${ }^{1.12 \%}$	0	1	${ }^{21780}$	0	0	1	\＄585 195	0	0	1	0
5231	0	0	0	0	1	1．16\％	0	1	21780	0	1	0	\＄951 392	0	\bigcirc	1	0
5232 5233	0	0	0	0	1	1．14\％\％	\bigcirc	1	$\begin{array}{r}43560 \\ \hline 4033\end{array}$	0	0	0	\＄512390	0	\bigcirc	1	0
5233 5234	0	${ }_{0}^{1}$	\bigcirc	0	0	－${ }_{\text {1．14\％}}^{1.14 \%}$	0	1	64033 18731	0	1	0	5856252 $\$ 842216$	\bigcirc	\bigcirc	1	\bigcirc
${ }_{5235}$	0	0	。	1	0	${ }_{1.12 \%}^{112 \%}$	。	1	47916	0	${ }_{0}$	1	\＄752577	0	0	1	${ }_{0}$
5236	0	0		0	1	1．13\％	0	1	47045	1	0	0	\＄166508	0	0	1	0
5237	0	0	0	0	1	1．13\％	0	1	49658	0	0	0	5404141	0	0	1	0
5238	0	1	0	0	0	1．15\％	0	1	47916	1	0	0	\＄211614	0	0	1	0
5239 5290	0		0	0	1	1．14\％	0	1	44867	1	0	0	\＄340 516	0	0	1	
5240 5241	\bigcirc	${ }_{1}^{0}$	0	\bigcirc	1	1.13% 1.14% 1	\bigcirc	1	56192 33106	\bigcirc	${ }_{1}$	0	S550 285 $\$ 991200$	\bigcirc	\bigcirc	1	0
5242		0	0	0	0	1．15\％	0	1	18731	0	0	1	\＄493072	。	。	1	0
5243	0	－	0	1	0	1．12\％	0	1	51836	0	1	0	\＄1402 182	0	0	1	0
5244	0	－	0	0	0	1．18\％	0	1	19602	0	0	1	\＄298219	0	0	1	0
5245	0	－	0	0	0	1．15\％	0	1	${ }^{33106}$	1	0	0	563501	0	0	1	0
5246	0	0	0	0	0	1．16\％	0	1	32670	1	0	0	\＄114544	0	0	1	0
5247 5248 524	0	\bigcirc	0	0	1	${ }^{1.14 \%}$	0	1	33390 1886515	－	0	0	\＄589951	0	0	1	0
5248 5249	0	${ }_{1}^{0}$	0	0	${ }_{0}^{1}$	－${ }_{\text {1．1．15\％}}$	\bigcirc	1	188615 168142	\bigcirc	${ }_{0}^{1}$	\bigcirc	$\underset{\substack{\text { \＄1 } 1121341 \\ \$ 801564}}{\text { S }}$	\bigcirc	0	1	\bigcirc
5250			0		0	1．13\％	0	1	142006		0	。	\＄824429	。	－	1	。
5251	0		0	1	0	1．14\％	0	1	53143	0	1	0	\＄1146349	0	0	1	0
5252	0	0		0	1	1．13\％	1	1	115434	0	0	1	\＄635 661	0	0	1	0
5253	0	0	0	0	0	1．15\％	0	1	${ }^{43996}$	0	0	1	\＄498812	0	0	1	0
5254 5255	0	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	\bigcirc	－ $\begin{aligned} & 1.1 .13 \% \\ & 1.15 \%\end{aligned}$	\bigcirc	1	43560 21780	1	${ }_{0}^{1}$	0	$\$ 182626$ $\$ 151718$	\bigcirc	\bigcirc	1	0
5256	0	0	0	0	1	1．13\％	0	1	107593		1	0	\＄1291597	。	0	1	。
5257	0	0	0	1	0	1．15\％	0	1	43560	0	1	，	\＄1354 149	0	0	1	0
5258	0	0	0	0	1	1．15\％	0	1	101930	0	0	1	S649 154	0	0	1	0
5259 5260	0	\bigcirc	\bigcirc	\bigcirc	1	1．16\％	\bigcirc	1	302742 16884	${ }_{1}$	\bigcirc	1	$\begin{array}{r}5977527 \\ \$ 309258 \\ \hline\end{array}$	0	\bigcirc	1	\bigcirc
5260 5261	0	0	\bigcirc	${ }_{1}$	0	－${ }_{\text {l }}^{\text {1．1．13\％}}$	\bigcirc	1	169884 16984	1	\bigcirc	\bigcirc	$\$ 309258$ $\$ 9888$	0	0	1	0
5262	0	0	0		1	1．11\％	0	1	182952	1	0	0	\＄182894	0	－	1	0
5263	0	0	0	0	0	1．13\％	0	1	${ }_{6} 6113$	0	1	0	\＄1578729	0	0	1	0
5264	0	0	0	1	0	1．13\％	0	1	57499		0	0	\＄873941	0	0	1	0
5265 5265 526	0	0	0	0	\bigcirc	1．15\％	\bigcirc	1	${ }_{40}^{40} 075$	0	\bigcirc	\bigcirc	$\$ 319857$ $\$ 28988$	\bigcirc	0	1	0
5266 5267	0	0	\bigcirc	\bigcirc	${ }_{1}^{0}$	－${ }_{\text {1．20\％}}$	0	1	40075 60984	1	\bigcirc	0	$\$ 289638$ $\$ 154736$	－	0	1	0
5268		1	0		0	1．13\％	0		${ }^{42} 689$	0	0	1	\＄598334	0		1	0
5269	0	0	0	0	1	1．12\％	0	1	80586	0	0	0	\＄875092	0	0	1	
5270 5271 5271	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	\bigcirc	1．15\％	\bigcirc	1	31799 37897	0	1	\bigcirc	5857812 $\$ 190001$	\bigcirc	0	1	\bigcirc
5271 5272	0	。	0	${ }_{0}^{1}$	－	${ }_{\text {l }}^{1.1 .14 \%}$	0	1	37897 55321	1	0	0	$\$ 190301$ $\$ 287580$	0	\bigcirc	1	\bigcirc
5273	0		。		0	1．14\％	0	1	54886	1	－	0	S164832	0	0	1	0
5274	0	0	0	0	1	1．14\％	0	1	54450	1	0	0	\＄166508	0	0	1	0
5275	0	1	0	0	0	1．11\％	0	1	178160	0	1	0	\＄2499002	0	0	1	0
5276	0	1	0	0	0	1．13\％	0	1	93654		1	0	\＄1810458	0	0	1	0
5277 5278 50	－	0	1	0	1	${ }^{1.14 \%}$	0	1	87991 63998	0	1	0	\＄1310608	0	\bigcirc	1	0
5278 5279	0	0	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }_{\text {l }}^{\text {1．1．13\％}}$	0	1	63598 44867	1	0	0	$\$ 202291$ $\$ 109562$	\bigcirc	\bigcirc	1	\bigcirc
5280	0	1	0	0	－	1．13\％	0	1	85813			0	\＄885568		0	1	0
5281	0	0	0	0	1	1．11\％	0	1	167706	0	0	0	\＄924028	0	0	1	0
5282 5283 58	\bigcirc	0	\bigcirc	1	1	－ 1.10%	0	1	164221 92783	1	\bigcirc	0	\＄311918 $\$ 191789$	\bigcirc	\bigcirc	1	\bigcirc
5283 5284	\bigcirc	0	0	${ }_{1}^{1}$	${ }_{0}^{1}$	${ }_{\text {1．15\％}}^{1.15 \%}$	0	1	92783 118919	1	0	0	\＄191789 $\$ 99276$	0	\bigcirc	1	0
5285	0	0	0	0	0	1．13\％	。	1	28314	0	0	0	\＄464029	0	0	1	0
5286	0	0	0	0	0	1．15\％	0	1	${ }^{46609}$	0	0	1	\＄401642	0	0	1	0
5287	0	0	0	1	0	1．14\％	0	1	88427	0	1	0	\＄1459451	0	0	1	0
5288 5289 5	\bigcirc	0	\bigcirc	\bigcirc	1	1．12\％	\bigcirc	1	98881 86294	\bigcirc	0	0	（ $\begin{aligned} & \text { \＄674482 } \\ & \$ 1854434\end{aligned}$	\bigcirc	\bigcirc	1	0
5290 5290	${ }_{0}$	0	0	1	0	${ }^{1.112 \%}$	${ }_{0}$	1	${ }_{40511}^{8629}$	0	${ }_{0}^{1}$	${ }_{0}$	$\$ 185434$ $\$ 789880$	\bigcirc	\bigcirc	1	\bigcirc
5291	－	－	0	0	0	1．12\％	0	1	80586			1	\＄644251	0	0	1	0
5292	0	0	0	0	1	1．14\％	0	0	40946	0	0	1	\＄551254	0	0	1	0
5293 5294	\bigcirc	\bigcirc	\bigcirc	${ }_{1}$	0	－${ }_{\text {1．1．15\％}}^{1.12 \%}$	\bigcirc	1	62726 114127	${ }_{0}$	0	\bigcirc	$\$ 656529$ $\$ 806359$	\bigcirc	\bigcirc	1	0
5295	0	0	0	0	1	1．14\％	0	1	22216	0	1	0	\＄1107 083	0	0	1	0
5296	0	0	0	0	1	${ }^{1.113 \%}$	0	1	${ }^{131116}$	1	－	0	\＄2826866	0	0	1	
5297 5298	0	0	\bigcirc	1	0 1	1．1．3\％	0	1	227383 287932	1	0	0	\＄49862 S142761	0	0	1	0
5298 5299	${ }_{0}$	${ }_{0}$	1	${ }_{0}$	1	${ }_{\text {1．13\％}}$	${ }_{0}$	1	287932 14134	1	0	${ }_{0}$	S $\$ 39897988$	0	0	1	${ }_{0}$
5300	0	0	0	0	1	1．15\％	0	1	52788	1	0	0	\＄183560			1	0
5301	0	0	0	0	0	${ }^{1.62 \%}$	1	1	${ }_{2}^{240451}$	0	0	0	\＄ 5735350	O	0	1	0
5302 5303	${ }_{0}$	0	${ }_{0}$	${ }_{0}$	${ }_{0}^{1}$	1．57\％	${ }_{0}^{1}$	1	55321 42689	${ }_{1}$	${ }_{0}^{1}$	0	$\$ 162666$ $\$ 232775$	${ }_{0}$	${ }_{0}$	1	0
5304	0	0			1	1．14\％		1	42689		0	1	\＄562 299	0		1	0
5305	0	0	0		0	1．14\％	0	1	89734		0		\＄154774			1	0
5306 5307	0	\bigcirc	1	0	0	${ }^{1.12 \%}$	0	1	248292 100188	0	1			0	0	1	
5307 5308	\bigcirc	\bigcirc	\bigcirc	\bigcirc	：	1．12\％	\bigcirc	1	100188 101495	\bigcirc	\bigcirc	${ }_{0}^{1}$	（ 54990000	\bigcirc	0	1	\bigcirc
5309		0	0	O	－	1．12\％	0	1	100624	1	0	0	\＄338019	0	0	1	－
5310 5311	0	1	0	0	0	1．14\％	0	0	47045	0	0	1	\＄572 340	0	0	1	0
5311 5312	0	\bigcirc	0	\bigcirc	1	1．14\％	\bigcirc	1	44867 65342	\bigcirc	0	1	\＄683652	0	\bigcirc	1	0
5313	0	1	1			1．13\％		1	${ }_{29594}^{6934}$	1	${ }_{0}$	0	\＄126432	\bigcirc	0	1	${ }_{0}$
${ }_{5314}^{5315}$	0	0	－	，	0	${ }^{1.15 \%}$	1	1	${ }^{246114}$	－	0	，	5872060 $\$ 55324$	0	－	1	0
5315 5316	\bigcirc	\bigcirc	0	0	1	1．55\％	${ }_{0}^{1}$	1	26572 54014	\bigcirc	\bigcirc	\bigcirc	S555 324 $\$ 52892$	${ }_{0}$	\bigcirc	1	\bigcirc
5316 5317	0	0	0	0	1	${ }_{1.14 \%}^{1.13 \%}$	0	1	54014 108900	0	0	0	\＄528 492 $\$ 872102$	0	0	1	\bigcirc
5318	0	0	－	0	1	1．13\％	－	1	27878	O			\＄1073455	0	0	1	0
5319 5320	－	1	－	－	0	${ }_{\text {1．15\％}}$	0	1	59242 43124	1	－	1	5451847 567079			1	
5320 5321	0	1	0	\bigcirc	\bigcirc	${ }^{1.17 \%}$ 1．19\％	0	1	43124 5227	1	0	0	$\$ 67079$ $\$ 92194$	0	0	1	0
5322	0	0	0		0	1．16\％	0	1	17424	1	0		S127907	0	0	1	
5323 5324 532	\bigcirc	0	\bigcirc	0	－	1．1．5\％	\bigcirc		30492 23958 18	1		0	S128560 S15285	0	0	1	\bigcirc
5324 5325	0	0	0	\bigcirc	${ }_{1}^{0}$	－${ }_{\text {1．14\％}}^{1.14 \%}$	0	1	23958 17424	1	0	1	\＄152865 $\$ 773300$	0	0	1	\bigcirc
5326 5232		1	0		0	${ }^{1.1 .14 \%}$	0	1	8772	0	1	${ }_{0}$	${ }_{\text {S1 }} \mathbf{5 1 7 3 1 0 3}$	0		1	0
5327 5328 538	0	0	0	0	0	1．12\％	0	1	64469 20473	\bigcirc	\bigcirc	1	\＄949 052 S410	0	\bigcirc	1	${ }_{0}$
5329 5330		0	0	1	0	${ }^{1.1 .14 \%}$	0	1	${ }_{55321}^{2039}$	0	0	0	（ 5548270	0	0	1	0

observation	PROPERTY DURESS $=1$	LTV＿90\％	LTV 81\％－9\％	LTV 70\％．78\％	$\begin{gathered} \text { LTV BELOW } \\ 70 \% \end{gathered}$	total tax burden	PARCEL IN SCEIP＝ 1	conventional LOAN $=1$	Lot SIIE	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	sold during 2004＿2007	SOLD 2008－2012	PRICE ADJUST．To 2012	$\begin{gathered} \text { ZIP CODE } \\ \text { Z95403 } \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95404 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
5591	${ }_{0}$	0	0	1	0	1．12\％	0	1	145490	${ }_{0}$	1	0	\＄1341306				
5592	0	0	1	0	0	1．18\％	1	0	92347	0	0	1	5426745	0	0	1	0
5593	0	0	0	0	0	1．13\％	0	1	115434	0	0	0	5569431	0	0	1	0
5594	0	0	0	0	1	1．13\％	0	1	84071	0	0	0	5947128	0	0	1	0
5595	0	0	0	1	0	1．12\％	0	1	871200	1	0	0	\＄51427	0	0	1	0
5596	0	1	0	0	0	1．12\％	0	1	30928	0	1	0	\＄1235609	0	0	1	0
5597	0	0	0	0	1	${ }^{1.12 \%}$	0	1	${ }^{34412}$	0	0	0	\＄572 079	0	0	1	0
5598	0	0	0	0	1	1．16\％	0	1	25700	1	0	0	\＄83848	0	0	1	0
5599	0	0	0	0	0	1．14\％	0	1	25700	1	0	0	\＄139 129	0	0	1	0
5600	0	0	0	0	0	${ }^{1.14 \%}$	0	1	${ }^{41382}$	1	0	0	\＄1396888	0	0	1	0
5601	0	0	0	0	1	1．14\％		1	57935	1	0	0	5115822		0	1	0
5602	0	0	0	1	0	1．13\％	0	1	34848	0	0	1	5930188	0	0	1	0
5603 5604	0	0	0	0	1	${ }^{1.14 \%}$	0	1	34848 34848	0	1	0	\＄1044971	0	0	1	0
5604	0	0	0	0	0	${ }^{1.12 \%}$	0	1	${ }^{34848}$	0	0	0	\＄615666	0	0	1	0
5605	0	1	0	0	0	1．13\％	0	1	${ }^{34} 848$	0	1	0	\＄1591854	0	0	1	0
5606	0	0	0	0	0	1．13\％	0	1	35719	0	1	0	\＄1 186759	0	0	1	0
5607	0	0	0	0	1	1．13\％	0	1	${ }^{477853}$	0	0	0	\＄1441639	0	0	1	0
5608	0	0	0	1	0	1．12\％	0	1	314068	0	1	0	\＄2180618	0	0	1	0
5609 5610	0	0	0	0	0	1．57\％	1	1	$\begin{array}{r}209959 \\ \hline 1959 \\ \hline\end{array}$	0	1	0	\＄2062 273	0	0	1	0
5610	0	0	0	0	1	1．14\％	0	1	19602	1	0	0	5217567	0	0	1	0
5611	0	0	0	0	1	1．14\％	0	1	59242	1	0	0	\＄170419	0	0	1	0
${ }_{5612}^{5612}$	0	0	0	0	1	1．14\％	0	1	85378	1	0	0	\＄156450	0	0	1	0
${ }_{5613}$	0	0	1		0	1．14\％	0	1	${ }^{229997}$	0	0	0	\＄343247	0	0	1	0
5614 5615	\bigcirc	${ }_{0}^{1}$	0	0	${ }_{1}$	－	0	1	62291 35970	0	0	0	S449655 $\$ 227971$	\bigcirc	0	1	\bigcirc
5616	0	1	0	－	0	1．13\％	0	1	54450	0	1	0	\＄857812	0	0	1	0
5617	0	1	0	0	0	1．14\％	0	1	46174	0	0	1	5486410	0	0	1	0
5618	0	0	0	0	1	1．16\％	0	1	111949	0	0	1	\＄570000	0	0	1	0
5619	0	0	0	0	1	1．12\％	1	1	111078	0	1	0	\＄2675450	0	0	1	0
5620	0	0	0	1	0	1．13\％	0	1	229561	0	1	0	\＄2549967	0	0	1	0
5621 5622	0	1	0	0	0	1．14\％\％	0	1	－95832	0	1	0	\＄1265474	0	0	1	\bigcirc
5622 5623	\bigcirc	\bigcirc	0	0	1	1．13\％	0	1	365904 87120	\bigcirc	0	0	$\$ 806006$ $\$ 127423$	0	0	1	\bigcirc
5624	0	0	0	－	1	1．13\％	0	1	87120	。	0	1	\＄897501	0	－	1	。
5625	0	0	0	0	1	1．13\％	0	1	87120	1	0	0	\＄293961	0	0	1	0
5626 5627	\bigcirc	0	0	${ }_{0}$	${ }_{1}$	1．13\％	\bigcirc	1	37462 114563	\bigcirc	\bigcirc	${ }_{1}$	S1070 890 $\$ 89514$	0	0	1	0
5628	0	0	－	0	1	${ }^{1.12 \%}$	0	1	${ }_{76230}^{11463}$	\bigcirc	\bigcirc	${ }_{0}^{1}$	$\begin{array}{r}\text { S } \\ \$ 10073949 \\ \hline 1049\end{array}$	${ }_{0}$	0	1	0
5629	0	0	0	0	1	1．13\％	0	1	65776	0	0	0	588607	0	0	1	0
5630	0	0	0	0	0	1．14\％	0	1	76666	0	0	0	\＄897752	0	0	1	0
5631	0	0	0	1	0	1．14\％	0	1	${ }^{61855}$	1	0	0	\＄213155	0	0	1	0
5632 5633		0	0	1	1	${ }^{1.12 \%}$	0	1	278784 260 29	0	1	\bigcirc	\＄1793607	0	0	1	0
5633 5634	0	0	0	0	1	${ }^{1.1 .13 \%}$	0	1	$\begin{array}{r}260489 \\ \hline 50959 \\ \hline\end{array}$	0	0	0	\＄658257	0	0	1	0
5634 5635	\bigcirc	\bigcirc	0	${ }_{1}$	${ }_{0}^{1}$	${ }_{\text {l }}^{1.12 \% \%}$	0	1	509652 76230	\bigcirc	\bigcirc	1	\＄2575212	\bigcirc	\bigcirc	1	\bigcirc
5636	0	0	0	1	1	1．14\％	0	1	161608	。	1	0	\＄1169744	0	0	1	0
5637	0	1	0	0	0	1．14\％	0	1	56192	0	0	0	\＄580 251			1	0
5638 5639	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }^{1.1 .14 \%}$	\bigcirc	1	43560 46609	\bigcirc	${ }_{1}$	\bigcirc	（ $\begin{gathered}\text { \＄486739 } \\ \$ 123372\end{gathered}$	\bigcirc	0	1	\bigcirc
5640	0	0	。	0	0	1．13\％	0	1	44867	。	1	。	\＄1370776		0	1	0
5641	0	0		1	1	1．13\％	0	1	46174	0	0	0	\＄509 918	0	0	1	0
5642	0	0	－	1	0	1．15\％	0	1	61420	0	0	1	\＄643 178	0	0	1	0
5643	0	1	0	0	0	1．12\％	0	1	266587	0	0	0	5949936	0	0	1	0
5644	0	1	0	0	0	${ }^{1.13 \%}$	0	1	${ }^{28314}$	0	0	0	\＄686139	0	0	1	0
5645 5646	0	0	0	0	${ }_{0}^{1}$	－${ }_{\text {1．1．13\％}}$	0	1	59242 57935	\bigcirc	${ }_{1}$	${ }_{0}$	5755343 S951 392	\bigcirc	\bigcirc	1	\bigcirc
5647			0	0	1	1．15\％		1	166835	1	${ }_{0}$	。	557029	0	0	1	。
5648	0	0	0	0	0	1．10\％	0	1	104544	0	1	0	\＄1504668	0	0	1	0
5649	0	0	0	0	1	1．09\％	0	1	335488	0	0	1	5961008	0	0	1	0
5650 5651	0	${ }_{0}^{1}$	\bigcirc	\bigcirc	${ }_{1}$	li．1．1\％\％	0	1	131116 291852 20，	1	\bigcirc	\bigcirc	\＄187832	\bigcirc	0	1	\bigcirc
5651		\bigcirc	0	，	1	1．1．9\％	0	1	${ }_{364162}^{29182}$	${ }_{0}$	\bigcirc	0	\＄$\$ 1651222$	0	0	1	\bigcirc
5653	0	0	0	0		1．05\％	0	1	${ }^{91476}$	－	0	0	\＄343247	0	0	1	0
5654	1	0	0	1		1．11\％	0	1	196022	0	1	0	\＄1358693		0	1	0
5655	0	0	0	0	1	1．09\％	0	1	131116	0	1	0	\＄2156222	0	0	1	0
5656	0	0	0	0	0	1．09\％	0	1	83635	0	1	0	\＄1900981	0	0	1	0
5657 5658	0	\bigcirc	\bigcirc	0 1	${ }_{0}^{1}$	${ }_{\text {1．13\％}}^{1.12 \%}$	0	1	${ }_{95}^{44867}$	${ }_{0}^{1}$	\bigcirc	${ }_{1}^{0}$	\＄199762	\bigcirc	${ }_{0}$	1	\bigcirc
5659		0	0		1	1．11\％	0	1	32670	0	0	1	5451847	0	0	1	0
5660		0	0	0		1．17\％	0	1	45302	0	0	1	5514102	0	0	1	0
5661	0	1	0	0	0	1．13\％	0	1	65340	0	1	0	\＄1335209	0	0	1	0
5662 5663	\bigcirc	1	${ }_{1}$	\bigcirc	\bigcirc	${ }^{1.11 \% \%}$	\bigcirc	1	65340 43560	${ }_{1}$	${ }_{0}^{1}$	\bigcirc	S1316277 $\$ 33059$	\bigcirc	\bigcirc	1	\bigcirc
5663 5664	0	\bigcirc	1	0	0	${ }_{1.11 \%}^{1.09 \%}$	0	1	43960 5795	1	\bigcirc	\bigcirc	\＄300754	0	0	1	\bigcirc
5665		0	0		0	1．10\％	0	1	435600	1	0	0	\＄246542	0	0	1	0
5666 5667	0	1	0	0	0	1．09\％	0	1	217800	，	1	0	\＄2493999		－	1	\bigcirc
5667 5668	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{1}^{0}$	1．09\％	0	1	325393 476546	1	\bigcirc	\bigcirc	$\$ 1168709$ $\$ 368132$	\bigcirc	\bigcirc	1	\bigcirc
5669		0	0	1	1	1．10\％	O	1	297515		0	0	\＄764876	0	0	1	0
5670		0	0	\bigcirc	1	1．08\％	0	1	245550		1	0	\＄2072 786	0	－	，	0
5671	0	0	0	，	1	1．09\％	0	1	78408	－	0	0	\＄685 607	0	－	1	0
5672	0	0	0	1	0	0．92\％	0	1	114563	0	1	0	\＄1556230	0	0	1	－
5673 5674	\bigcirc	1	$\stackrel{0}{0}$	\bigcirc	\bigcirc	${ }_{1}^{1.65 \%}$	\bigcirc	1	57499 108900	\bigcirc	${ }_{1}^{1}$	${ }_{0}$	\＄1431740 $\$ 474448$	\bigcirc	\bigcirc	1	\bigcirc
5675	0	0	0	0	0	1．11\％	0	1	80586	1	0	0	\＄285315	0	0		
${ }_{5}^{5676}$	0	0	0	0	1	${ }^{1.12 \%}$	0	1	${ }^{43560}$	1	0	0	${ }^{5277793}$	0	0	1	
5677 5678	0	0	0	0	0	${ }^{1.114 \%}$	0	1	202118 43560	1	0	0	\＄125213		0	1	0
5678 5679	${ }_{0}$	0	0	0	1	${ }_{1.12 \%}^{1.12 \%}$	0	1	43560 43500	${ }_{0}$	1	0	（ ${ }_{\text {S3224 }}$	0	0	1	\bigcirc
5680	0	0	－	0	1	1．09\％	0	1	109771	1	0	0	548937	0	0	1	0
$\begin{array}{r}5681 \\ 5682 \\ \hline\end{array}$	0	0		0	0	${ }^{1.13 \%}$	0	1	53579 65390	1	0	1	\＄176244	0	0	1	
5682 5683	${ }_{0}$	\bigcirc	0	${ }_{0}$	1	${ }_{\text {1．112\％}}^{1.12 \%}$	${ }_{0}$	1	65340 65776	${ }_{1}$	${ }_{0}$	1	5784269 $\$ 77225$	\bigcirc	${ }_{0}$	1	\bigcirc
5684	－	0	－	0	1	1．11\％	－	1	186437	0	0	。	\＄801564			1	0
5685	0	0	－	1	0	1．15\％	0	1	53143	1	0	0	\＄165343	0	0	1	
5686 5687	0	\bigcirc	\bigcirc	\bigcirc	${ }_{1}$	l $\begin{aligned} & 1.12 \% \\ & 1.09 \%\end{aligned}$	\bigcirc	1	56628 45302	1	${ }_{0}$	0	5225848 5425000	0	0	1	0
5688	0	0	0	0	1	1．09\％	0	1	267894	0	。	1	\＄1130 187		0	1	0
5689	0	1	0	0	0	1．12\％	－	1	99752	1	0	0	\＄295 108	0	0	1	0
5690 5691	0	0	0	1	0	${ }^{1.12 \%}$	0	1	44867 2850	0	1	－	594393	0	0	1	0
5691 5692	\bigcirc	${ }_{0}^{1}$	${ }_{0}$	${ }_{0}$	1	（1．15\％	${ }_{0}$	1	28750 7841	${ }_{0}^{1}$	${ }_{1}^{1}$	\bigcirc	（ ${ }_{\text {S113789 }} \mathbf{\$ 1 0 5 7 4 8 6}$	0	${ }_{0}$	1	\bigcirc
5693	0	0	0	1	1	1．09\％	。	1	95832	0	0	1	\＄1200000	0	0	1	0
5694	0	0	0	0	1	${ }^{1.111 \%}$	0	1	220414	0	－	1	\＄781 158	0	0	1	
5695 5696	0	0	1	0	0	1．15\％	0	1	87120 142441		0		$\$ 84966$ $\$ 155630$	0	0	1	\bigcirc
${ }_{5697}^{5696}$	0	0	0	${ }_{0}$	1	${ }_{\text {1．1．0\％}}^{1.15 \%}$	0	1	${ }_{222156}^{14241}$	0	${ }_{0}$	\bigcirc	\＄ 55533359	${ }_{0}$	${ }_{0}$	1	${ }_{0}$
5698	0	0	0	1	0	1．08\％	0	1	218236	0	1	0	\＄1871590	0	0	1	0
5699		0	0	1	0	1．10\％	0	1	49223	0	1		\＄1221146	0	0	1	0
5700 5701	0	0	0	1	0	1．109\％	0	1	217800 229126	0	0	0	$\$ 1345345$ $\$ 421583$	0	0	1	\bigcirc
5702		0	0	1		1．10\％	0	1	49658	0	0	0	${ }_{5682} 257$	0	0	1	0
5703 5704	0	0	0	0	1	${ }^{1.11 \%}$	0	1	${ }^{60984}$	，	0	0	${ }^{5208612}$	0	0	1	0
5704 5705	0	0	0	0	1	${ }_{\text {1．12\％}}^{1.09 \%}$	\bigcirc	1	27878 84071	0	${ }_{0}^{1}$	\bigcirc	$\$ 1024696$ $\$ 186220$	0	0	1	\bigcirc
5706	0	0	0		${ }_{0}$	${ }_{1.11 \%}^{1.12 \%}$	0	1	${ }_{46609}^{8487}$	1	1	0	\＄1662361	${ }_{0}$	\bigcirc	1	\bigcirc
5707	0	0	0	1	1	${ }^{1.13 \%}$	0	1	43560	，	1	0	\＄8386999		－	1	0
5708	0	0	0	0		1．09\％		1	174240	0	1	0	\＄2651029	0	0	1	0
5709 5710	0	\bigcirc	0	${ }_{0}^{1}$	1	（1．11\％\％	0	1	649915 40075	1	\bigcirc	${ }_{1}$	\＄265173	0	0	1	\bigcirc
5711	0	0	0	，	1	1．13\％			46174	1	0	0	\＄231871	0	0	1	0
5712 5713	0	0	0	0	1	${ }^{1.09 \%}$	0	1	39640 54904	0	1	0	S1299984 $\mathbf{S 1 2 3 2 8 8 8}$	0	0	1	
5713 5714	\bigcirc	0	0	，	1	1．32\％		1	${ }_{6}^{64904}$	\bigcirc	1	0	\＄1232888	0	0	1	\bigcirc
5714 5715	0	${ }_{0}$	${ }_{0}$	0	1	${ }_{\text {1．13\％}}^{1.20 \%}$	0	1	44887 217800	1	\bigcirc	${ }_{0}^{1}$	\＄632586 $\$ 159$ 104	\bigcirc	0	1	${ }_{0}$
5716	0	0	0	0	1	1．20\％	0	1	128938	1	0	0	\＄78258	0	0	1	0
5717 5718 5	\bigcirc	0	0	\bigcirc	${ }_{1}$	${ }^{1.19 \%}$	0	1	43560 45867	\bigcirc	1	0		\bigcirc	0	1	\bigcirc
5718 5719 5720 5720	\bigcirc	0	0	0	1	（	0	1	458687 6433 131116	\bigcirc	1	0	（ $\begin{aligned} & \text { \＄2817295 } \\ & \$ 327499 \\ & \$ 1425789\end{aligned}$	\bigcirc	\bigcirc	1	\bigcirc

osservation	PROPERTY	LTV＿90\％	Lrv 81\％－9\％	LTV 70\％－78\％	LtV below	total tax	parcel in	CONVENTIONAL	Lot size	sold	sold during	Sold 2008－2012	PRICE Adust．to	ZIP CODE	ZIP CODE	${ }_{\text {Z1P CoDE }}$	ZIP CODE
5851	DURESS $=1$	1	0	0	${ }_{0}^{70 \%}$	${ }_{\text {BURDEN }}$	${ }_{\substack{\text { SCEIP } \\ 0}}^{\text {a }}$	${ }_{1}^{\text {LOAN }}$＝${ }^{\text {a }}$	84942	${ }^{\text {Prior＿2000 }}$	2004＿2007	0	${ }_{5486739}^{2012}$	295403	${ }_{\substack{95404 \\ 0}}$	${ }_{1}^{95472}$	${ }_{0}^{99928}$
5852	。	${ }_{0}$	0	0	0	1．09\％	0	1	175547	0	0	0	S605 411	0	0	1	0
5853	0	，	0	0	1	1．11\％	0	1	130680	1	0	。	574881	－		1	0
5854	0	0	0	0	1	1．42\％	0	1	20473	0	1	0	\＄1200814	0	0	1	0
5855	0	0	0	0	0	1．67\％	0	1	20473	0	1	0	\＄1 190609	0	0	1	0
5856	0	0		1		1．36\％	0	1	33541	1	0	0	\＄240 152	0	0	1	0
5857	0	1	－	0	0	1．73\％	0	1	15682	0	0	1	\＄250000	0	0	1	0
5858	0	0	0	0	1	1．86\％	0	1	25700	0	0	0	\＄533940	0	0	1	0
5859	0	0				1．46\％	0	1	23522	0	0	0	5435870	0	0	1	0
5860	0	0	0	0	1	1．43\％	0	1	14375	0	1	0	\＄882312	0	0	1	0
5861	0	0	0	1		1．10\％	0	1	312325	1	0	0	\＄103465	0	0	1	0
5862	0		0	0	0	1．77\％	0	1	21344	0	0	1	\＄271466	0	0	1	0
5863	0	0	0	0	1	1．45\％	0	1	20909	0	0	0	5493763	0	0	1	0
5864	1	0	0	1	0	1．12\％	0	1	22218	0	1	0	\＄795426	0	0	1	0
${ }_{5}^{5865}$	0	0		0	－	1．60\％	0	1	${ }^{25265}$	1	0	0	\＄92194	0	0	1	0
5866	0	0	0	1	0	1．43\％	0	1	24394	0	0	0	5460575	0	0	1	0
5867	0	0	0	0	1	1．45\％	0	1	100000	1	0	0	\＄232775	0	0	1	0
5868	0	0	0	0	0	1．12\％	0	1	${ }^{23087}$	0	0	1	\＄527 155	0	0	1	0
5869	1	1	0	0	0	1．53\％	0	1	20473	0	1	0	562386	0	0	1	0
5870 5871	0	0	1	0	\bigcirc	1．58\％	0	1	82764 2575	0	0	0	5544837 $\$ 82082$	0	0	1	0
${ }_{5}^{5871}$	0	0	0	0	1	${ }^{1.08 \%}$	0	1	257875	0	0	0	\＄820802	0	0	1	0
5872 5873	0	－	0	0	1	1．13\％	0	1	88427 3560	1	0	0	\＄55899	0	0	1	0
5873 5874	\bigcirc	${ }_{0}^{0}$	1	\bigcirc	${ }_{0}^{0}$	${ }^{1.48 \%}$	\bigcirc	1	${ }_{44431}^{43560}$	${ }_{1}^{0}$	${ }_{0}^{1}$	－	\＄1021862	${ }_{0}^{0}$	\bigcirc	1	\bigcirc
5875	0		0	0	1	1．42\％	0	1	21780	0	0	1	\＄526312	0	0	1	0
5876	0	0	0	0	0	1．44\％	0	1	21780	0	0	0	\＄356942	0	0	1	0
5877	0	1	0	0		1．44\％	0	1	21780	0	1	0	\＄969888	0	0	1	0
5878	0	0	0	0	1	1．53\％	0	1	${ }^{30928}$	0	0	0	\＄336709	0	0	1	0
5879	1	1	0	0	0	1．39\％	0	1	21344	0	1	0	\＄998 181	0	0	1	0
$\begin{array}{r}5880 \\ 5881 \\ \hline\end{array}$		0	0	0	1	1．35\％	0	1	2038	0	0	1	\＄643 178	0	0	1	0
5881 5882	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1	${ }_{1}^{1.27 \% \%}$	\bigcirc	1	20760 19803	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	\＄1229011	\bigcirc	\bigcirc	1	0
5883	0	O	1	0	0	1．37\％	。	1	19602	。	1	0	\＄1441856	0	。	1	0
5884	0	0	0	0	1	1．39\％	0	1	19166	0	1	0	\＄1083963	0	0	1	0
5885	0	0	0	0	1	1．50\％	0	1	20473	1	0	0	\＄159728	0	0	1	0
5886 5887 588	0	0	\bigcirc	1	0	1．64\％	0	1	18731 8756	1	0	0	\＄1491211	0	0	1	0
5887 5888	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{0}^{1}$	－	\bigcirc	1	87556 26572	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	$\$ 161681$ $\$ 778416$	\bigcirc	\bigcirc	1	0
5889				1	1	1．13\％	0	1	45738	0	0	0	\＄231781	0	0	1	0
5890	0	0	1	0	0	1．10\％	0	1	108900	0	0	0	${ }_{5}^{5681046}$	－	0	1	\bigcirc
5891	0	0	0	0	0	1．08\％	0	1	34664	1	0	0	\＄148069	0	0	1	0
5892 5893	0	1	0		0	1．53\％	0	1	20909	0	1	0	\＄1498105		0	1	0
5893 5894	${ }_{0}$	\bigcirc	0	${ }_{1}$	1	${ }^{1.35 \%}$	0	1	139399 28314	\bigcirc	${ }_{0}$	1	S572099 S936441	\bigcirc	\bigcirc	1	0
5895	0	1	0	0	0	1．37\％	0	1	9148	0	1	0	\＄1396857	0	0	1	。
5896	0	0	0	0	1	1．48\％	0	1	21344	0	0	1	\＄584 105	－	0	1	0
5897	0	1	0	0	0	1．98\％	0	1	7841	1	0	0	\＄96999	0	0	1	0
5898 5899	0	0	0	0	1	1．60\％	0	1	7841 9818	1	0	0	\＄136992	－	0	1	0
5899 5900	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	1.44% 2.82%	\bigcirc	1	9148 12632	${ }_{1}^{1}$	${ }_{0}^{1}$	${ }_{0}$	\＄922 5296 $\$ 2967$	0	0	1	0
5901	0		0	0	1	1．34\％	0	1	21344	0	0	1	\＄676464	0	0	1	
5902	0	0	－	1	0	1．50\％	0	1	${ }^{11326}$	0	0	0	5465575	0	0	1	0
5903	0	0	0	1	0	2．41\％	0	1	14375	1	0	0	\＄33539	0	0	1	0
$\begin{array}{r}5904 \\ 5905 \\ \hline\end{array}$	0	0	0	1	0	1．65\％	0	1	3920	1	0	0	\＄148976		0	1	\bigcirc
5905 5906	\bigcirc	0	0	\bigcirc	\bigcirc	1.58% 1.77%	0	1	11326 46699	${ }_{1}^{1}$	\bigcirc	${ }_{0}$	5250323 566184	\bigcirc	0	1	\bigcirc
5907	0	1	0	0	0	2．00\％	0	1	49223	0	1	0	\＄1364701	0	0	1	0
5908	0	0		0	1	1．65\％	0	1	${ }^{43560}$	0	0	0	\＄514553	0	0	1	0
5909	0	1	0	0	0	1．83\％	0	0	${ }^{20038}$	1	0	0	\＄67526	0	0	1	0
5910 5901	0	0	0	0	1	1．49\％\％	0	1	21780 45738	0	0	1	5351437 $\$ 50992$	－	0	1	\bigcirc
5911 5912	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0 1	－ $1.4 .38 \%$	\bigcirc	1	45738 30928	0	\bigcirc	${ }^{1}$	\＄509692	\bigcirc	0	1	\bigcirc
5913	0	1	0	0	0	1．44\％	0	1	${ }_{37462}$	0	1	。	\＄$\$ 1283210$	0	0	1	0
5914	0	0	1	0	0	1．48\％	0	1	23522	1	0	0	\＄123763	0	0	1	0
5915	0	1	0	0	0	1．35\％	0	1	16553	0	1	0	\＄1284358	0		1	0
5916	0	0	0	0	1	1．43\％	0	1	17424	0	0	1	5560694	0	0	1	0
5917	0	0	0	0	0	1．29\％	0	1	${ }^{31363}$	0	1	0	\＄1115470	0	0	1	0
5918	0	0	0	1	0	${ }^{1.31 \%}$	0	1	${ }^{42253}$	0	1	0	\＄2032 147	0	0	1	0
5919 5920	0	${ }_{0}^{1}$	0	0	${ }_{1}$	1．1．89\％	\bigcirc	1	14375 52272	${ }_{0}^{0}$	\bigcirc	\bigcirc	\＄217935 $\$ 564204$	\bigcirc	\bigcirc	1	\bigcirc
5921	0	0	0	0	1	1．48\％	0	1	20038	1		。	\＄163729	0	0	1	0
5922	0	0	1	0	0	1．67\％	0	1	36155	1	0	0	\＄209662	0	0	1	0
5923	0	0	0	0	0	1．7\％	0	1	${ }^{21344}$	1	0	0	\＄88459	0	0	1	0
5924 5925	\bigcirc	\bigcirc	\bigcirc	${ }_{0}^{1}$	\bigcirc	1.51% 1.09% 1	\bigcirc	1	20388 141570	${ }_{0}^{1}$	${ }_{0}$	${ }_{0}$	S146952 $\$ 961877$	\bigcirc	\bigcirc	1	\bigcirc
5926	0		0	1	0	1．10\％	0	1	54450	0	0	1	\＄802093	0	0	1	0
5927	0	0	0	1	0	1．08\％	0	1	239580	0	1	0	\＄1505636	0	0	1	0
5928	－	0	0	0	0	${ }^{1.111 \%}$	0	1	158994 88120	1	0	0	\＄ 5201026	0	O	1	\bigcirc
5929 5930	\bigcirc	${ }_{0}^{1}$	\bigcirc	\bigcirc	${ }_{1}^{0}$	1.10% 1.10% 1	\bigcirc	1	87120 87120	\bigcirc	1	${ }_{0}$	（ $\begin{gathered}\text { \＄786068 } \\ \$ 1224332\end{gathered}$	\bigcirc	\bigcirc	1	0
5931	0		0	0	0	1．10\％	0	1	98881	1	0	0	\＄282310	0	0	1	0
5932	0	1	0	0	0	0．43\％	0	0	47916	0	0	1	\＄530 500	0		1	0
5933		0	0	0	0	1．36\％	\bigcirc	1	51401	0	0	1	\＄696478	0	0	1	
5934 5935	0	1	0	0	0 1	1．09\％ 1.09%	\bigcirc	1	263102 5749	\bigcirc	0	${ }_{0}^{0}$	$\$ 133732$ $\$ 525768$	0	0	1	0
5936	0	1	0	0	0	1．09\％	0	1	94525	0	1	0	\＄1616481	0	0	1	
5937	0	0	0	0	1	1．11\％	\bigcirc	1	35719	1	0	0	${ }^{578706}$	0	\bigcirc	1	
5938 5939	\bigcirc	0	0	0	1	${ }^{1.111 \%}$	\bigcirc	1	49223 104544	\bigcirc	\bigcirc	0 1	$\underset{\substack{\text { S833 } \\ \$ 1257364}}{\text { S }}$	0	0	1	0
5940		0	1	0	0	1．15\％	－	1	106722		0	1	\＄591418	0	0	1	－
5941		0	0	0	1	1．08\％	0	1	140699	0	0	0	\＄868 184	0	0	1	0
5942	0	－	0	1	0	1．09\％	0	1	54886	0	0	0	\＄506632	0	0	1	0
5943	0	0	0	0	0	${ }_{1}^{1.11 \%}$	0	1	$\begin{array}{r}46699 \\ \hline 117176\end{array}$	1	0	0	\＄214555	0	0	1	
5944 5945	\bigcirc	${ }_{1}$	0	\bigcirc	${ }_{0}^{1}$	－	\bigcirc	${ }_{0}^{1}$	117176 10971	0	0	${ }_{1}^{0}$	S944 179 $\$ 60992$	\bigcirc	0	1	\bigcirc
5946	0	1	0	0	0	1．11\％	0	1	55757	0		0	\＄539389	0	0	1	0
5947	0	0	0	0	0	1．09\％		1	${ }^{81893}$	0	1	－	\＄1367080	0	0	1	0
5948 5949	\bigcirc	\bigcirc	\bigcirc	${ }_{0}^{1}$	\bigcirc	1.70% 1.79%	\bigcirc	1	15246 48352	\bigcirc	\bigcirc	\bigcirc	\＄215092	\bigcirc	\bigcirc	1	\bigcirc
5950	0	0	0	0	1	1．08\％	0	1	142006	0	1	0	\＄1828364	0	0	1	0
5951	0	0	0	1	0	1．12\％	0	1	107158	1	0	0	\＄161665	0	0	1	
5952 5953	\bigcirc	0	0	0	0	1．11\％	0	1	12197 93218	1	0	0	\＄136340	0	0	1	\bigcirc
5953 5954	\bigcirc	0	0	0	${ }_{0}^{1}$	（1．11\％	\bigcirc	1	93218 3997	\bigcirc	${ }_{0}^{1}$	0	\＄1012218 $\$ 263$ 103	0	0	1	\bigcirc
5955	0	1	0	0	0	1．11\％	0	1	22651	0	1	0	\＄1096861	0	0	1	0
5956	0	0	0	1	0	1．11\％	0	1	47480	0	1	0	5655057	0	0	1	0
5957 5958	0	1	0	0	\bigcirc	－ $1.1 .13 \%$	${ }_{0}$	1	17860 44867	0	\bigcirc	1	5375621 $\$ 800249$	\bigcirc	0	1	\bigcirc
5959	－	1	0	0	，	1．12\％	O	1	33977	1	－	0	\＄131351	0	0	1	0
5960	0	0		0	1	1．10\％		1	131987	1	0	0	\＄192808	0	0	1	
5961	0	0	0	0	0	1．45\％	0	1	8276	0	1	0	588746	0	0	1	0
${ }_{5962}$	0	0	0	－	1	${ }^{1.42 \%}$	－	1	${ }^{50530}$	1	0	0	\＄291344	0	0	1	
5963 5964	${ }_{0}$	\bigcirc	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	1．4．43\％${ }_{1.11 \%}$	${ }_{0}$	1	23958 19166	\bigcirc	0	1	S538501 S617408	\bigcirc	\bigcirc	1	0
5965	0	0	0	0	1	1．35\％		1	11326	0	0	1	\＄696478			1	0
5966	0		0	0		1．53\％	0	1	17424		1	0	5862489	0	0	1	0
5967 5968 59	0	\bigcirc	\bigcirc	0	1	1．15\％	0	1	14375 563	0	0	0	S579 691 $\$ 858828$	\bigcirc	0	1	0
5968 5999	0	\bigcirc	\bigcirc	0	\bigcirc	1．114\％	0	1	5663 3920	0	${ }_{0}^{1}$	\bigcirc	S858 828 $\$ 178043$	\bigcirc	\bigcirc	0	1
5970	0			O	－	1．12\％			12197	1	0	0	5288332	0	0	0	1
${ }_{5971}^{5972}$	0	0	1	\bigcirc	\bigcirc	1．12\％	0	1	${ }^{8712}$	1	0	0	${ }_{\text {S }}^{5199951}$	\bigcirc	\bigcirc	\bigcirc	1
5972 5973	\bigcirc	\bigcirc	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	${ }^{1.12 \%}$	0	1	9148 10019	1	0	\bigcirc	S293602 $\$ 293602$	0	0	0	1
5974	0		，	0		1．14\％		1	7841		。	1	\＄559553	0	0	0	1
${ }_{5975}^{5976}$	0	\bigcirc	\bigcirc	－	1	${ }^{1.12 \%}$	\bigcirc	1	7405	1	，	0	S263489 S27687	\bigcirc	0	\bigcirc	1
5976 5977	0					${ }_{\text {1212\％}}^{1.12 \%}$	0	1	10019	1	0	0	S277287 $\mathbf{S 1 3 9 9 8 2}$	0	0	\bigcirc	1
5978	${ }_{0}$	${ }_{0}$	${ }_{0}$	${ }_{0}$	${ }_{0}$	${ }_{1.14 \%}^{1.12 \%}$	${ }_{0}$	1	${ }_{13504}^{10019}$	${ }_{0}$	1	\bigcirc	${ }_{\text {che }}$	${ }_{0}$	${ }_{0}$	${ }_{0}$	1
5979 5980	0	0	1	0	0	${ }_{1}^{1.12 \%}$	0	1	7405 7405	1	－	${ }_{0}^{0}$	$\underset{\substack{\text { \＄271017 } \\ \$ 27716}}{ }$	0	0	0	1

observation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％－90\％	LTv 70\％．78\％	$\begin{gathered} \text { LTV BELOW } \\ 70 \% \end{gathered}$	total tax burden	parcel in SCEIP $=1$	conventional LOAN $=1$	Lot SIzE	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	SOLD DURING 2004＿2007	Sold 2008－2012	PRICE ADJUST．to 2012	$\begin{aligned} & \text { ZIP CODE } \\ & \text { Z95403 } \end{aligned}$	$\begin{gathered} \text { ZIP CODE } \\ 95404 \end{gathered}$	$\begin{aligned} & \text { ZIP CODE } \\ & 95472 \end{aligned}$	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
5981	0	0	0	0	，	1．12\％	O		8276	\bigcirc	－	0	\＄1213598	－	0		
5982	0	0	0		1	1．12\％	0	1	7405	1	0	0	\＄237 140	0	0	0	1
5983	0		0	0	1	1．12\％	0	1	8276	1	0	0	\＄225848	0	0	0	1
5984	0			0	0	1．12\％	0	1	7405	1	0	0	\＄240904	0	0	0	1
5985	0	0	0	0	1	1．12\％	0	1	12197	1	0	0	\＄253702	0	0		1
5986	0	0	－			1．14\％	0	1	9583	0	\bigcirc	1	S442386 $\$ 485998$	0	0	0	1
5987	0	0	0	0	0	1．11\％	0	1	3920	1	0	0	\＄185948	0	0	0	1
5988	0	0	0			1．12\％	0	1	3920	0	0	1	5380556	0	0	0	1
5989	0	0	1	0	0	${ }^{1.12 \%}$	\bigcirc	1	3920	1	0	0	\＄199499	\bigcirc	0	\bigcirc	1
5990	0	0	0	0	0	1．12\％	0	1	4000	0	0	1	\＄580 593	0			1
5991 5992	\bigcirc	${ }_{1}$	\bigcirc	\bigcirc	${ }_{0}^{1}$	1.12% 1.14% 1	\bigcirc	1	5227 3920	\bigcirc	\bigcirc	${ }_{1}$	S6322 274 535846	\bigcirc	0	0	${ }_{1}^{1}$
5993	－	0	0	0	1	1．14\％	0	1	3920	0	1	\bigcirc	\＄1124985	0	。	0	1
5994	0	0	0	0	0	1．14\％	0	1	3920	0	0	1	\＄457 419	0	0	0	1
5995	0	1	0	0	0	1．14\％	0	1	7405	0	1	0	\＄954511	0	0	0	1
5996	0	，	0	0	1	1．14\％	0	1	10454	1	0	0	\＄240904	0	0	0	1
5997	0	1	0	0	0	1．12\％	0	1	4792	1	0	0	\＄197617	0	0	0	1
5998 5998	0	0	0	0	0	${ }^{1.111 \%}$	0	1	3920	1	0	0	S167880 $\$ 178820$	0	0	0	1
5999	0	0	0	0		${ }^{1.111 \%}$	0	1	3920	1	0	0	\＄178420	0	0	\bigcirc	1
6000	0	1	0	0	0	1．11\％	0	1	3920	1	0	0	\＄182 184	0	0	0	1
${ }_{6}^{6001}$	0		1	0	0	${ }^{1.111 \%}$	0	1	3920	1	0	0	\＄163275	0	0	0	1
6002 6003	\bigcirc	\bigcirc	${ }_{0}$	${ }_{1}^{0}$	\bigcirc	${ }_{\text {1．12\％}}^{1.11 \%}$	0	1	3920	${ }_{0}^{1}$	\bigcirc	\bigcirc	S188325 S296679	\bigcirc	\bigcirc	\bigcirc	1
6004	0	0	0	${ }_{0}$	0	${ }_{1}^{1.12 \%}$	0	1	${ }_{3920}$	0	1	0	\＄1065924	0	0	0	1
6005	0	0	0	0		${ }^{1.12 \%}$	0	1	4000	0	\bigcirc	0	5609189 $\$ 50337$	0	0	0	1
${ }_{6} 006$	0		0	0	0	${ }^{1.12 \%}$	0	0	${ }^{3920}$	0	0	1	${ }_{\$ 503337}$	0	\bigcirc	0	1
6007	0	1	0	0	0	1．12\％	0	0	5663	0	0	1	5456507	0	0	0	1
6008 6009	\bigcirc	${ }_{0}$	${ }_{0}$	${ }_{1}$	${ }_{0}$	1．1．2\％	${ }_{0}$	1	6098 4792	0	0	1	5328000 5455271	${ }_{0}$	${ }_{0}$	\bigcirc	1
6010	0	1	0	0	0	1．14\％	0	0	3920	0	0	1	\＄361478	0	0	0	1
6011	0	0		0	1	1．14\％	0	1	3920	1	0	0	\＄179 173	0	0	\bigcirc	1
6012	0	0	0	0	1	${ }^{1.12 \%}$	0	1	7841	1	0	0	\＄218320	0	0	0	1
6013	0	0	0	0	0	1．12\％	0	1	7841	0	1	0	\＄1056761	0	0	0	1
6014 6015	\bigcirc	${ }_{0}^{1}$	\bigcirc	0	${ }_{1}$	${ }_{\text {1．1．14\％}}^{1.12 \%}$	0	1	7841 7005	${ }_{1}^{0}$	\bigcirc	${ }_{0}^{1}$	\＄492315 $\$ 245421$	\bigcirc	\bigcirc	\bigcirc	1
6016	0	0	0	0	0	1．14\％	0	1	7405	1	0	0	\＄226224	0	0	0	1
${ }_{6017} 6018$	0	0	1	0	0	${ }^{1.1 .14 \%}$	0	1	7405 9583	1	0	0	S195735 $\$ 204769$	0	0	0	1
6018	0	${ }^{1}$	0	0	0	${ }^{1.12 \%}$	0	1	9583	1	0	0	\＄204769	0	0	0	
6019	0	0	0	0	1	1．12\％	0	1	7405	1	0	0	\＄223589	0	0	0	1
6020 6021	\bigcirc	${ }_{1}^{0}$	\bigcirc	${ }_{0}^{1}$	0	${ }_{\text {l }}^{1.12 \% \%}$	0	${ }_{0}^{1}$	11326 8276	${ }_{0}^{1}$	0	${ }_{1}$	\＄242410 $\$ 499295$	0	${ }_{0}$	${ }_{0}$	1
6022	0	0	0	0	1	1．14\％	0	1	7841	1	0	0	\＄235635	0	0	0	1
${ }^{6023}$	0	0	0	0	0	${ }^{1.111 \%}$	0	1	$\begin{array}{r}3485 \\ 6970 \\ \hline\end{array}$	1	0	0	S165 245 $\$ 171445$	0	0	0	1
6024	0	0	0	0	0	${ }^{1.11 \%}$	0	1	6970	1	0	0	\＄171644	0	0	0	1
${ }_{6} 025$	0	0	1	0	0	1．12\％	0	1	3485	0	0	0	\＄439849	0	0	0	1
6026 6027	\bigcirc	\bigcirc	${ }_{0}^{1}$	\bigcirc	\bigcirc	${ }^{1.12 \% \%}$	\bigcirc	1	3485 3920	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	\＄922 569 $\$ 331355$	\bigcirc	\bigcirc	\bigcirc	1
6028	0	1	0	0	0	1．14\％	0	1	3920	0	1	0	\＄1136155	0	0	0	1
6029 6030	0	0	0	0	0	1．14\％\％	0	1	3485	\bigcirc	0	1	（ 5332000	0	0	0	1
${ }_{6}^{6030}$	0	1	0	0	0	${ }^{1.14 \%}$	0	1	3885	0	1	0	${ }_{5} 57862885$	0	0	0	1
6031 6032	0	1	0	0	0	1．14\％	0	1	3485 3885 3	1	0	0	${ }_{\text {S162825 }}$	0	0	0	1
6032 6033	\bigcirc	${ }_{1}$	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }_{\text {l }}^{1.14 \% \%}$	\bigcirc	1	3485 3485	1	\bigcirc	\bigcirc	S145318 $\mathbf{1 1 5 9 5 9 9}$	\bigcirc	\bigcirc	0	1
6034	0	0	0	1	0	1．12\％		1	5227	0	1	0	\＄1246999	0	0	0	1
${ }_{6}^{6035}$	0	1	0	0	0	${ }^{1.12 \%}$	0	1	3920	0	1	0	\＄1014826	0	0	0	1
${ }_{6}^{6036}$	0	0	0	0	1	${ }^{1.12 \%}$	0	1	4792	1	0	0	\＄196861	0	0	0	1
6037 6038	0	0	0	1	0	${ }^{1.12 \%}$	0	1	4792	1	0	0	\＄207170	0	0	－	1
6038 6039	\bigcirc	0	0	${ }_{0}^{1}$	\bigcirc	${ }^{1.12 \%}$ 1．12\％	\bigcirc	1	4792 4992	${ }_{0}^{1}$	${ }_{1}^{0}$	$\stackrel{0}{0}$	（ $\begin{aligned} & \text { \＄211160 } \\ & \$ 1091761\end{aligned}$	0	\bigcirc	\bigcirc	1
6040	0	0	0	0	0	1．12\％	0	1	5663	0	1	0	\＄1468688	0	0		1
${ }_{6}^{6041}$	\bigcirc	0	\bigcirc	0	${ }^{1}$	${ }^{1.14 \%}$	\bigcirc	1	4792 5663	${ }_{1}$	\bigcirc	\bigcirc	\＄543747	0	0	0	1
${ }_{6} 6042$	0	－	0	0	0	${ }^{1.14 \%}$	0	1	${ }_{5}^{5663}$	1	\bigcirc	0	\＄204842	0	0	0	1
6043 6044	0	\bigcirc	\bigcirc	0	${ }_{0}^{1}$	${ }_{\text {l }}^{1.1 .12 \%}$	0	1	6098 6068	0	0	0	$\$ 194201$ $\$ 67314$	0	0	0	1
6045	0	0	0	0	0	1．12\％	0	1	4792	0	1	。	\＄1031600	。	。	。	1
6046	0	1	0	0	0	1．14\％	0	1	4792	0	1	0	\＄1060 116	0	0	0	1
${ }_{6} 047$	0	1	0	0	0	1．12\％	0	1	4792	1	0	0	\＄184557	0	0	0	
6048 6049	0	\bigcirc	0	${ }_{0}^{1}$	\bigcirc	${ }_{\text {l }}^{\text {1．14\％}}$	0	1 1	4792 4992	0 1	1	\bigcirc	\＄1404029 $\$ 181897$	0	0	0	1 1
6050	。		1	0	0	1．14\％	0	1	4792	1	0	。	S181232	。	。	。	1
${ }_{6051}$	0	0	0	0	1	1．12\％	0	1	5663	1	0	0	\＄180 567	0	0	0	1
${ }_{6052}$	0	1	0	0	0	${ }^{1.12 \%}$	－	1	4792	1	0	0	\＄199521	0	0	0	1
6053	0	1	0	0	\bigcirc	${ }_{\text {1．12\％}}^{1.129}$	0	1	4792 5663	0	1	${ }_{1}$	\＄1204246	0	0	\bigcirc	1
6054 6055	0	0	0	${ }_{0}^{1}$	${ }_{1}^{0}$	${ }^{1.14 \%}$ 1．14\％	0	1	5663 6399	${ }_{0}^{0}$	${ }_{1}$	${ }_{0}^{1}$		0	\bigcirc	0	1
6056	0	0	0	0	0	1．14\％	0	1	5227	0	1	0	\＄1330 133	0	0	0	1
6057	0	0	1	0	0	1．14\％	0	1	4792	1	0	0	S195 863			0	1
6058 6059	\bigcirc	1	\bigcirc	${ }_{1}$	\bigcirc	${ }^{1.14 \% \%}$	\bigcirc	1	${ }_{4}^{4792}$	1	${ }_{0}$	0	\＄186552 S176 244	\bigcirc	\bigcirc	\bigcirc	1
6060	0		0	0	0	1．12\％	O	1	6970	0	。	1	\＄395000	0	0	0	
${ }_{6061}$	0	0	0	0	1	${ }^{1.12 \%}$	0	1	${ }_{6} 6970$	1	\bigcirc	0	\＄174249	0	0	0	1
6062 6063	0	0	0	0	0	${ }^{1.12 \%}$	0	1	4792	0	0	0	S614319	0	0	0	1
${ }_{6}^{6063}$	\bigcirc	1	${ }_{0}$	${ }_{0}$	${ }_{0}$	${ }_{\text {1．11\％}}^{1.14 \%}$	${ }_{0}$	1	5227 3920	1	\bigcirc	${ }_{0}^{0}$		${ }_{0}$	\bigcirc	0	1
6065	0	0	0	0	1	1．11\％	0	1	3920	1		0	\＄163275	0		0	1
${ }_{6066} 6067$	0	0	0	0	1	${ }^{1.12 \%}$	0	1	3920	1	0	0	S166268 $\$ 194229$	0	0	0	1
6067 6068	0	\bigcirc	\bigcirc	${ }_{1}$	1	${ }_{\text {l }}^{1.1 .12 \%}$	0	1	6990 3920	1	0	0	$\$ 194229$ $\$ 483$ 189	0	0	0	1
6069	0	0	1	0	0	1．12\％	0	1	3920		1	0	\＄927997	0	0	0	
6070	0	0	0	0	0	1．12\％	0	1	3920	1	－	0	\＄156292	0	0	0	1
6071	0	0	0	0	0	1．12\％	0	1	4356		0		\＄459 424			0	1
${ }_{6}^{6072}$	0	1	0	0	0	${ }^{1.12 \%}$	0	1	4000	0	0	0	\＄615 601	0	0	0	1
6073 6074	\bigcirc	\bigcirc	0	0	\bigcirc	${ }_{\text {l }}^{1.14 \% \%}$	0	1	4000 9583	0	\bigcirc	${ }_{0}^{1}$	\＄477 820 $\$ 20833$	0	0	\bigcirc	1
6075	0	0	1	0	0	${ }^{1.14 \%}$	0	1	3920	1	0	0	${ }_{\$ 162277}$	0	0	0	1
${ }_{6076}^{6076}$	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	\bigcirc	0	${ }^{1.14 \%}$	\bigcirc	1	3920 5663	${ }_{0}^{1}$	${ }_{1}$	0	$\$ 157622$ $\$ 826619$	\bigcirc	\bigcirc	\bigcirc	1
6078	0	0	1	0	0	1．14\％	0	1	4792	0	1	0	\＄1340607	0	0	0	1
6079	0	0	0	0	0	1．12\％	0	1	4792	1	0	0	\＄169 993	0	0	0	
6080 6081	0	${ }_{0}$	${ }_{1}$	1	0	1．1．2\％	${ }_{0}$	1	5227 7405	${ }_{0}^{1}$	${ }_{1}$	0	\＄176909 $\$ 86093$	${ }_{0}$	\bigcirc	\bigcirc	1
6082	0	0	1	0	0	1．11\％	0	，	3920	1	0	0	\＄150 306	0		0	1
6083	0	0	0	1	0	1．11\％	0	1	3920	1	0	0	\＄146 129		0	0	1
6084 6885	0	0	0	0	0	${ }^{1.12 \%}$	0	1	5663	1	0	1	\＄193833	0	0	0	
6085 6086	\bigcirc	1	0	0	0	${ }^{1.1 .12 \%}$	0	1	3920 3920	\bigcirc	0	1		0	0	0	1
6087	0	0	－	－	1	1．12\％	－	1	4000		0	0	\＄604059	0	0	0	1
6088	0	0	0	0	0	${ }^{1.12 \%}$	0	1	3920	0	1	0	S1147240	0	0	0	1
${ }^{6} 089$	0		0	0	1	${ }^{1.14 \%}$	0	1	${ }^{3920}$	1	1	0	\＄855610		0	0	1
6090 6991	\bigcirc	1	\bigcirc	0	0	${ }^{1.112 \%}$	\bigcirc	1	4356 5087	1	0	${ }_{0}^{0}$	\＄159284 $\$ 611754$	0	\bigcirc	0	1
6092	0	0	0	1	0	${ }^{1.12 \%}$		1	${ }_{5}^{527}$	0	0	1		${ }_{0}$	0	0	1
${ }_{6}^{6093}$	0	0			1	${ }^{1.12 \%}$	－	1	${ }_{5}^{5300}$	0	0	0	\＄599570	0	0		1
6094 6995	0				1	${ }^{1.12 \%}$	O	1	${ }_{6}^{6098}$	0	0	O	${ }_{\$ 1590901}$		0	\bigcirc	1
6095 6096	\bigcirc	\bigcirc	0	${ }_{1}^{0}$	\bigcirc	${ }^{1.1 .14 \%}$	\bigcirc	1	6098 5227	1	0	\bigcirc	S160947 S159 284	0	0	0	1
6097	0	0	1	0	0	1．11\％	－	1	5227	1	。	。	\＄146145	0	0	0	1
${ }_{6098}$	0			1		${ }^{1.111 \%}$	－	1	5227	1	－	－	${ }_{\text {S }} \mathbf{\$ 1 4 9 7 0 1}$	0	0	0	1
6099 6100	0	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	${ }^{1.111 \%}$	－	1	7841 5227	1	\bigcirc	－	${ }_{\substack{\text { ¢ }}}^{515572027}$	0	\bigcirc	0	1
6101	。	1	0	0	0	1．12\％		1	4792	0	0	${ }_{0}$	\＄422 578	0	－	。	1
6102	0	1	0	0	0	1．12\％	0	1	6098	1	0	0	\＄152634	0	0	0	1
6103 6104	\bigcirc	\bigcirc	\bigcirc	1	\bigcirc	${ }^{1.148 \%}$	0	1	5663 5227	\bigcirc	1	\bigcirc		\bigcirc	\bigcirc	\bigcirc	1
6104 6105	0	\bigcirc	\bigcirc	0	0	${ }^{1.14 \%}$ 1．14\％	0	1	5227 5087	0	${ }_{0}^{1}$	${ }_{1}^{0}$	$\$ 981278$ $\$ 532601$	0	\bigcirc	\bigcirc	1
6106	0		1			${ }^{1.14 \%}$	0	1	5227	1	0	0	\＄168595	－	0	0	1
6107 6108	\bigcirc	${ }_{1}^{1}$	1	0	\bigcirc	${ }^{1.112 \%}$	\bigcirc	1	3920 3920	1	0	\bigcirc	${ }_{\substack{\text { S146 } \\ \$ 818 \\ \hline 821}}$	0	0	0	1
6109 6110	\bigcirc	1	，	－	－	${ }_{\text {1．11\％}}^{1.11 \%}$	－	0	3485 3485	0		${ }_{0}^{1}$	$\$ 391133$ $\$ 13835$	0	${ }_{0}$	\bigcirc	${ }_{1}^{1}$

observation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％．90\％	LTV 70\％－78\％	LtV below 70\％	total tax burden	PARCELIN SCEIP $=1$	conventional	tor size	SOLD PRIOR 2000	SOLD DURING	SOLD 2008 －2012	PRICE ADJUST．TO	ZIP CODE 295403	ZIP CODE 95404	ZIP CODE 95472	ZIP CODE 94928
6111	${ }_{0}$	0	0	1	0	${ }^{\text {1．11\％}}$	${ }_{0}$		3485		－	0	S143323	0			
6112	0	0	0	1	0	1．12\％	0	1	3485	0	1	0	\＄1021862	0	0	0	
6113	0	1	0	0	0	1．12\％	0	1	3485	0	0	0	\＄411 063	0	0	0	1
6114	0	0	0	1	0	1．12\％	0	1	3920	0	0	0	5443303	0	0	0	1
6115	0	1	0	0	0	1．14\％	0	1	3920	0	0	1	\＄403322	0	0	0	1
6116	0	0	0	0	。	1．14\％	0	1	3485		0	0	\＄506588	。	。	0	1
6117	0	1	0	0	0	${ }^{1.14 \%}$	0	1		1	0	0	S139063 $\$ 34691$	0	0	0	1
6118	0	0	0	0	0	${ }^{1.14 \%}$	0	1	3485	0	0	1	\＄3433001	0	0	0	1
6119	0	0	0	1	0	1．12\％	0	1	6970	0	0	1	5620392	0	0	0	1
6120	0	1	0	0	0	1．12\％	0	1	5100	0	0	0	5724614	0	0	0	1
6121	1	0	0	0	0	1．12\％	0	1	4792	0	1	0	\＄1314358	0	0	0	1
6122	0	0	0	0	0	1．12\％	0	1	4792	1	0	0	\＄1597788	0	0	0	1
6123	0	0	0	0	1	1．12\％	0	1	5227	0	0	0	\＄517595	0	0	0	1
${ }_{6}^{6124}$	0	0	0	0	1	${ }^{1.12 \%}$	0	1	7841	1	0	0	\＄1842988	0	0	0	1
6125	0	0	0	1	0	1．12\％	0	1	5663	1	0	0	\＄181064	0	0	0	1
6126	0	0	0	－	1	1．12\％	0	1	4792	0	0	1	\＄515401	0	0	0	1
6127	0	0	0	－	0	1．12\％	0	1	4792	1	0	0	\＄174581	0	0	0	1
6128	0	0	0	0	1	1．12\％	0	1	6970	1	0	0	\＄174249	0	0	0	1
6129	0	1	－	0	0	1．12\％	0	1	5227	0	0	0	\＄368068	0	0	0	1
6130	0	0	1	0	0	1．14\％	0	1	4792	0	0	0	\＄388001	0	0	0	1
6131	0	1	0	0	0	1．14\％	0	1	5227	1	0	0	\＄262 736	0	0	0	1
6132	0	1	0	0	0	1．12\％	0	1	6970	1	0	0	\＄166268	0	0	\bigcirc	1
6133 6134	\bigcirc	\bigcirc	1	\bigcirc	0	${ }_{\substack{1.12 \% \\ 1.12 \%}}^{1.2}$	\bigcirc	1	6970 5227	1	\bigcirc	\bigcirc	S400 981 S161 018	\bigcirc	\bigcirc	\bigcirc	1
6135	0	0	0	0	1	1．12\％	0	1	5227		0	。	${ }_{\text {S }}$	0	0	0	1
6136	0	0	0	0	1	1．14\％	0	1	5227	0	1	0	\＄1330 133	0	0	0	1
6137	0	0	0	0	1	1．14\％	0	1	5227	0	0	0	\＄347671	0	0	0	1
6138	0	0	0	0		1．14\％	0	1	5227	1	0	0	${ }_{5163281}$	0	0	0	1
6139	0	1	0	0	0	1．15\％	0	0	5663	0	0	1	\＄326334	0	0	－	1
6140	0	1	0	0	0	1．12\％	0	1	4792	0	0	0	\＄601994	0	0	0	1
6141	0	0	0	1	0	1．14\％	0	1	${ }_{4}^{4366}$	1	0	0	\＄153258	0	0	0	1
6142 6143	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	\bigcirc	0	－${ }_{\text {1．114\％}}^{1.14 \%}$	0	1	5227 3920	1	\bigcirc	\bigcirc	S214555 S143588	\bigcirc	0	\bigcirc	1
6144	0	1	0	0	0	1．12\％	0	1	3920	0	0	1	\＄396817	0	0	0	1
6145	0	1	0	0	0	1．12\％	0	1	3920	0	1	0	5917537	0	0	－	1
6146	0	1	0	0	0	${ }^{1.12 \%}$	0	1	4356	0	\bigcirc	0	\＄442 152	0	0	0	1
${ }_{6}^{6147}$	0	0	0	1	0	${ }_{1}^{1.12 \%}$	0	1	4683	0	\bigcirc	1	5409970 $\$ 387809$	0	0	\bigcirc	1
6148 6149	\bigcirc	1	\bigcirc	0	${ }_{0}$	－	0	1 1	3920 3485	\bigcirc	${ }_{1}^{0}$	1	$\$ 387809$ $\$ 1062299$	\bigcirc	\bigcirc	\bigcirc	1
6150	0		0		0	1．12\％	0	1	4789	0	${ }_{0}$	1	\＄356457	0	－	。	1
6151	0	－	0	1	0	1．12\％	0	1	6534	0	1	0	\＄1068861	0	0	0	1
6152	0	0	0	0	1	1．12\％	0	1	7405		1	0	\＄842 216	0	0	0	1
6153 6154 15	0	1	0	0	0	${ }^{1.144 \%}$	0	1	3920 4356	1	0	0	\＄134246 $\$ 375813$	0	\bigcirc	\bigcirc	1
6154 6155	\bigcirc	\bigcirc	${ }_{1}$	\bigcirc	0	${ }^{1.1 .14 \%}$	0	1	4356 4356	1 1	\bigcirc	${ }_{0}^{1}$	\＄375 813 $\$ 131684$	0	\bigcirc	0	1
6156	0	0	0	0	1	1．12\％	－		3485	0	1	0	\＄786700	0	0	0	1
6157	0	1	0	0	0	1．12\％	0	1	3920	0	0	0	\＄414517	0	0	0	1
6158	0	0	1	0	0	1．14\％	0	1	4356	0	1	0	\＄818821	0	0	0	1
${ }_{6159}^{6159}$	－	0	0	1	0	${ }^{1.14 \%}$	0	1	3920 4356	1	0	0	S141660 $\$ 717443$	\bigcirc	0	\bigcirc	1
6160 6161	0	1	\bigcirc	\bigcirc	0	${ }_{\text {l }}^{\text {1．14\％}}$	\bigcirc	1	4356 4356	\bigcirc	${ }_{0}^{1}$	${ }_{1}^{0}$	\＄717443 $\$ 292000$	0	0	\bigcirc	1
6162	0	1	0	0	0	1．14\％	0	1	3920	0	1	0	\＄1064049	0	－	0	1
6163	0	1	0	0	0	1．14\％	0	1	3920	0	0	0	5488760	0	0		1
6164	0	1		0	0	1．14\％	0	1	3920		0	0	\＄425980	0	0	0	1
6165	1	0	0	0	0	${ }^{1.112 \%}$	0	1	3920	0	0	1	\＄229000	0	0	0	1
6166 6167	0	${ }_{1}^{0}$	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }_{\text {1．15\％}}^{1.12 \%}$	\bigcirc	1	3920 3920	${ }_{1}$	0	\bigcirc	\＄287408 $\$ 119151$	0	。	0	1
6168	0	，	0	0	0	1．15\％	0	1	3920	1	0	0	\＄123038	0	0	0	1
6169	0	0	0	0	1	1．14\％	0	1	7840	0	1	0	\＄1341217	0	0	0	1
6170 6171	0	\bigcirc	\bigcirc	0	1	－	\bigcirc	1	6970 6970	\bigcirc	0 1	${ }_{0}^{1}$	5434778 $\$ 998181$	0	\bigcirc	\bigcirc	1
6172		0			1	1．12\％	0		6098	1	0	－	\＄185914	。	。	0	1
6173		0		0	1	1．12\％	0	1	4792	0	1	0	\＄1431740	0	0	0	1
6174	0	0	0	0	0	1．14\％	0	1	${ }_{5} 698$	1	0	0	\＄197877	0	0	0	1
${ }_{6} 175$	0		0	1	0	1．12\％	0	1	5663	1	0	0		0	0	0	1
6176 6177	\bigcirc	\bigcirc	1	\bigcirc	\bigcirc	－1．12\％	0	1	6098 4792	1	\bigcirc	\bigcirc	\＄182681	\bigcirc	\bigcirc	0	1
6178	0	0	\bigcirc	${ }_{1}^{0}$	0	${ }^{1.12 \% \%}$	0	1	4792 4792	0	\bigcirc	0	\＄587233 $\$ 493626$	0	\bigcirc	\bigcirc	1
6179	0	1	0	0	0	1．12\％	0	1	7000	0	0	0	\＄589951	0	0	0	1
6180	0		0	0	0	1．12\％	0	1	6098	1	0	0	\＄195937	0	0	0	1
${ }_{6181}^{6181}$	0	\bigcirc	\bigcirc	1	0	${ }_{1}^{1.12 \%}$	－	1	4792 563	0	1	1	S659020 $\$ 998181$	0	0	\bigcirc	1
6182 6183	\bigcirc	${ }_{1}$	\bigcirc	\bigcirc	\bigcirc	－	0	${ }_{0}^{1}$	5663 5663	\bigcirc	${ }_{0}^{1}$	${ }_{1}^{1}$	5998181 5587393	\bigcirc	\bigcirc	\bigcirc	1
${ }_{6} 6184$	0	1	0	0	0	${ }_{1}^{1.14 \%}$	0	1	5693 6098	0	1	${ }_{0}^{1}$	\＄$\$ 1006439$	${ }_{0}$	${ }_{0}$	\bigcirc	1
6185		1	0	0	－	1．14\％		1	5663	0	0	1	\＄567516	0	\bigcirc	\bigcirc	1
${ }_{6}^{6186}$	－		\bigcirc	0	－	${ }^{1.12 \%}$	0	1	91488	0	0	0	\＄517595	0	0	\bigcirc	1
6187	0	0	0	0	1	1．12\％	0	1	4792	0	1	0	587309	0	0	0	1
6188 6189	\bigcirc	${ }_{1}$	\bigcirc	\bigcirc	1	${ }^{1.12 \%}$	0	1	5227 5227	\bigcirc	0	1		\bigcirc	\bigcirc	\bigcirc	1
6190	0	1	0	0	0	${ }^{1.1 .14 \%}$	0	1	5227 4792	0	1	0	$\$ 1048374$ $\$ 338400$	0	0	\bigcirc	1
6191	O	0	0	0	－	1．14\％	0	1	4792	0	0	0	5408398	0	0	0	1
6192 6193	0	1	0	0	0	1．59\％	1	1	5227	1	0	0	\＄166838	0	0	0	1
6193 6194	${ }_{1}^{0}$	\bigcirc	${ }_{0}^{1}$	0 1	\bigcirc	${ }_{\text {l }}^{1.12 \% \%}$	0	1	7405 4794	\bigcirc	${ }_{1}^{0}$	\bigcirc	${ }_{\substack{\text { S618807 } \\ \$ 1237762}}^{\text {S }}$	\bigcirc	\bigcirc	\bigcirc	1
6195		0	0	1	0	1．12\％	0	1	4792	0	0	1	\＄626245	0	0	0	1
6196	0		0	1	0	1．14\％	0	1	4792	0	1	0	\＄1265608	0	0	0	1
6197 6198	\bigcirc	0	\bigcirc	${ }_{0}^{1}$	0	${ }_{\text {l }}^{1.1 .14 \%}$	0	1	4792 4792	0 1	1	\bigcirc	$\$ 1330133$ $\$ 158431$	0	\bigcirc	\bigcirc	1
${ }_{6}^{6198}$	0	0	\bigcirc	${ }_{0}$	${ }_{0}$	${ }_{\text {1．12\％}}^{1.12 \%}$	0	1	${ }_{5227}^{4792}$	${ }_{0}$	${ }_{0}$	1	（\＄158431	\bigcirc	\bigcirc	\bigcirc	1
6200	1	0	0	0		1．14\％	0	1	4792	0	1	0	\＄966988	0	0	0	1
6201 6202	0	0	0	1	0	1．14\％	0	1	4792 5227	1	\bigcirc	\bigcirc	S160048 $\$ 225848$	\bigcirc	\bigcirc	0	
6202 6203	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{\text {1．12\％}}^{1.12 \%}$	0	1	5227 4992	1	\bigcirc	\bigcirc	\＄225848 $\$ 58951$	0	\bigcirc	\bigcirc	1
6204	0	0	0	1	－	1．14\％		1	4356			0	\＄495 118	0		0	，
6205 6206	\bigcirc	1	0	0	－	${ }_{\text {1．14\％}}^{1.12 \%}$	0	0	4792	0	1	1	\＄4402388	0	－	0	1
6206 6207	\bigcirc	${ }_{0}^{1}$	\bigcirc	\bigcirc	${ }_{1}$	1．12\％	0	1	6970 7841	${ }_{1}$	${ }_{0}^{1}$	\bigcirc	${ }_{\substack{\text { S12 }}}^{5155474}$	${ }_{0}$	\bigcirc	\bigcirc	1
6208		0	1	－		1．12\％	0	1	6970	1	0	0	\＄167568	0	0	0	1
6209	－	0	0	0	1	1．17\％	0	1	6970	0	1	0	${ }_{51} 5123948$	0	0	\bigcirc	1
6210 6211	0	1	0	0	0	${ }^{1.12 \%}$	0	1	4992 4992	0	0	${ }_{1}^{1}$	\＄553337	0	0	\bigcirc	1
6211 6212	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	－	0	1	4792 5000	0	0	0	\＄352307 $\$ 5966364$	0	0	\bigcirc	1
6213	0	0	0		1	1．14\％	0	1	5227	0	0	0	\＄525826	0	0		1
6214	0	0	0	0	0	1．12\％	0	1	3920 4356	0	1	\bigcirc	\＄934311	\bigcirc	\bigcirc	0	1
6215 6216	0	\bigcirc	${ }_{0}^{1}$	0	1	${ }_{\text {l }}^{1.1 .14 \%}$	0	1	4356 3920	\bigcirc	${ }_{0}$	\bigcirc	5407609 5410807	0	0	0	1
${ }_{6}^{6216}$	0	1	0	0	${ }_{0}^{1}$	${ }^{1.12 \% \%}$	\bigcirc	1	3920 7405	0	0	\bigcirc	\＄410807 $\$ 428355$	0	\bigcirc	\bigcirc	1
${ }_{6218}$	0	${ }_{0}$	0			${ }_{\text {1．14\％}}^{1.122 \%}$	0	1	6835		0	0	${ }_{\text {S }}$		0	0	1
6219 6220	0	\bigcirc	0	0	1	1．14\％	\bigcirc	1	$\begin{array}{r}5227 \\ 3920 \\ \hline\end{array}$	\bigcirc	1	\bigcirc	$\$ 850014$ $\$ 39462$	0	\bigcirc	\bigcirc	1
6220 6221	0	1	${ }_{0}^{1}$	\bigcirc	0	${ }^{1.12 \% \%}$	0	1	${ }_{4} 4422$	0	0	0	\＄55239	0	\bigcirc	0	1
6222	0	1		0	0	1．12\％			6098	0	0	1	5384885	0	0	0	
${ }_{6}^{6223}$		1	\bigcirc	0	0	${ }^{1.114 \%}$		1	${ }^{4} 356$	1	0	1	S361478 $\$ 11028$	0	0	0	1
6224 6225	\bigcirc	1	\bigcirc	${ }_{1}$	0	－ 1.12%	0	1	12632 11761	1	\bigcirc	0	\＄110628	\bigcirc	\bigcirc	\bigcirc	1
6226			0	${ }_{0}^{1}$	1	${ }_{1}^{1.12 \%}$	0	1	11761 6098	0	\bigcirc	${ }_{0}^{1}$	\＄540000 $\$ 156608$	\bigcirc	\bigcirc	\bigcirc	1
6227	0	0	0	1	0	${ }^{1.12 \%}$	1	1	${ }_{6} 698$	1	0	0	S158880 S160	0	－	\bigcirc	1
${ }_{6} 6228$	0			0	0	1．12\％			6098	1	0	－	\＄166352	0	－	0	1
6229 6230	\bigcirc	0	\bigcirc	${ }_{1}^{0}$	\bigcirc	${ }^{1.14 \%}$	0	1	6098 5663	0	\bigcirc	0	\＄587233 $\$ 153489$	\bigcirc	\bigcirc	0	1
6231	0	0	0	1	0	1．12\％		1	6098	1	0		\＄153489	0	0	0	1
${ }_{6}^{6232}$	0			0	1	1．12\％	－	1	${ }_{6}^{6098}$	1	－	，	$\$ 153489$ $\$ 156920$	0	0	0	1
6233 6234	0	－	\bigcirc	0	1	－	\bigcirc	1	6098 6534	1	\bigcirc	0 1	$\$ 156920$ $\$ 432769$	0	\bigcirc	${ }_{0}$	1
6234 6235	0	1	${ }_{0}$	0	${ }_{0}^{\circ}$	${ }_{1.12 \%}^{1.12 \%}$	${ }_{0}$	0	6534 10019	1	${ }_{0}$	1	¢	\bigcirc	\bigcirc	0	1
6236		0	0	1	0	1．12\％	－	1	6090	0			S666901	0	0	0	1
${ }^{6237}$	0	0	0	1	0	${ }^{1.12 \%}$	0	1	6098 6180	0	1	${ }_{1}$		\bigcirc	\bigcirc	\bigcirc	1
6238 6239 6240 6240	0 0 0	0	${ }_{1}$	1 0 0	0	（	0	1	6180 6098 6098	－	${ }_{1}^{1}$	1	（ $\begin{aligned} & \text { S655508 } \\ & 596998 \\ & \text { S1013778 }\end{aligned}$	－	－	0	1

observation	PROPERTY DURESS $=1$	LTV＿90\％	LTV 81\％．90\％	LTV 70\％．78\％	$\begin{gathered} \text { LTV beLow } \\ 70 \% \end{gathered}$	total tax burden	PARCEL IN SCEIP $=1$	CONVENTIONAL LOAN $=1$	tor size	$\begin{aligned} & \text { SOLD } \\ & \text { PRIOR_2000 } \end{aligned}$	sold during 2004＿2007	Sold 2008－2012	$\begin{aligned} & \text { PRICE ADJUST. TO } \\ & 2012 \end{aligned}$	$\begin{gathered} \text { ZIP CODE } \\ \text { Z95403 } \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95404 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
6241	0	1	0	0	1	1．12\％	O	1	6098	－	1	0	\＄1246999	0	0	0	1
6242	0	1	0	0	0	${ }^{1.12 \%}$	0	1	6180	0	0	0	${ }^{5647} 664$	0	0	0	1
6243	0	1	0	0	0	1．12\％	0	0	6098	0	0	1	\＄436886	0	0	0	1
6244	0	1	0		0	1．12\％	0	1	6098	0	0	0	5528510	0	0	0	1
6245	1	0	0		0	1．14\％	0	1	6098	0	0	0	\＄587233		0	0	1
6246	0	0			0	1．14\％	0	1	6098	0	0	1	\＄401642	0	0	0	1
6247	0	1	0		0	1．14\％	0	1	${ }_{6} 698$	0	0	1	${ }_{\$ 661361}$	0	0	0	1
6248	0	1	0	0		1．14\％	0	0	6098	0	0	1	5431765	0	0	0	1
6249	0	0	1	0	0	1．14\％	0	0	6098	0	0	1	547585	0	0	0	1
6250	0	0	0	0	0	1．14\％	0	1	6098	1	0	0	\＄155360	0	0	0	1
6251	0	0	0	1	0	1．14\％	0	1	6098	1	0	0	\＄154 424		0	0	1
6252 6253 625	0	0	1	0	0	${ }_{\text {1 }}^{1.14 \%}$	0	1	6534 6098 6	1	0	0	S157 232 $\$ 181544$	0	0	0	1
${ }_{6} 625$	0	1	0		－	${ }^{1.87 \%}$	1	1	${ }_{5} 698$	1	0	0	\＄181564	0	0	0	1
6254	0	0	0	0	0	${ }^{1.12 \%}$	\bigcirc	1	5663	1	0	0	S140386 $\$ 951329$	\bigcirc	\bigcirc	\bigcirc	1
6255	0	0	0	0		1．12\％	0	1	6098	0	1	0	\＄951 392	0	0	0	1
${ }_{6} 256$	0	0	0	0	1	${ }^{1.14 \%}$	0	1	6180	0	0	0	\＄641251	0	0	0	1
6257	0	0	0	－	0	1．11\％	0	1	6098	1	0	0	\＄136330		0	0	1
6258	0	0		－	－	1．14\％	0	1	4356		0	1	\＄301232	－	0	0	1
6259	0	0			1	1．12\％	0	1	4356	0	0	0	5370763	0	0	0	1
6260	0	0	0	0	1	1．12\％	0	1	9148	1	0	0	S247804	0	0	0	1
${ }^{6261}$	0	0	0	1	0	1．13\％	0	1	12197	1	0	0	\＄283267	0	0	0	1
6262	0	0	0	1	－	1．12\％	0	1	8712		1	0	\＄1533348	0	0	0	1
6263	0	0	0	0	1	1．12\％	0	1	5663	1	0	0	$\$_{117785}$		0	0	1
6264 6265	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1	${ }_{\substack{1.12 \% \% \\ 1.12 \%}}^{1.2}$	0	1	6098 5663	1	\bigcirc	\bigcirc	S182352 S196196	0	\bigcirc	\bigcirc	1
6266	0	0	0	0	1	${ }_{1.12 \%}^{1.12 \%}$	0	1	5693 6098	${ }_{0}$	0	0	（	0	0	。	1
6267	0	0	0	0	0	1．12\％	0	1	6970	0	0	0	\＄587233	0	0	－	1
6268	0	0	0	0	0	1．14\％	0	1	5663	0	0	0	\＄564 204	0	0	0	1
6269	0	0	0	0	0	1．14\％	0	1	6098	1	0	0	\＄181743	0	0	0	1
6270	0	0	0	0	0	1．12\％	0	1	10454	1	0	0	\＄183265	0	0	0	1
${ }_{6}^{6271}$	0	0	0	0	0	${ }^{1.111 \%}$	0	1	6098 6098	0	\bigcirc	1	$\begin{array}{r}\$ 542933 \\ \$ 162224 \\ \hline\end{array}$	\bigcirc	\bigcirc	\bigcirc	1
6272	0	0	0	1	0	${ }^{1.12 \%}$	0	1	6098	1	－	0	S162224 $\$ 15756$	\bigcirc	\bigcirc	0	1
6273 6274 6	0	0	0	0	0	1．12\％	\bigcirc	1	${ }_{6}^{653}$	1	\bigcirc	0	\＄157856 $\$ 15171$	0	\bigcirc	0	1
6274 6275	\bigcirc	${ }_{0}$	${ }_{0}$	${ }_{0}$	${ }_{1}$	－	\bigcirc	1	6098 10019	1	\bigcirc	0	S156171 $\$ 16064$	${ }_{0}$	0	0	1
${ }_{6276}$	0	1	0	0		${ }_{1.12 \%}$	0	\bigcirc	8712	${ }_{0}$	0	1	\＄466999	0	0	。	1
62277 6278	0	0	0	0	1	1．12\％	0	1	6098 6180	\bigcirc	1	0		0	0	0	1
6278 6279	0	0	0	0	1	${ }^{1.12 \%}$	0	1	6180 7405	0	，	0	\＄682291	0	0	\bigcirc	1
6279 6280	0	0	0	0	1	${ }_{\text {l }}^{1.14 \%}$	0	1	7405 6098	0	0	1	$\begin{array}{r}\text { \＄415000 } \\ \hline 2877\end{array}$	\bigcirc	0	\bigcirc	1
6280 6881	${ }_{0}$	0	1	0	1	${ }^{1.14 \% \%}$	\bigcirc	1	6098 6098	0	1	${ }_{0}$		0	0	\bigcirc	1
6282	0	0	0	0	1	1．12\％	0	1	7841	1	0	0	5143690	0	0	0	1
6283	0	1	0	0	0	${ }^{1.12 \%}$	0	1	7405	1	0	0	\＄150971	0	0	0	1
6284 6285	\bigcirc	${ }_{1}^{1}$	\bigcirc	0	0	${ }^{1.1 .12 \%}$	0	1	10454 6970	${ }_{0}$	\bigcirc	1	\＄566 631 S486949	${ }_{0}$	\bigcirc	\bigcirc	1
6286	0	0	0	1	0	1．12\％	－	1	5663	1	－	0	\＄167739	0	0	。	1
6287	0	0	0	0	1	${ }^{1.12 \%}$	0	1	7405	1	0	0	\＄146429	0	0	0	1
${ }^{6288}$	\bigcirc	0	0	1	0	${ }^{1.12 \%}$	0	1	5663	1	0	0	\＄146429	0	0	0	1
6289 6290	0	0	0	0	1	${ }^{1.12 \%}$	0	1	6098 6098	1	\bigcirc	0	\＄147343	\bigcirc	\bigcirc	\bigcirc	1
6290 6291	0	0	0	${ }_{0}^{1}$	0	${ }^{1.12 \%}$	\bigcirc	1	6098 6098	1	\bigcirc	\bigcirc	\＄1473 ${ }_{\text {S }}$	0	0	0	1
6292	0	0	0	1	0	1．12\％	0	1	6098	1	0		\＄150 083	0	－		1
6293	0	0	0	0	0	1．12\％	－	1	6098	1	0	0	\＄154424	0	0	0	1
6294	0	0	1	0	0	1．12\％	0	1	6098	0	1	0	\＄1044971	0	0	0	1
6295 6296	0	0	0	0	0	${ }^{1.12 \%}$	－	1	6098 6098	\bigcirc	0	0	\＄686139	0	0	0	1
6296 6297	0	0	\bigcirc	1	0	${ }_{\text {l }}^{1.1 .12 \%}$	\bigcirc	1	6098 6098	${ }_{1}$	0	0	\＄523328 $\$ 16347$	0	0	0	1
6298	0	0	0	1	0	1．12\％	0	1	5663	1	0		\＄162 564	0	0	0	1
6299	0	0	0	0	1	1．12\％	0	1	6500	1	0	0	\＄162868	0	0	0	1
6300 6301	0	1	0	0	0	${ }^{1.12 \%}$	0	1	${ }_{5}^{5663}$	0	0	0	\＄518147	0	0	0	1
6301 6302	\bigcirc	0	\bigcirc	1	\bigcirc	${ }^{1.1 .12 \%}$	0	1	6098 4792	\bigcirc	\bigcirc	${ }_{1}$	${ }_{5386551}$	\bigcirc	0	\bigcirc	1
6302 6303	${ }_{0}$	1	${ }_{0}$	${ }_{0}$	1	${ }^{1.112 \%}$	${ }_{0}$	1	${ }_{4356}^{4792}$	1	0	1		0	${ }_{0}$	${ }_{0}$	1
6304	0	0	0	0	1	1．12\％	0	1	4356	1	0	0	\＄133035	。	。	。	
6305	0	0	0	1	0	1．12\％	0	1	4356	1	0	0	\＄133035	0	0	0	1
6306	0	0	0	0	0	1．12\％	0	1	4356	1	0	0	\＄133339	0	0	0	1
6307 6308	0	0	0	0	1	${ }^{1.12 \%}$	0	1	4649 4356	0	0	1	${ }_{\$ 3560718}$	\bigcirc	0	0	1
6308 6309	0	\bigcirc	0	${ }_{0}^{1}$	${ }_{1}$	－${ }_{\text {1．14\％}}^{1.14 \%}$	\bigcirc	1	4356 4649	0	0	\bigcirc	${ }_{\substack{\text { S } \\ \$ 583539718}}^{\text {S }}$	0	0	0	1
6310	0	1	0	0	0	1．14\％	0	1	6098	0	0	1	\＄443210	0	0	0	
6311	0	0	0	0	0	${ }^{1.14 \%}$	0	1	4356	0	0	1	5402657	0	0	0	1
${ }_{6}^{6312}$	0	0	1	0	0	${ }^{1.111 \%}$	0	1	6098	1	0	0	\＄136642	0	0	0	1
6313 6314	0	1	0	0	0	${ }^{1.12 \%}$	0	1	6098 6098	\bigcirc	1	0	¢ $\begin{gathered}\text { S889005 } \\ \$ 1256234\end{gathered}$	\bigcirc	\bigcirc	\bigcirc	1
6314 6315	\bigcirc	\bigcirc	\bigcirc	${ }_{1}$	1	－${ }_{\text {1．12\％}}^{1.12 \%}$	0	1	6098 6098	0	${ }_{0}^{1}$	0	$\$ 1256234$ $\$ 44303$	0	\bigcirc	0	1
6316	0	0	0	1	0	1．12\％	0	1	7841	1	0	0	\＄156476	0	0	0	
6317	0	1	0	0	0	1．12\％	0	0	6098	0	0	1	5452629	0	0	0	1
6318	0	0	1	0	0	1．14\％	0		6098	0	1	0	\＄1124985	0		－	1
6319 6320	0	0	1	0	0	${ }^{1.11 \%}$	0	1	6098 6098	1	\bigcirc	0	S122301 $\$ 35500$	\bigcirc	\bigcirc	\bigcirc	1
6320 6321	0	${ }_{1}^{0}$	\bigcirc	\bigcirc	0	${ }_{\text {l }}^{\text {1．14\％}}$	\bigcirc	1	6098 5663	\bigcirc	0	1		\bigcirc	0	0	1
6322	0	0	0	1	0	1．73\％	1	1	6098	1	0	0	\＄131817		0	0	1
6323	0	0	0	0	0	${ }^{1.11 \%}$	0	1	${ }_{4}^{4356}$	1	\bigcirc	0	\＄124787		\bigcirc	0	1
6324 6325	0	0	0	0	1	${ }^{1.11 \%}$	0	1	${ }^{8276}$	1	0	0		0	0	0	1
6335 6326	\bigcirc	\bigcirc	\bigcirc	0	1	${ }^{1.14 \%}$ 1．14\％	0	1	4356 4356	\bigcirc	\bigcirc	1	S432722 $\$ 356942$	\bigcirc	0	0	1
6327	1	0	0	0	0	1．12\％		1	4356	0	0		\＄466332	0	0	0	1
${ }_{6}^{6328}$	0	0	0	0	0	${ }^{1.14 \%}$	0	1	${ }_{4}^{4356}$	1	0	0	\＄125424	0	0	0	1
${ }_{6}^{6329}$	0	0	1	0	0	1．14\％	0	1	4356	1	0	0	\＄119796	0		0	1
6330 6331	\bigcirc	\bigcirc	1	\bigcirc	0	${ }^{1.111 \%}$	0	1	4356 4356	1	\bigcirc	0	S117924 S119 335	\bigcirc	\bigcirc	\bigcirc	1
6332	0	0	0	0	1	1．12\％	0	1	4356	0	0	0	\＄255886		0	0	1
${ }_{6} 633$	0	0	1	0	0	${ }^{1.12 \%}$	0	1	4356 4356	0	1	0	\＄7283600	0	0	0	
6334 6335	\bigcirc	\bigcirc	0	1	0	${ }^{1.12 \%}$	\bigcirc	1	4356 4356	0	0	1	\＄300000	0	0	\bigcirc	1
6335 6336	\bigcirc	\bigcirc	${ }_{0}^{1}$	\bigcirc	\bigcirc	${ }^{1.1 .14 \%}$	\bigcirc	1	4356 4356	1	\bigcirc	0	S117924 S175409	0	\bigcirc	\bigcirc	1
6337	－	0	0	0	0	1．12\％	0	1	4356	0	1	0	\＄1064049	0	0	0	1
6338 6339	0	0	0	\bigcirc	1	1．11\％	0	1	4356 4356	1	\bigcirc	0	S129024 S11984 S	0	0	\bigcirc	
6339 6340	0	\bigcirc	1	\bigcirc	0	${ }^{1.11 \%}$	\bigcirc	1	4356 4356	1	\bigcirc	0	S119484 S11944	\bigcirc	\bigcirc	\bigcirc	1
${ }_{6} 341$	0	0	0	1	0	${ }^{1.11 \%}$	0	1	${ }_{4}^{4366}$	1	0	0	\＄167504	0	－	0	1
6342 633	0	0	1	0		${ }^{1.111 \%}$	0	1	8276	1	${ }^{0}$	0	S112 291 $\$ 78868$	0	\bigcirc		1
6343 6344	\bigcirc	${ }_{0}^{1}$	\bigcirc	0	0	${ }_{\text {l }}^{1.12 \%}$	\bigcirc	1	4792 4792	0	1	0	\＄748636 S104375	0	0	\bigcirc	1
6345		1	0	0	1	${ }_{1}^{1.12 \%}$	0	${ }_{0}$	${ }_{4}^{4792}$	${ }_{0}^{\circ}$	${ }_{0}^{1}$	1	\＄104385 $\$ 33988$	\bigcirc	\bigcirc	\bigcirc	${ }_{1}^{1}$
${ }_{6}^{6346}$	－	0	0	0	0	${ }^{1.12 \%}$	\bigcirc	1	${ }_{4}^{4356}$	0	0	1		0	0	0	1
6347 6348	－	\bigcirc	：	\bigcirc	1	－ $1.1 .14 \%$	\bigcirc	1	4356 4792	${ }_{1}$	${ }_{0}^{1}$	\bigcirc	\＄811022 S119172	\bigcirc	0	0	1
6348 6399	0	1	0	0	${ }_{0}$	${ }^{\text {2．01\％}}$	1	1	${ }_{4}^{4792}$	1	\bigcirc	0	$\begin{array}{r}5119172 \\ \$ 306252 \\ \hline\end{array}$	\bigcirc	0	\bigcirc	1
6350		0	0	0	1	${ }_{1.11 \%}$	${ }_{0}$	1	4356	1	－	0	${ }_{\text {S115 }}$	0	0	0	1
${ }_{6}^{6351}$	0	1	0	0	0	${ }^{1.11 \%}$	－	0	4792 4356	1	0	－	\＄116676	\bigcirc	\bigcirc	\bigcirc	1
6352 6353	0	${ }_{1}$	0	${ }_{0}$	${ }_{0}$	1．11\％${ }_{1}^{1.11 \%}$	0	${ }_{0}^{1}$	4356 4356	1	\bigcirc	\bigcirc	\＄114804 $\$ 115428$	\bigcirc	\bigcirc	\bigcirc	1
6354	0	${ }_{0}$	0	1	0	1．11\％		1	8276	1	。	0	\＄114769		－	0	1
6355	0	0	1	0	0	1．12\％	0	1	4356	0		1	\＄375 813	0	0	0	1
6356 6357	0	1	0	0	\bigcirc	1．12\％	0	0	4356 4356	0	0		$\$ 273501$ $\$ 397987$	0	0	0	
6357 6358	0	${ }_{0}^{1}$	0	0	0	－${ }_{\text {1．12\％}}^{1.12 \%}$	\bigcirc	${ }_{1}^{0}$	4356 4356	0	\bigcirc	1		0	\bigcirc	0	1
6359	0	0	0	1	0	1．14\％	－	1	4792		0	1	\＄345211		0	0	1
6360 6361	0	0	0	\bigcirc	1	${ }^{1.14 \% \%}$	0	1	4356 4356	0	0	0	\＄264230	0	－	0	1
${ }_{6362}^{6361}$	0	\bigcirc	\bigcirc	1	\bigcirc	${ }^{1.14 \% \%}$	0	1	4336 4356	0	0	${ }_{0}^{1}$	S375 813 $\$ 11294$	0	0	\bigcirc	1
6363	0	1				1．52\％			4356		0		\＄112942	0	0	0	1
6364 6355	0	0	－	1	0	${ }^{1.111 \%}$	－	1	4356 4356	1	\bigcirc	－	\＄132682	0	\bigcirc	0	1
6365 6366	0	0			1	1．11\％	0	1	4356 4356	1	\bigcirc	0	\＄108680		－	0	1
6366 6367	0	\bigcirc	0	0	1	${ }^{1.112 \%}$	0	1	4356 4356	1	0	0	S11 997 $\$ 397246$	0	\bigcirc	\bigcirc	1
6368	0	1	0	0	0	1．12\％	0	1	5663	0	0	1	\＄260000	0	0	0	1
						${ }_{\text {1．14\％}}^{1.14 \%}$	0		5227 4792	\bigcirc	0	0		0	0		1

osservation	PROPERTY DURESS $=1$	LT＿＿90\％	LTV 81\％．90\％	LTV 70\％．78\％	$\begin{gathered} \text { LTV beLow } \\ 70 \% \end{gathered}$	total tax burden	Parcel in SCEIP $=1$	CONVENTIONAL LOAN＝ 1	Lotsize	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	$\begin{gathered} \text { SOLD DURING } \\ 2004 _2007 \end{gathered}$	Soto 2008－2012	PRICE ADJUST. TO 2012	ZIP CODE 295403	ZIP CODE 95404	ZIP CODE 95472	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
6371	石s－1	1	0	0	0	1．14\％	scars		4356	${ }_{1}$	${ }^{2009}$	0	\＄108680	25403	5504		${ }^{4} 8$
6372	0	0	0	0	1	1．11\％	0	1	4356	1	0	。	\＄114465	。	。	。	1
6373		0	0	0		1．12\％	0	1	15682	1	0	0	\＄341 30	0	0	0	1
6374	0	0	0		1	1．12\％	0	1	10303	0	1	0	\＄1443731	0	0	0	1
6375	0	0	0	0	1	1．12\％	0	1	5663	1	0	0	\＄193421	0	0	0	1
6376	0	0	0	1		2．14\％	1	1	13504	0	0	0	5742677	0	0	0	1
6377	0	0	0	0	1	1．12\％	0	1	5663	1	0	0	\＄174598	0	0	0	1
6378	0	1	0	0		1．12\％	0	，	5663	0	0	1	\＄450 000	0	0	0	1
6379	0	1	0	0		1．12\％	0	1	6098	0	0	0	5310888	0	0	0	1
6380	0	0	0	1		1．12\％	0	1	5663	1	0	0	\＄184906	0	0	0	1
6381	0	0	0	0		1．12\％	0	1	5663	0	0	0	${ }_{\$ 3351878}$	0	0	0	1
6382	0	0	0	1	1	1．12\％	0	1	5663	0	0	0	${ }_{5598747}$	0	0	0	1
6383	0	1	0	0	0	1．12\％	0	0	6098	0	0	1	\＄536876	0	0	0	1
6384	0	0	0	1	1	1．12\％	0	1	5663	0	0	1	\＄536876	0	0	0	1
6385 6386	0	\bigcirc	0	0	1	1．12\％	0	1	6000 5663	0	0	0	S653 435 $\$ 592989$	0	0	0	1
6386	0	0	0	0	1	${ }^{1.12 \%}$	0	1	5663	0	0	1	$\begin{array}{r}\text { S529897 } \\ \$ 554204 \\ \hline\end{array}$	0	0	0	1
6387	0	0	0	0	1	1．14\％	0	1	5663	0	0	\bigcirc	\＄564204	0	0	0	1
6388	0	0	0	0	1	1．14\％	0	1	6098	0	1	0	\＄1049971	0	0	0	1
6389	0	0	0	1	0	1．14\％	0	1	8276	1	0	0	\＄240904		0	0	1
6390 6391	0	0	0	1	－	－1．14\％	0	1	5663 563	0	\bigcirc	1	5421398 $\$ 191789$	0	0	0	1
6391	0	0	0	1	1	${ }^{2.03 \%}$	1	1	${ }_{5}^{5663}$	1	0	0	S191789 $\$ 185855$	0	0	0	1
6392	1	0	0	0	1	1．12\％	0	1	5665	1	0	0	S18885 $\mathbf{\$ 1 2 3 0 5 4}$	0	0	0	1
6393	0	0	0	0	1	${ }^{1.12 \%}$	0	1	${ }_{6}^{6534}$	0	1	0	\＄1034054	0	0	0	1
${ }^{6394}$	0	0	0	0	0	1．12\％	0	1	${ }_{11761}$	1	0	0	\＄272679	0	0	0	1
6395	0	0	0	0	－	1．14\％	0	1	9583	0	1	0	\＄1574979	0	0	0	1
6396	0	0	0	0	0	1．12\％	0	1	8712	1	0	0	S186885	0	0	0	1
6397	0	0		0	1	1．12\％	0	1	5663	1	0	0	\＄168470	0	0	0	1
6398	0	1	0	0	0	1．12\％	0	1	6098	0	1	0	5965429 $\$ 65299$	0	0	0	1
6399 6400	0	0	0	0	0	1．14\％\％	\bigcirc	1	5663 3920		0	0	S652794 $\$ 275355$	0	0	0	1
6400 6401	\bigcirc	${ }_{0}$	${ }_{0}$	${ }_{0}^{1}$	${ }_{1}$	${ }_{\text {l }}^{1.14 \%}$	${ }_{0}$	1	3920 6534	${ }_{1}$	\bigcirc	0	S275 355 $\$ 141920$	${ }_{0}$	0	0	1
6402	0	0	0	1		1．14\％	0	1	5663	0	0	1	\＄361478	0	0	0	1
6403	0	0	0	0	1	1．12\％	0	1	6098	1		0	\＄164361	0	0	0	1
6404 6405	0	0	0	0	1	${ }^{1.12 \%}$	0	，	5663 563	0	0	0	\＄369922	0	0	0	1
6405 6406	\bigcirc	${ }_{0}^{1}$	\bigcirc	\bigcirc	${ }_{1}$	${ }_{\text {1．14\％}}^{1.14 \%}$	\bigcirc	${ }_{1}$	5663 6098	${ }_{1}$	\bigcirc	${ }_{0}^{1}$	5408026 $\$ 167206$	${ }_{0}$	\bigcirc	0	1
${ }_{6407}^{6406}$	0	${ }_{0}$	0	0	1	${ }^{1.12 \%}$	0	1	66534	1	0	0	\＄159620	0	0	0	1
6408	0		0		0	1．12\％	0	1	3920	1	0	0	\＄135914	0	0	0	1
6409 6410	0	0	0	0	0	${ }^{1.12 \%}$	0	1	3920 5227	1	\bigcirc	0	$\$ 136546$ $\$ 460640$	0	0	0	1
6410 6411	0	0	0	1	0	${ }^{1.14 \%}$	\bigcirc	1	5227 4992	1 1	\bigcirc	${ }_{0}^{1}$	\＄460640 $\$ 150$ 006	\bigcirc	0	0	1
6412	0	0	1	0	0	1．11\％	－	1	4356	1	0	0	\＄162 610	0	0	0	1
6413	0	0	0	1	0	1．11\％	0	1	4356	1	0	0	\＄131512	0	0	0	1
6414	0	0	0	0	1	1．11\％	0	1	4356	1	0	0	\＄131512	0	0	0	1
6415	0	0	0	0	1	1．12\％	0	1	4792	1	0	0	\＄138443	0	0	0	1
6416 6417	${ }_{1}$	${ }_{0}$	${ }_{0}$	1	0	1．1．12\％	\bigcirc	1	4356 5227	\bigcirc	0	1	S351 437 $\$ 338000$	${ }_{0}$	\bigcirc	\bigcirc	1
6418	1	0	0	1	0	${ }_{1.14 \%}^{1.12 \%}$	0	1	4356	0	0	1	\＄356457	－	0	0	1
6419	0	0	0	0	1	1．14\％	0	1	4356	0	0	0	\＄470938	0	0	0	1
6420	0	0	0	0	0	1．14\％	0	1	4356	1	0	0	\＄133948	0	0	0	1
6421 6422 6	\bigcirc	0	\bigcirc	0	0	1．14\％	\bigcirc	1	4356 4356	1	\bigcirc	0	S133035 $\$ 166268$	0	0	\bigcirc	1
6422 6423	0	0	\bigcirc	1	0 1	${ }^{1.14 \% \%}$	$\stackrel{0}{0}$	1	4356 4792	1	\bigcirc	\bigcirc	\＄166268	0	$\stackrel{\circ}{0}$	\bigcirc	1
${ }^{6424}$	0	0	0	0	0	1．12\％	0	1	${ }_{5} 663$	0		0	\＄275819	0	0	0	1
${ }^{6425}$	0	0	0	0	0	${ }^{1.12 \%}$	0	1	6534	0	0	1	\＄556012	0	0	0	1
6426 6427	0	1	\bigcirc	0	\bigcirc	${ }^{1.12 \%}$	\bigcirc	${ }_{1}$	7841 3920	0	\bigcirc	1	\＄556012 $\$ 131489$	\bigcirc	\bigcirc	\bigcirc	1
${ }_{6428}$	0	0	0	1	0	${ }_{1.11 \%}^{1.12 \%}$	0	1	3920	1	0	0	\＄138807	0	0	\bigcirc	1
6429	0	0	1	0	0	1．14\％	0	1	4792	1	0	0	\＄143655	0	0	0	1
6430	0	0	0	0	0	1．14\％	0	1	4792	0	1	0	\＄1069648	0	0	0	1
6431	0	0	0	0	1	1．11\％	－	1	3920	1	0		\＄132753	0	0	0	1
6432	0	0	1	0	0	1．11\％	0	1	8712	1	－	0	5115682	0	0	0	1
6433 6434	0	\bigcirc	0	0	0	1．11\％	\bigcirc	1	6534 5663	1	0	\bigcirc		\bigcirc	0	0	1
6434 6435	0	${ }_{1}$	\bigcirc	${ }_{0}^{1}$	\bigcirc	${ }_{\text {1．11\％}}^{1.12 \%}$	0	1	5663 3920	0 1	${ }_{0}^{1}$	\bigcirc	$\$ 1190609$ $\$ 142990$	－	\bigcirc	0	1
6436	0	0	0	1	0	1．12\％	0	1	4792	1	0	0	\＄134018		0	0	1
6437	0	0	0	0	0	1．12\％	0	1	3920	1	0	0	\＄141 604	0	0	0	1
6438	0	0	0	1	0	1．12\％	0	1	3920	0	0	1	\＄435445	0	0	0	1
6439 6440	0	1	0	0	\bigcirc	1．12\％	\bigcirc	0	6270 4160	0	0	1	S474073 $\$ 525826$	0	0	0	1
6440 6441	0	1	\bigcirc	\bigcirc	\bigcirc	${ }_{1}^{1.14 \%}$	\bigcirc	${ }_{0}^{1}$	4160 6350	\bigcirc	0	${ }_{1}$	\＄525826 $\$ 388917$	\bigcirc	\bigcirc	\bigcirc	${ }_{1}^{1}$
${ }_{6442}$	0	0	0	1	0	${ }^{1.14 \%}$	0	1	3920	1	0	0	\＄134966	0	0	0	1
${ }_{6}^{643}$	0	0	0	0	0	1．11\％	0	1	4356	1	0	0	5118727	0	0	0	1
6444 6445	\bigcirc	0	0	${ }_{0}^{1}$	\bigcirc	${ }^{1.11 \%}$	0	1	4356 4356	1	0	\bigcirc	S118727	0	\bigcirc	\bigcirc	1
6446	0	0	0	1	0	${ }_{1.11 \%}^{1.11 \%}$	0	1	${ }_{4}^{4356}$	1	0	0	${ }_{\text {S121771 }}$	0	0	0	1
${ }_{6447}$	0	0	1	0	0	${ }^{1.11 \%}$	0	1	${ }_{4}^{4366}$	1	0	0	\＄119640	－	\bigcirc	\bigcirc	1
6448 6449	0	0	0	0	0	1．11\％	0	1	4792 4356	1	\bigcirc	0	\＄125800	0	0	\bigcirc	1
6449 6450	\bigcirc	\bigcirc	1	${ }_{0}$	\bigcirc	${ }^{1.111 \%}$	${ }_{0}$	1	4356 4356	1	\bigcirc	0	S125800 $\$ 121771$	\bigcirc	${ }_{0}$	\bigcirc	1
${ }_{6451} 64$	0	1	${ }_{0}$	0	0	${ }^{1.12 \%}$		1	4792	${ }_{0}$	1	0	\＄1099207	0			1
6452	0	1	0	0	0	${ }^{1.12 \%}$		1	${ }^{4356}$	0	0		$\$ 564301$ $\$ 32493$	0	\bigcirc	\bigcirc	1
6453 6454	0	0	0	0	0	${ }^{1.12 \%}$	\bigcirc	1	4356 4356	0	\bigcirc	0	5324493 $\$ 48694$	0	\bigcirc	\bigcirc	1
6454 6455	0	0	0	0	\bigcirc	${ }^{1.14 \%}$	0	1	4356 4356	\bigcirc	\bigcirc	1	5486949 $\$ 397288$	\bigcirc	\bigcirc	\bigcirc	1
6456	${ }_{0}$	1	${ }_{0}$	${ }_{0}^{\circ}$	${ }_{0}$	${ }_{\text {1．14\％}}^{1.14 \%}$	${ }_{0}$	1	${ }_{4}^{4356}$	${ }_{0}$	1	${ }_{0}^{1}$	（	${ }_{0}$	${ }_{0}$	${ }_{0}$	1
6457	0	1	0	0	0	1．14\％	0	0	5227	0	0	1	\＄321314	0	0	0	1
${ }_{6}^{6458}$	0	1	0	0	0	1．14\％	0		4356 4356	0	0	1	\＄4107 710 $\$ 127380$		－	0	1
6459 6460	。	\bigcirc	${ }_{0}^{1}$	\bigcirc	0 1	${ }^{1.1 .14 \%}$	\bigcirc	1	4356 4792	${ }_{0}^{1}$	\bigcirc	0 1	$\$ 127380$ $\$ 38883$	\bigcirc	0	\bigcirc	1
6461	0	0	0	1	0	1．14\％	0	1	4792	0	。	1	\＄393349	0			1
6462	0	－	0	0	0	1．11\％	－	1	4356	1	0	0	\＄125424	0			1
6463 6464	\bigcirc		0		1	${ }^{1.11 \%}$		1						0	0	0	
6464 6465		\bigcirc	\bigcirc	0	0 1	${ }_{\text {1．14\％}}^{1.12 \%}$	\bigcirc	1	4356 4649	\bigcirc	\bigcirc	1	S494558 $\$ 545064$	\bigcirc	\bigcirc	0	1
6466	0	1	0	0	0	1．14\％	0	0	4356	0	0	1	\＄325000	0	0	0	1
6467 6468	0	0	0	0	1	1．10\％	0	1	5663	1	0	0	${ }_{\$ 162277}$	0	0	－	1
6468 6469	0	\bigcirc	\bigcirc	\bigcirc	${ }_{1}^{0}$	${ }_{\text {1．12\％}}^{1.12 \%}$	\bigcirc	1	9583 7405	${ }_{0}^{1}$	${ }_{0}^{0}$	${ }_{1}^{0}$	S111086 S345412	${ }_{0}$	${ }_{0}$	\bigcirc	1
6470	0	0	0	0	1	1．14\％	0	1	6098	1	0	${ }_{0}$	\＄151086	0		。	1
${ }_{6471} 647$	0	1	0	0	0	${ }^{1.111 \%}$	0	1	3920 563	1	0	0		\bigcirc	\bigcirc	\bigcirc	1
6472 6473	0	${ }_{0}$	\bigcirc	0	0 1	${ }_{\text {1．11\％}}^{1.11 \%}$	\bigcirc	1	5663 4356	1	\bigcirc	0	\＄125 167 $\$ 127064$	\bigcirc	\bigcirc	\bigcirc	1
6473 6474	0	\bigcirc	\bigcirc	1	1	${ }^{1.112 \%}$	\bigcirc	1	4336 6970	1	${ }_{0}$	0	$\$ 127064$ $\$ 145713$	\bigcirc	0	\bigcirc	1
6475		0	0	0	0	1．12\％	0	1	4356	0	。	0	\＄395552	0		0	1
6476 6477	0	0	0	0	0	${ }^{1.112 \%}$	\bigcirc	1	${ }_{6}^{6534}$	0	0	1	5483189 542827	0	0	\bigcirc	1
6477 6478	0	\bigcirc	：	0	0	${ }_{\text {1．14\％}}^{1.14 \%}$	\bigcirc	1	6900 5227	\bigcirc	0	${ }_{0}^{1}$	\＄428427 $\$ 305951$	0	\bigcirc	0	1
6479	0	0	0	1	0	1．14\％	0	1	3920	0	0	1	\＄374513	0		0	1
6480 6481	0	0	0	0	0	${ }^{1.14 \%}$	0	1	3920	0	0	1	\＄354568	0	0	0	1
6481 6482	0	${ }_{0}^{1}$	${ }_{1}^{0}$	\bigcirc	0	${ }^{1.14 \%}$	0	${ }_{1}^{1}$	$\begin{array}{r}3920 \\ 3920 \\ \hline\end{array}$	${ }_{1}^{0}$	0	1	\＄290000 $\$ 126432$	\bigcirc	0	\bigcirc	1
6483	0	1	0	0		1．12\％		1	4500	1			\＄552329	\bigcirc	0	0	1
6484	0	0	0	0	1	1．12\％	0	1	4356	0	1	0	5863860 $\$ 8790$	\bigcirc	\bigcirc	0	
6485 6886	0		O		1	1．12\％	－		4356 4356			0	5867950 $\$ 52526$	0	O		1
6486 6487	。	0	0	0	1	${ }^{1.1 .12 \%}$	0	1	4356 4356	0	0	${ }_{1}^{0}$	\＄525 826 $\$ 407200$	0	0	0	1
6488	0		0	0	1	1．14\％		1	4356		0		\＄573920	0	0	0	1
6489 6490	0	1	0	0	0	1．11\％	\bigcirc	1	5227 4356	1	0	\bigcirc	\＄122271 $\$ 156588$	\bigcirc	\bigcirc	\bigcirc	
6490 6491	0	1	0	0	0	${ }^{1.111 \%}$	\bigcirc	1	4356 4356	1	0	0	S156588 $\mathbf{\$ 1 1 9 1 6 2}$	\bigcirc	0	0	1
6492	0	0	0	1	0	1．11\％	0	1	4792	1	0	0	\＄119794		0	0	1
6493 6494	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	0	\bigcirc	－ 1.11%	\bigcirc	1	4792 5663	1	0	0	S120742 S165 245	0	0	0	1
6494 6495	\bigcirc	1	0	1	0	${ }^{1.111 \%}$	0	1	5663 4356	1	\bigcirc	\bigcirc	\＄165 245 $\$ 121691$	\bigcirc	\bigcirc	\bigcirc	1
6496		0	1	0	－	1．11\％	0	1	4356	1	0		${ }_{511818} 118$		O	0	1
6497 6498	0	${ }_{1}^{0}$	0	${ }_{0}^{1}$	0	1．112\％	0	1	${ }_{4687}^{4792}$	${ }_{0}^{1}$	\bigcirc	0	S180678 $\$ 519413$	\bigcirc	0	\bigcirc	1
6499 6500	0		1	0	－	${ }^{1.12 \%}$	－	1	4792 4356	0	1	0	$\underset{\$ 93773707}{\$}$	0	－	\bigcirc	1

osservation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％－90\％	LTV 70\％．78\％	Ltv below 70\％	totaltax burden	parcelin SCEIP $=1$	conventional	Lot size	sold PRIOR 2000	SOLD DURING	SOLD 2008－2012	PRICE ADJUST．TO	ZIP CODE 295403	ZIP CODE 95404	ZIP CODE 95472	ZIP CODE
6501	0	1	0	0	${ }_{0}$	1．12\％	Scap－1	${ }_{0}$	4356	Phor－200	${ }^{2009}$	1	\＄508019	29503	9504	9547	94928
6502	0		－	0	1	1．12\％	0		5227	0	0	1	5443639	0	0	0	1
6503	0	0		0	0	${ }^{1.12 \%}$	0	1	5227		0	1	${ }_{5380645}$	0	0	0	1
6504	0	0	0		0	1．12\％	0	1	5227	0	0	0	5359592	0	0	0	1
6505	0	0	1	0	0	1．12\％	0	1	4356	0		0	\＄313 368	0	0	0	1
6506	0	1	0	0	0	1．12\％	0	1	4356	0	1	0	\＄1043785	0	0	0	1
${ }_{6} 657$	0	1	－	0	0	${ }^{1.12 \%}$	0	0	${ }_{5}^{4356}$	0	0		5408026	0	0	0	1
6508	0	1	0		0	1．12\％	0	1	5227	0	0	0	539193	0	0	0	1
6509	0	0	1		0	1．14\％	0	1	4792		1	0	\＄1078111	\bigcirc	0	\bigcirc	1
6510	0	0	0	1	0	1．14\％	0	1	4792	－	1	0	5935613	0	0	0	1
${ }_{6511}^{6512}$	0	0	0	0		1．14\％	－	1	${ }_{4}^{4356}$	\bigcirc	0	1	S491631 $\$ 40646$	\bigcirc	\bigcirc	0	1
${ }_{6512}^{6512}$	0	1	0	0		${ }^{1.114 \%}$	0	0	4792	0	0	1	\＄406646	0	\bigcirc	0	1
6514	0	1	0	0	0	1．14\％	0	0	4356	0		1	\＄337000	。	。	－	1
6515	0	0	0		0	1．14\％	0	1	4356	1	0	0	5183690	0	0	0	1
6516	0	0	0	0	0	1．14\％	0	1	4792	1	0	－	\＄117265	0	0	0	1
6517	0	0	0	1	0	1．75\％	1	1	4792	0	0	0	\＄564301	0	0	0	1
6518	0	0	0	1	0	1．11\％	0	1	4356	1	0	0	\＄131019	0	0	0	1
6519	0	1		0	0	${ }^{1.111 \%}$	0	1	4792	1	0		\＄154329	0	0	0	1
6520	0	1	0	0	0	${ }^{1.11 \%}$	0	0	4356	1	0	0	S135342 $\$ 112029$	\bigcirc	\bigcirc	\bigcirc	1
${ }_{6}^{6521}$	0	0	0	1	0	1．11\％	0	1	${ }^{4356}$	1	0	0	\＄112029	0	0	0	1
${ }_{6}^{6522}$	0	0	1	0	0	1．11\％	0	1	${ }^{4356}$	1	0	0	\＄112029	0	0	0	1
6523 6524	\bigcirc	\bigcirc	1	0	\bigcirc	${ }^{1.111 \%}$	\bigcirc	1	4356 4356	1	\bigcirc	\bigcirc	S117582 $\$ 119794$	\bigcirc	\bigcirc	0	1
6525	0	0	0	。	。	1．11\％	0	1	4356	1	。	－	\＄167880	0	0	0	1
6526	0	0	0	0	0	1．11\％	0	1	8276	1	0	0	\＄184442	0	。	。	1
6527	0	1	0	0	0	1．11\％	0	1	${ }^{9} 583$	1	0	0	\＄186701	0	0	0	1
6528	0	0	0	0	0	1．12\％	0	1	${ }^{4356}$	0	0	1	5423739	0	0	\bigcirc	1
6529	0	1	0	－	0	1．12\％	0	1	4356	0	0	0	\＄538651	0	0	0	1
6530	0	1	0	0	0	1．12\％	0	1	4356	0	0	0	\＄292044	0	0	0	1
${ }_{6} 6531$	0	1	0	0	0	1．12\％	0	0	6534	0	0	1	\＄354568	0	0	\bigcirc	1
6532 6533	0	${ }_{1}^{1}$	\bigcirc	${ }_{0}^{1}$	\bigcirc	${ }_{\text {1．12\％}}^{1.12 \%}$	0	${ }_{0}^{1}$	7841 8712	\bigcirc	0	${ }_{1}^{0}$	S441001 $\$ 261067$	\bigcirc	0	\bigcirc	1
6534			0	0	1	1．12\％	0	1	9583	0	0		\＄320 784	。	0	。	1
6535	0	0	1	0	0	1．12\％	0	1	9583	0	1	0	\＄771603	0	0	0	1
${ }_{6} 6536$	\bigcirc	0	0	0	1	1．14\％	0	1	4356		0	1	\＄338232	0	0	0	1
6537 6538	0	0	0		0	1．14\％	0	1	4792 4356	\bigcirc	0	1	$\$ 386701$ S1012 487	\bigcirc	\bigcirc	\bigcirc	1
6538 6539	\bigcirc	0	${ }_{1}^{0}$	0	\bigcirc	${ }^{1.14 \%}$	0	${ }_{0}^{1}$	4336 4356	\bigcirc	${ }_{0}^{1}$	${ }_{1}^{0}$	$\$ 101287$ $\$ 375747$	\bigcirc	0	0	1
6540		0	0	0	1	1．14\％	0	1	7405	1	0	0	\＄187454	0	0	0	1
6541	0	1	0		0	1．14\％	0	1	4792		0	0	\＄167880	0	0	0	1
6542	0	0	0	1	1	1．14\％	0	1	4792	1	0	0	\＄122 292	0	0	0	1
${ }_{6} 543$	0	0	0	0	1	1．14\％	0	1	${ }^{4356}$	1	0	0	\＄140995	0	0	0	1
6544 6545	。	0	\bigcirc	0	\bigcirc	${ }_{\text {l }}^{\text {1．14\％}}$	0	1	4792 4356	1	\bigcirc	\bigcirc	${ }_{\text {S }} \mathbf{\$ 1 1 2 0 2 9}$	\bigcirc	0	。	1
6546	0	－	0	0	－	1．14\％	0	1	4356	1	0	0	\＄130 354	。	0	0	1
6547	0	0	0	0	1	1．11\％	0	1	4792	1	0	0	\＄199812	0	0	0	1
${ }_{6} 6548$	0	0	0	0	1	${ }^{1.111 \%}$	0	1	${ }_{3}^{4356}$	1	0	0	\＄109363	0	0	0	1
6549 6550 650	\bigcirc	0	1	\bigcirc	${ }_{1}$	${ }^{1.111 \%}$	0	1	8276 4356	1	${ }_{1}$	\bigcirc	S114737 $\$ 778270$	\bigcirc	\bigcirc	\bigcirc	1
6550 6551	\bigcirc	0	0	\bigcirc	${ }_{0}^{1}$	${ }^{1.111 \%}$	0	1	4336 4356	\bigcirc	1	\bigcirc	\＄778270 $\$ 991838$	\bigcirc	0	\bigcirc	1
${ }_{6} 6552$	0	0	0	0	0	${ }^{1.111 \%}$	0	1	${ }^{4356}$	0	1	0	5942177	0	0	0	1
6553	0	1	0	0	0	1．12\％	0	1	7841	0	1	0	\＄687733	0	0	0	1
6554 6555	0	1	0	－	0	${ }^{1.144 \%}$	0	0	7405 4792	${ }_{1}$	0	${ }_{0}^{1}$	$\$ 25000$ $\$ 117300$	0	0	0	1
6555 6556	\bigcirc	1	0	\bigcirc	0	${ }_{\text {l }}^{1.114 \%}$	0	${ }_{1}^{0}$	4792 4792	1	\bigcirc	\bigcirc	\＄117300 $\$ 133014$	\bigcirc	\bigcirc	0	1
6557		0	0			1．12\％	0	1	12197	0	1	0	\＄1533348	0	。	0	1
6558	0	0	0	0	1	1．12\％	0	1	11761	1	0	0	\＄261503	0	0	0	1
6559 6560	0	0	0	\bigcirc	1	1．12\％	0	1	7405	1	0	\bigcirc	\＄131027 $\$ 130788$	\bigcirc	0	0	1
6550 6561	\bigcirc	${ }_{1}$	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }^{1.1 .12 \%}$	0	1	7841 11761	1	\bigcirc	\bigcirc	\＄130748 $\$ 255719$	\bigcirc	\bigcirc	\bigcirc	1
6562			0	1		1．12\％	0	1	5663	1	0	0	\＄138850	0	。	。	1
6563	0	0	0	0	0	1．12\％	0	1	6534	1	0	\bigcirc	\＄141643	0	0	0	1
6564	0	0	0	0	1	1．12\％	0	1	7405	1	0	0	\＄148069	0	0	0	1
${ }_{6}^{6555}$	0	0	0	0	1	1．12\％	\bigcirc	1	9148 5653	1	0	\bigcirc	\＄146113	\bigcirc	\bigcirc	\bigcirc	1
6566 6567	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	－ 1.12%	\bigcirc	1	5663 5663	1	0	\bigcirc	${ }_{\substack{\text { S286074 } \\ \$ 1216114}}$	\bigcirc	\bigcirc	\bigcirc	1
6567 6568	\bigcirc	0	0	0	1	－	0	1	5663 9883	\bigcirc	1	\bigcirc	\＄1216 114 $\$ 760524$	\bigcirc	\bigcirc	0	1
6569	0	0	0	0	，	1．12\％	0	1	7841	0	1	0	\＄1404029	0	0	0	1
6570	0	0	0	0	0	1．14\％	0	1	11961	0	0	1	\＄427000	0	0	0	1
6571 6572	0	0	0	0	1	1．14\％	0	1	9148	0	1	，	\＄1406632	0	0	0	1
6572 6573	\bigcirc	\bigcirc	${ }_{0}^{1}$	0	\bigcirc	${ }^{1.1 .14 \%}$	\bigcirc	1	6970 8276	\bigcirc	${ }_{0}^{1}$	${ }_{1}^{0}$	$\$ 1346759$ $\$ 515232$	0	\bigcirc	\bigcirc	1
6574	0		0		0	1．14\％	0	1	6098	0	0	1	\＄449 000	0	。	0	1
6575	0	0	1	0		2．02\％	1	1	5663	1	0	0	\＄210162	0	0	\bigcirc	1
6576	0	0	0	0	－	1．14\％	0	1	9583	1	0	0	5249703	0	0	0	1
6577	0	0	0	0	1	1．12\％	0	1	9148	1	0	0	5127675	0	0	0	1
6578 6579	1	\bigcirc	1	${ }_{1}$	\bigcirc	${ }^{1.12 \%}$	\bigcirc	1	11761 10454	${ }_{1}$	1	\bigcirc	$\$ 1308371$ $\$ 231355$ S	${ }_{0}$	\bigcirc	0	1
${ }_{6580}$	${ }_{0}^{\circ}$	0		1		${ }_{\text {1．12\％}}^{1.12 \%}$	0	1	10454 6098	1	0	${ }_{0}^{0}$	S231365 $\$ 127116$	\bigcirc	\bigcirc	0	1
6581	0	0	0	0	1	1．12\％	－	1	5663	1	0	0	\＄128792	0	0	0	1
6582	0	0	0	0	0	1．12\％	0	1	6534	1	0	0	\＄165343	0	0	0	1
6583 6584	\bigcirc	\bigcirc	${ }_{1}^{0}$	0	${ }_{0}^{1}$	${ }_{\text {1．12\％}}^{1.12 \%}$	0	1	5663 5663	${ }_{0}^{1}$	${ }_{1}$	\bigcirc	¢ $\begin{gathered}\text { \＄1700335 } \\ \$ 1282483\end{gathered}$	\bigcirc	\bigcirc	0	1
6585	0	0	1	0		1．12\％	0	1	6970	0	0	0	\＄369922	0	0	－	1
${ }_{6}^{6586}$	0	0	0	0	1	1．14\％\％	0	1	4792	1	0	\bigcirc	\＄101972 $\$ 12540$	\bigcirc	\bigcirc	0	1
6587 6588	0	0	\bigcirc	0	1	${ }_{\text {1．12\％}}^{1.12 \%}$	0	1	6098 5663	1	\bigcirc	${ }_{0}$	\＄125400	\bigcirc	\bigcirc	0	1
6588 6589	0	${ }_{0}$	${ }_{0}$	0	1	${ }_{1.12 \%}^{1.12 \%}$	0	1	5653 6500	1	${ }_{0}$	${ }_{0}^{\circ}$	S21555 $\$ 59399$	\bigcirc	${ }_{0}$	0	1
6590	0	0	0		1	1．14\％	0	1	6098	0	0	0	\＄490353	0	0	0	1
6591 6592	－	0	0	1		${ }^{1.111 \%}$	0	1	3920 4792	0	0	1	$\$ 350000$ $\$ 105325$	\bigcirc	0	0	
6592 6593	0	0	\bigcirc	${ }_{0}^{1}$	\bigcirc	${ }_{\text {1．11\％}}^{1.11 \%}$	\bigcirc	1	4792 3920	1	0	\bigcirc	\＄105 325 $\$ 152966$	\bigcirc	\bigcirc	\bigcirc	1
6594	0	0	0	1	0	1．12\％		1	3920	1	0	0	\＄135914				1
6595 6596 659	0	\bigcirc	0	${ }_{0}$	0	${ }^{1.144 \%}$	1	1	4356 4356	0	0	0	$\$ 309659$ $\$ 00207$	\bigcirc	\bigcirc	0	1
6596 6597	\bigcirc	\bigcirc	\bigcirc	1	\bigcirc	${ }^{1.69 \%}$	${ }_{0}^{1}$	1	4356 3920	1	\bigcirc	\bigcirc	\＄104 207 S102 251	\bigcirc	\bigcirc	\bigcirc	1
6598		0	1	0	0	1．11\％		1	5663	1	0	。	\＄103 369	。	－	0	1
6599	0	0	0	0	1	1．14\％	0	1	4787	0	0	0	\＄551476	\bigcirc	0	0	1
6600 6601	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }_{0}$	\bigcirc	${ }^{1.1 .14 \%}$	0	1	3920 4792	1	0	\bigcirc	\＄101134 $\$ 12929$	\bigcirc	\bigcirc	0	1
6601 6602	${ }_{0}$	0	\bigcirc	0	0	${ }_{1.11 \%}^{1.11 \%}$	0	1	4792 4792	1	0	0	\＄129024 $\$ 134770$	\bigcirc	\bigcirc	0	1
6603	0	0	0		0	1．11\％		1	4356	1	0	0	\＄135152	－	－	0	1
6604 6605	0	0	1	${ }^{0}$	0	${ }^{1.111 \%}$	\bigcirc	1	${ }_{4}^{4356}$	1	0	\bigcirc	\＄103648	\bigcirc	0	－	1
6605 6606	0	0	\bigcirc	${ }_{0}^{1}$	1	${ }^{1.111 \%}$	0	1	4792 4792	1	0	\bigcirc	\＄104207 $\$ 107839$	\bigcirc	\bigcirc	0	1
6607	0	0		0	0	${ }^{1.11 \%}$		1	6534	1	0	0	\＄107560	0	0		1
${ }_{6}^{6608}$	0	0	0	1	0	1．11\％	0	1	${ }_{4} 356$	1	0	0	\＄105604	0	0	0	1
6609 6610	\bigcirc	0	${ }_{0}^{1}$	\bigcirc	\bigcirc	${ }^{1.111 \%}$	0	1	4792 4356	1	0	0	\＄110 074 $\$ 109795$	\bigcirc	\bigcirc	0	1
6611	0	0	0	1	0	1．11\％	－	1	4792	1	－	－	\＄107839	0	0		1
6612	0	1	0	0	0	1．11\％		1	${ }_{6} 698$	1		0	\＄111750	0	0	0	1
${ }_{6613}^{6614}$	0		0	0	0	1．11\％		1	4356	1	0	0	\＄156292	0	0	0	
6614 6615	0	\bigcirc	\bigcirc	1	0	－${ }_{\text {1．11\％}}$	\bigcirc	1	5227 4356	1	\bigcirc	\bigcirc	S115 957 $\$ 182184$	\bigcirc	\bigcirc	\bigcirc	1
6616	0	1	0	1	0	${ }_{1.11 \%}^{1.11 \%}$	0	1	4356 4992	1	0	\bigcirc	S182 184 $\$ 16292$	0	\bigcirc	0	1
${ }_{6617}^{6617}$	0		0	－		1．12\％	0	1	${ }_{6} 6334$	1	0	\bigcirc	\＄147925	\bigcirc	0	0	1
${ }_{6}^{6618}$	0		，		0	1．12\％	0	1	4500 4356	0	0		\＄564301	－	0	0	1
6619 6620	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	0	\bigcirc	${ }_{\text {1．12\％}}^{1.12 \%}$	\bigcirc	1	4336 4356	\bigcirc	${ }_{0}^{1}$	\bigcirc	S725 241 $\$ 446758$	0	\bigcirc	0	1
6621	0	1	0	0	0	1．12\％	0	1	4792	0	0	0	\＄577126	0	0	0	1
6622 6623	0	0	1	0	－	${ }_{\text {112\％}}^{1.12 \%}$	0	1	4356 4356	\bigcirc	，	\bigcirc	\＄1126918	0	\bigcirc	0	
6623 6624	0	0	1	\bigcirc	－	${ }_{\text {1．1．14\％}}$	\bigcirc	1	4356 4356	0	0	${ }^{0}$	5489361 $\$ 468220$	0	\bigcirc	\bigcirc	1
6625	0	1	0	0		1．14\％	0	1	4356		1	0	\＄1097360	0	0	0	
6626 6627	\bigcirc	0	0	0	${ }_{1}$	1．14\％	\bigcirc	1	4792 4356	${ }_{1}$	\bigcirc	${ }_{0}^{1}$	$\$ 390846$ S110353	${ }_{0}$	\bigcirc	${ }_{0}$	1
6628	0	1	${ }_{0}$		${ }_{0}^{1}$	${ }^{1.14 \% \%}$	0	1	4356 634	1	\bigcirc	\bigcirc	S10353 $\$ 131027$		\bigcirc	\bigcirc	${ }_{1}^{1}$
			${ }_{0}^{1}$	0		${ }_{1.14 \%}^{1.14 \%}$			6098 4356		－	0	${ }_{\text {S1155 }}^{51177}$	0	\bigcirc	${ }_{0}$	

observation	PROPERTY DURESS $=1$	LTV＿90\％	LTV 81\％．90\％	LTv 70\％－78\％	$\begin{gathered} \text { LTV beLow } \\ 70 \% \end{gathered}$	total tax burden	parcel in SCEIP $=1$	CONVENTIONAL LOAN＝ 1	Lotsize	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	SOLD DURING 2004＿2007	Sold 2008－2012	PRICE ADJUST. TO 2012	$\begin{gathered} \text { ZIP CODE } \\ \text { Z95403 } \end{gathered}$	ZIP CODE 95404	ZIP CODE 95472	ZIP CODE 94928
6631	Sess	1	0	0	\％	1．14\％			4356	${ }_{1}$	${ }^{2004}$	0	${ }_{\text {S131027 }}$	29503	5504		${ }^{4} 2$
6632	0	0	0	0	0	1．14\％	0	1	4792	1	0	0	\＄107001	0	。	。	1
6633		0	0	0	0	1．14\％	0	1	4356	1	0	0	\＄102 531		0	0	1
6634	0	0	0		1	1．25\％	0	1	4356	0	1	0	5862183	0	0	0	1
6635	0	0	1		0	1．50\％	1	1	4356	1	0	0	\＄192347	0	0	0	1
6636	1	0	0	1		1．22\％	1	1	4356	1	0	0	\＄104207	0	0	0	1
6637	0	0	0	1	0	1．11\％	0	1	9583	1	0	0	\＄110 074	0	0	0	1
6638	0	0	0	1	0	1．12\％	0	1	6098	1	0	0	\＄120 411	0	0	0	1
6639	0	0	0	0	0	1．12\％	0	1	6098	1	0	0	\＄182894	0	0	0	1
6640	0	0	0	1		1．12\％	0	1	5663	0	1	0	5904602	0	0	0	1
6641	0	0	0	0	0	1．12\％	0	1	6098	0	1	0	\＄927997\％	0	0	0	1
6642	0	0	0	0	1	1．12\％	0	1	6534	0	1	0	\＄1213109	0	0	0	1
6643	0	0	0	0	0	1．14\％	0	1	6534	0	0		5467470	0	0	0	1
6644	0	0	0	0	0	1．14\％	0	1	6970	0	0	0	\＄429332	0	0	0	1
${ }^{6645}$	0	0		0	－	1．14\％	0	1	7405	0	0	0	\＄352 307	0	0	0	1
6646	0	0	0	1	0	1．11\％	0	1	4356		0	0	\＄98340	0	0	0	1
6647	0	0	1	0		1．11\％	0	1	5663	1	0	0	\＄102 251	0	0	0	1
6648	0	1	0	0	0	1．11\％	0	1	4792	1	0	0	\＄144985	0	0	0	1
6649	0	0	0	0	－	1．11\％	0	1	4356	1	0	0	\＄124511		0	0	1
6650 6651	0	1	0	0	0	${ }_{\text {1．12\％}}^{12 \%}$	0	1	3920 3920	1	0	0	S190465 S199922	0	0	0	1
6651	0	0	1	0		1．12\％	0	1	3920	1	0	0	\＄194982	0	0	0	1
6652	0	0	0	0	1	1．12\％	0	1	3920	1	0	0	S121888 $\$ 42230$	0	0	0	1
6653 6654 665	0	0	0	0	0	${ }_{\text {1 }}^{1.12 \%}$	\bigcirc	1	4356 7405	\bigcirc	0	${ }_{0}^{1}$	5432130 $\$ 426032$	0	\bigcirc	：	1
6654 6655	\bigcirc	0	\bigcirc	0	1	${ }_{\text {1．14\％}}^{1.12 \%}$	\bigcirc	1	7405 4792	0	\bigcirc	\bigcirc	S426032 $\$ 426032$	\bigcirc	0	0	1
6656	0			0	1	1．14\％	0	1	7841	1	0	0	\＄127 251	0	0	0	1
${ }_{6}^{6657}$	0	0		0	0	1．14\％	0	1	5227	1	0	0	\＄117338	0	0	0	1
6658 6659	0	0	0	0	0	${ }^{1.11 \%}$	\bigcirc	1	4792 4356	1	－	\bigcirc	\＄91356	\bigcirc	0	0	1
6659	0	0	0	0	0	${ }^{1.11 \%}$	0	1	4356	1	0	0	\＄97781	0	0	0	1
6660 6651	0	0	0	0	1	1．11\％	0	1	4356	1	0	0	\＄97223		0	0	1
6661 6662	\bigcirc	${ }_{1}$	\bigcirc	\bigcirc	\bigcirc	${ }^{1.11 \%}{ }_{1.11 \%}$	\bigcirc	1	3920 4792	1	\bigcirc	\bigcirc	598899 $\$ 14030$	\bigcirc	\bigcirc	\bigcirc	1
6663	0	0	0	1	0	1．11\％	0	1	3920	0	－	1	\＄406646	0	0	。	1
6664	0	0	0	0	0	1．11\％	0	1	3920	1	0	0	S13022 $\$ 55789$	0	0	0	1
6665 6665	0	1	0	0	0	${ }_{\text {1．12\％}}^{121}$	0	1	5252	0	0	0	\＄557889	0	0	0	1
${ }_{6666}^{6667}$	0	0	0	1	0	1．12\％	0	1	6098	0	1		\＄1089970	0	0	0	1
6667 6668	0	0	${ }_{1}^{0}$	\bigcirc	0	${ }^{1.1 .14 \%}$	\bigcirc	1	3920 4356	1	\bigcirc	\bigcirc	$\$ 98061$ $\$ 96943$	${ }_{0}$	\bigcirc	0	1
6669	0	0	0	0	1	1．11\％	0	1	3920	1			\＄100 296		0	0	1
6670	0	0	0	0	0	1．11\％	0	1	${ }_{6}^{6998}$	1	0	0	${ }_{\$ 144320}$	0	0	0	1
6671	0	0	0	0	0	1．11\％	0	1	5227	1	－	0	\＄101134	0	0	0	1
${ }_{6}^{6672}$	0	1	0	0		${ }^{1.111 \%}$	0	1	3920 3920	1	0	0	S147646 $\$ 254032$	0	0	0	1
${ }_{6}^{6673}$	${ }_{0}^{0}$	${ }_{0}$	\bigcirc	\bigcirc	${ }_{1}$	${ }^{1.12 \%}$	\bigcirc	1	3920 5555	\bigcirc	\bigcirc	${ }_{0}$	－ 5 \＄554032 889	${ }_{0}^{0}$	0	\bigcirc	1
6675		1	0	0	0	1．14\％	0	1	3920	0	0	1	\＄415546		0	0	1
6676	0	0	0	1	0	1．14\％	0	1	5663	0	1	0	\＄1108444	0	0	0	1
6677	\bigcirc	0	0	0	1	1．14\％	0	1	3920 3920	0	0	1	－ $\begin{gathered}505678 \\ \$ 1117885\end{gathered}$	0	0	0	1
6678 6679	0	0	0	0	0	1．14\％	0	1	3920	0	1		\＄117785	0	0	0	1
6679 6680	${ }_{0}^{1}$	${ }_{0}^{1}$	\bigcirc	0	0	${ }^{1.1 .14 \%}$	\bigcirc	${ }_{1}^{1}$	4356 3306	\bigcirc	\bigcirc	${ }_{0}^{1}$	$\$ 371189$ $\$ 51300$	0	\bigcirc	\bigcirc	1
6681	0	0	0	0	1	1．14\％	0	1	3920	0	0	1	\＄433 104	0	0	0	1
6682	1	1	0	0	1	${ }^{1.114 \%}$	0	1	4794	0	1	0	\＄850014	0	0	\bigcirc	1
6683	0	0	0	0	1	1．11\％	0	1	4356	1	0		\＄97781	0	0	0	1
6684 6885		0	0	0		1．11\％	0	1	4356	1	0		${ }_{598340}$	0	0	0	1
${ }_{6688}^{6685}$	0	\bigcirc	\bigcirc	1	1	${ }^{1.11 \% \%}$	\bigcirc	1	4792 4356	1	${ }_{0}$	${ }_{0}^{0}$	${ }_{\text {S }}$	\bigcirc	\bigcirc	0	1
6687	，	1	0	0	0	1．12\％	－	1	4356	1	0	0	\＄201 005	0	0	0	1
6688	0	0	0	1	－	1．12\％	0	1	4792	0	0	0	\＄447909	0	0	0	1
6689 669	0	1	0	0	0	${ }^{1.12 \%}$	0	0	4356	0	0	1	${ }_{\text {\％}}^{5331789}$	0	0	0	1
6690 6691	0	0	0	0		1．12\％	\bigcirc	1	4792	0	0	1	\＄500996	0	0	0	1
6691 6692	0	\bigcirc	\bigcirc	${ }_{1}$	0	${ }_{\text {1．1．12\％}}$	\bigcirc	1	7841 6970	\bigcirc	\bigcirc	\bigcirc	${ }_{\substack{\text { S3888834 } \\ \$ 347}}$	\bigcirc	\bigcirc	\bigcirc	1
6693	0	0	0	0	1	1．14\％	0		5227	0		0	\＄306878	0	0	0	1
6694	0	0	0	0	1	1．14\％	0	1	5227	0	0	1	5434346	0	0	0	1
6695	0	1	0	0	0	1．14\％	0	，	4356	0	0	1	\＄456 345	0	0	0	1
6696 6697	\bigcirc	1	0	0	0	${ }^{1.14 \%}$	0	1	4356 4792	0	0	0	S993862 943588	0	0	0	1
6697 6698	0	\bigcirc	\bigcirc	1	\bigcirc	${ }_{1}^{1.14 \%}$	0	1	4792 4356	\bigcirc	0	1	5463538 $\$ 360109$	\bigcirc	\bigcirc	${ }_{0}$	1
6699	0	0	0	${ }_{0}$	0	${ }_{\text {1．14\％}}$	0	1	4792	1		${ }_{0}$	\＄152634	0	0	0	1
6700	0	0	0	1	0	1．14\％	0	1	4792	1	0	0	\＄119794		0	0	1
6701 6702	0	0	0	0	\bigcirc	1．14\％	0	1	4356 5633	1	0	\bigcirc	\＄117204	0	0	0	1
6702 6703	0	0	0	0	0	1．14\％	0	1	5663 4356	1	0	0	$\$ 99458$ $\$ 34500$		－	0	1
6703 6704	\bigcirc	${ }_{1}$	0	\bigcirc	1	${ }_{\text {l }}^{1.14 \% \%}$	0	${ }_{0}^{1}$	4336 4356	\bigcirc	\bigcirc	1	S344 100 $\$ 355000$	\bigcirc	\bigcirc	0	1
6705	0	${ }_{0}$	0	0	1	1．15\％	0	1	4792	1		${ }_{0}$	${ }_{564172}$	0			1
6706	0	0	0	0	1	1．07\％	0	1	5227	0	0	0	\＄460575	\bigcirc	\bigcirc	\bigcirc	1
6707	0	0	0	0	0	${ }^{1.111 \%}$		1	4792	1	0	0	S1000 S164 S	0	\bigcirc	\bigcirc	1
6708 6709	0	0	0	1	0	1．11\％	0	1	4792 4792	1	\bigcirc	0	S104 487 $\$ 10504$	0	0	\bigcirc	1
6709 6710	${ }_{0}$	\bigcirc	1	\bigcirc	${ }_{0}^{1}$	${ }^{1.111 \%}$	0	1	4792	1	\bigcirc	\bigcirc	S105604 S106 163	\bigcirc	${ }_{0}^{0}$	\bigcirc	1
6711	0	0	${ }_{0}$	0	0	${ }^{1.12 \%}$		1	5227	1	0	0	${ }_{\text {S1987 }}^{46}$	0			1
6712	0	1	0	0	0	${ }^{1.12 \%}$	0	1	4792	0	0	1	$\$ 372297$ $\$ 82209$	0	0	\bigcirc	1
6713 6714	0	0	1	0	0	${ }_{\text {1 }}^{1.12 \%}$	0	1	4792 4792	0	${ }^{1}$	0	\＄822093	0	\bigcirc	\bigcirc	1
6714 6715	0	0	0	0	0	1．12\％	\bigcirc	1	4792 4792	0	0	0	S467024 $\mathbf{\$ 4} 10279$			0	1
6715 6716	\bigcirc	${ }_{1}$	1	\bigcirc	\bigcirc	${ }_{\text {1．14\％}}^{1.14 \%}$	0	1	4792 5000	${ }_{0}$	${ }_{0}^{1}$	\bigcirc	\＄104499	0	0	\bigcirc	1
6717	0	${ }_{0}$	0	1	－	1．14\％	0	1	5227	0	1	0	${ }_{\text {S } 889021}$	0	0		1
6718	0	0	0	0	0	1．14\％		1	4792	1	0	0	\＄176914				
6719 6720	。	\bigcirc	${ }_{1}$	\bigcirc	\bigcirc	${ }^{1.79 \%}$	1	1	4792 4792	1	\bigcirc	\bigcirc	S104207 S12932 S	\bigcirc	0	0	1
6721	0	0	0	0	0	1．11\％	1	1	4356	1	0	0	\＄104207	0		0	1
6722	－	0	1	0	0	1．11\％	0	1	4792	1	0	0	\＄103648	0	0		1
6723 6724	\bigcirc	0	0	0	0	${ }^{1.11 \%}$	\bigcirc	1						0		\bigcirc	
6724 6725		${ }_{1}^{0}$	\bigcirc	0	1	${ }_{\text {1．12\％}}^{1.12 \%}$	0	${ }_{0}^{1}$	4356 4356	\bigcirc	\bigcirc	${ }_{1}$	${ }_{\substack{\text { S3059 } 951 \\ \$ 3889}}$	\bigcirc	\bigcirc	\bigcirc	1
6726	0	1	0	0	0	1．12\％	0	0	6970	0	0	1	\＄479926		0	0	1
${ }_{6} 6727$	0	1	0	0	0	1．14\％	0	1	4356	0	1	0	\＄734599	0	0	－	1
6728 6729	0	0	${ }_{1}^{0}$	\bigcirc	1	${ }_{\text {1．14\％}}^{1.14 \%}$	0	1	4680 4356	\bigcirc	${ }_{0}$	\bigcirc	S546396 S379974	\bigcirc	\bigcirc	\bigcirc	1
6730	0	1	0	0	0	1．14\％	0	1	4905	0	0	0	\＄545064	0	0	0	1
6731	0	1	0	0	0	1．14\％	0	0	4356	0	0	1	\＄271 108	0	0	0	1
6732 6733	0	\bigcirc	0	0	1	${ }_{\text {1．1．14\％}}^{1.14}$	\bigcirc	1	4356 4356	1	\bigcirc	0	S105 883 $\$ 104766$	${ }_{0}$	\bigcirc	0	1
6733 6734	0	1	\bigcirc	${ }_{0}$	${ }_{0}$	${ }^{1.15 \%}$	1	1	${ }_{4356}^{4356}$	${ }_{0}^{1}$	${ }_{0}$	0	（ ${ }_{\text {S104766 }} \mathbf{5 2 8 7 4 0 8}$	${ }_{0}$	0	0	1
6735	1	0	1	0	0	1．14\％	0	1	6536	0	1	0	\＄1088 123	0		0	1
${ }_{6}^{6736}$	0	0	0	0	1	${ }^{1.111 \%}$	0	1	6098 6534	1	0	0	\＄11471	\bigcirc	0	\bigcirc	1
6737 6738	0	${ }_{1}^{0}$	：	0	0	${ }_{1}^{1.12 \%}$	\bigcirc	1	6534 6970	\bigcirc	\bigcirc	\bigcirc	\＄513001 $\$ 245888$	0	\bigcirc	0	1
6739	－	0	0	－		1．12\％	－	1	5227	－	0	1	\＄300000			0	1
6740	0				0	1．11\％		1	3920	0	0	1	\＄345000	0		0	1
6741 6742	\bigcirc	0	\bigcirc	\bigcirc	0	1．11\％	\bigcirc	1	3920 3920	1	\bigcirc	0	593870 $\$ 18207$ S	0	\bigcirc	\bigcirc	1
6743	0	${ }_{0}$	\bigcirc	1	\bigcirc	${ }^{1.112 \%}$	${ }_{0}$	1	3920 6534	1	\bigcirc	\bigcirc	（ $\begin{aligned} & 5188207 \\ & \$ 13938\end{aligned}$	\bigcirc	0	\bigcirc	1
6744	0	－	－	1	－	1．12\％	0	1	3920		－	1	\＄285000	－	0	0	
${ }_{6}^{6745}$	0					1．12\％			6970	0		0	5431789	0			1
6746 6747	0	${ }_{1}^{0}$	\bigcirc	0	1	${ }_{\text {1．1．12\％}}$	0	1	5586 5227	\bigcirc	0	\bigcirc	（ $\begin{gathered}539934 \\ \$ 1117681\end{gathered}$	\bigcirc	\bigcirc	\bigcirc	1
6748	0	1	0	0	0	1．14\％		，	6534	0	${ }_{0}$	1	\＄112277	0	0	0	1
6749 6750	0	0	0	0	0	1．14\％	－	1	4792 4356	1	0	0	S194982 $\$ 385555$	\bigcirc	0	0	
6750 6751	0	0	0	1	1	${ }_{\text {1．14\％}}^{1.14 \%}$	－	1	4356 3920	0	0	0	5383565 $\$ 26688$	\bigcirc	0	0	1
6752	0	1	0	0		1．14\％	0	1	3920	0	0	${ }_{0}$	\＄355951			0	1
6753 6754	\bigcirc	${ }_{1}$	\bigcirc	1	0	${ }^{1.14 \%}$	\bigcirc	1	3920 6534	${ }_{1}$	\bigcirc	\bigcirc	S245 688 $\$ 103369$	\bigcirc	\bigcirc	\bigcirc	1
6754 6755	\bigcirc	1	0	0	\bigcirc	${ }^{1.14 \%}$	0	1	6534 8276	1	\bigcirc	0	S103 369 $\$ 14985$	\bigcirc	\bigcirc	\bigcirc	1
${ }_{6}^{6756}$	0	0	0	0	1	${ }^{1.12 \%}$	0	1	4356	0	1		\＄952 488	0	0	0	1
6757 6758	。	0	0	0	O	1．14\％\％	0	1	4356 4356	0	0	0	\＄468113	0	0	0	1
${ }_{6} 6759$		0	0	0	0	${ }^{1.14 \% \%}$	\bigcirc	1	4356	1	0	0	\＄598340	0	0	0	1
6760	0	0	0	0	0	1．11\％	0	1	4356	1	0	0	\＄92 194	0	0	0	1

observation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％．90\％	LTV 70\％－78\％	$\begin{aligned} & \text { LTV beLow } \\ & 70 \% \end{aligned}$	total tax burden	parcel in SCEIP $=1$	CONVENTIONAL LOAN＝ 1	Lotsize	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	$\begin{gathered} \text { SOLD DURING } \\ 2004 _2007 \end{gathered}$	Soto 2008－2012	PRICE ADJUST. To 2012	ZIP CODE Z95403	ZIP CODE 95404	ZIP CODE 95472	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
6761	－	0	0	0	\％	1．11\％	Sctirs	Lonv＝1	4356	${ }_{1}$	${ }^{2004}$	0	${ }_{592473}$	25403	5504		${ }^{4} 8$
6762	0	0	－	0	0	1．11\％	0	1	4356	1	0	。	593870	。	。	。	1
6763		0	0	1	0	1．11\％	0	1	4356	1	0	0	\＄995267	0	0	0	1
6764	0	0	0	0	1	1．11\％	0	1	7405	1	0	0	597781	0	0	0	1
6765	0	0	0	1	0	1．11\％	0	1	4792	1	0	0	\＄126432	0	0	0	1
6766	0	1	0	0	0	1．12\％	0	1	4356	0	0	0	\＄288335	0	0	0	1
6767	0	0	0	0	1	1．12\％	0	1	4356		1	0	\＄872247	0	0	0	1
6768	0	0		0	0	1．12\％	0	1	4356	0	0	0	\＄421426	0	0	0	1
6769	0	1	0	0	0	1．12\％	0	1	4356	0	0	1	5486949	0	0	0	1
6770	0	0	1	0		1．12\％	0	1	5038	0	0	0	\＄536086	0	0	0	1
6771	0	1	0	0	0	1．12\％	0	1	4356	0	0	0	\＄431789	0	0	0	1
6772	0	1	0	0	0	1．12\％	0	0	4356	0	0	1	\＄293000	0	0	0	1
6773	0	1	0	0	0	1．12\％	0	1	5227	0	0	0	544303	0	0	0	1
6774	0	0	0	1	0	1．12\％	0	1	5227	0	0	0	5424880	0	0	0	1
6775	0	0	1	0	0	1．14\％	0	1	4792	0	0	0	\＄277210	0	0	0	1
6776	0	0	1	0	0	1．14\％	0	1	4356	0	1	0	\＄853796	0	0	0	1
6777	0	0	0	0	0	1．14\％	0	1	4792	0	0	0	\＄431789	0	0	0	1
6778	0	0	0	0	0	1．14\％	0	1	4692	0	0	1	S289 182	0	0	0	1
6779	0	1	0	0	－	1．14\％	0	1	4792	O	1	\bigcirc	5887344		0	0	1
6780 6781	0	0	0	0	0	1．14\％\％	0	1	4356	0	0	0	5278137 $\mathbf{S 4 9 7 3 4}$	0	0	0	1
6781	0	0	${ }^{0}$	0	－	${ }^{1.14 \%}$	0	1	4792	0	0	1	$\begin{array}{r}\text { S497484 } \\ \$ 287008 \\ \hline\end{array}$	0	0	0	1
6782 6783	0	0	1	0	\bigcirc	${ }_{\text {l }}^{1.14 \%}$	\bigcirc	1	4792 4356	\bigcirc	0	\bigcirc	5287408 $\$ 106259$	0	0	0	1
6 6784	${ }_{0}$	${ }_{0}$	0	0	1	${ }_{1.14 \%}^{1.14 \%}$	0	1	$4{ }_{4}^{4356}$	0	1	1	\＄1024839	0	\％	\％	1
6785	0	0	0	0		1．14\％	0	1	4356	1	0	0	\＄184442	0	。	－	1
6786	0	0	1	0	0	1．14\％	0	1	5227	1	0	0	\＄99546	0	0	0	1
6787 6788 688	0	0	0	0	0	1．14\％	0	1	4792 4356	1	0	0	593870 $\$ 90518$	0	0	0	1
6788 6789	0	0	0	0	0	${ }^{1.1 .15 \%}$	\bigcirc	1	${ }_{4}^{4356}$	1	－	\bigcirc		\bigcirc	0	0	1
6789	0	0	0	1	0	1．15\％	0	1	4792	1	0	0	\＄118338	0	0	0	1
6790 6791	0	0	0	0	0	1．11\％	0	1	4792	1	0	0	\＄60594	0	0	0	1
6791	0	0	0	1	0	${ }^{1.11 \%}$	0	1	4792	1	0	0	\＄92194	－	0	0	1
6792 6793	0	0	0	0	1	${ }^{1.11 \%}$	0	1	6970 4356	1	\bigcirc	\bigcirc	S117924 $\$ 114465$	0	\bigcirc	\bigcirc	1
6793 6794	\bigcirc	${ }_{0}^{1}$	\bigcirc	0	0	－	\bigcirc	1	4356 4792	1	\bigcirc	${ }_{1}^{0}$	${ }_{\text {S }}^{5114465}$	0	\bigcirc	\bigcirc	1
6795	0	0	0	0	0	1．12\％	0	1	4356	0	1	0	\＄1016074	－	。	0	1
6796	0	0	0	0	1	1．12\％	0	1	4500	0	0	0	\＄524544	0	0	0	1
6797	0	0	0	1	0	1．12\％	0	1	4356	0	1	0	\＄820248	0	0	0	1
6798	0	1	0	0	0	1．12\％	0	1	4356	0	1	0	573039	0	0	0	1
6799 6800	0	1	0	0	0	－1．12\％	0	1	4356 4792	0	1	0	572968 $\$ 779829$	0	0	0	1
6800 6801	0	${ }_{0}^{1}$	0	0	1	${ }_{\text {1．12\％}}^{1.12 \%}$	\bigcirc	1	4792 4992	\bigcirc	1	0	$\underset{\$ 1031236}{ }$	\bigcirc	0	0	1
6802	0	0	1	0	0	1．12\％		1	4585	0		1	5426080	0	0	0	1
6803	0	1	0	0	0	1．12\％	0	1	7841	0	1	0	\＄805 151	0	0	0	1
6804	0	0	0	0	1	1．12\％	0	1	7841	0	1	0	\＄984362	0	0	0	1
6805 6806	0	1	0	0	0	1．12\％	0	1	8734 8712	0	0	0	$\$ 506588$ $\$ 301315$	0	0	0	1
6806 6880	0	${ }_{0}$	${ }_{0}$	${ }_{0}$	${ }_{0}^{1}$	${ }_{\text {1．1．12\％}}^{1.12 \%}$	\bigcirc	1	8712 4792	\bigcirc	${ }_{1}$	0	$\$ 301315$ $\$ 64359$	${ }_{0}$	\bigcirc	\bigcirc	1
6808	1	0	0	0	0	1．14\％	0	1	4356	0	${ }_{0}$	－	S348596	－	\％	\％	1
6809	0	0	0	0	1	1．14\％	0	1	4795	0	0	1	\＄321314	0	0	0	1
6810	0	1	0	0	0	1．14\％	0	1	4792	0	0	0	\＄391489	0	0	0	1
6811 6812	0	1	0	\bigcirc	0	1．14\％	\bigcirc	0	4815 4356	0	\bigcirc	1		0	\bigcirc	\bigcirc	1
6812 6813	0	\bigcirc	${ }_{0}^{1}$	0	0	${ }_{\text {1．14\％}}^{1.14 \%}$	\bigcirc	1	4356 4992	1	\bigcirc	0	\＄139997 $\$ 118530$	0	\bigcirc	0	1
6814	－		1	0	0	1．14\％	0	1	7841	1		0	593311	0	0	0	1
6815	0	0	0	0	0	1．14\％	0	1	4356	1	0	0	591635	0	0	0	1
6816 6817	0	0	0	0	1	1．14\％\％	\bigcirc	1	4356 4356	1	0	0	\＄909797	0	0	\bigcirc	1
6817 6818	\bigcirc	\bigcirc	\bigcirc	0	${ }_{0}^{1}$	${ }^{1.1 .15 \%}$	\bigcirc	1	4336 4356	1	0	0	590238 $\$ 8999$	\bigcirc	\bigcirc	0	1
6819		O	0	0	0	1．15\％		1	4792	1	。	0	\＄88283	0	0	0	1
${ }_{6}^{682}$	\bigcirc	0	0	0	1	1．15\％	\bigcirc	1	4792	1	0	0	${ }_{587724}$	0	0	0	1
6821	0	1	0	0	0	1．14\％	0	1	5663	0	0	1	\＄532239	0	0	0	1
6822	0	\bigcirc	\bigcirc	0	1	${ }^{1.11 \%}$	0	1	4356 5038	0	－	1	S377445 $\$ 79654$	0	－	0	1
6823 6824 6822	0	0	0	1	0	1．12\％	\bigcirc	1	5038 500	0	0	0	$\begin{array}{r}\text { S796764 } \\ \$ 387452 \\ \hline\end{array}$	\bigcirc	0	0	1
6824 6825	0	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	\bigcirc	${ }_{\text {1．1．12\％}}^{1.12 \%}$	0	1	5702 4356	\bigcirc	0	1	S387452 $\$ 42680$	\bigcirc	\bigcirc	0	1
${ }^{6826}$	0	0	0	0	1	1．14\％	0	1	4356	0	1	0	\＄979 126		0	0	
${ }^{6827}$	0	0	0	0	0	1．14\％	0	1	4356	1	0	0	\＄180 678	0	0	0	1
6828 6829	0	0	0	0	1	1．15\％	0	1	4792 4356	1	0	\bigcirc	S86886 $\$ 60371$	\bigcirc	0	\bigcirc	1
6829 6880	\bigcirc	1	${ }_{0}^{1}$	\bigcirc	0	－${ }_{\text {1．114\％}}^{1.14}$	0	1	4336 11326	1	\bigcirc	0	${ }_{\substack{\text { S600 } \\ \$ 1845 \\ 545}}$	0	0	\bigcirc	1
6831	0	0	0	0	0	1．14\％	0	1	4356	0	0	1	\＄461714	0	0	0	1
6832	0	0	1	0	0	1．11\％	0	1	4792	1	0	0	\＄82730	0	0	0	1
6833	0	1	0	0	0	1．11\％	0	1	3920	1	0	0	\＄98939	0	0	0	1
6834	0	1	0	0	0	1．11\％	0	1	6534	1	0	0	584631	0	0	0	1
${ }^{6835}$	0	0	0	0	0	${ }^{1.12 \%}$	0	1	3920 4356	0	0		S340392 $\$ 55513$	0	0	0	1
6836 6837	0	\bigcirc	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	${ }_{\text {1．11\％}}^{1.11 \%}$	\bigcirc	1	4356 4356	1	0	\bigcirc	565513 $\$ 65290$	\bigcirc	\bigcirc	－	1
6838	0	0	1	0	0	1．11\％	0	1	4356	1	0	0	\＄655737		0	0	1
6839	0	0	0	0	0	1．11\％	0	1	4356	1	0	0	\＄655737	0	0	0	1
6840	0	0	0	1	0	1．11\％	0	1	4356	1	0	0	\＄66631	0	0	0	1
6841 6842	0	0	0	1	0	1．11\％	\bigcirc	1	6534 4356	1	\bigcirc	0		0	0	0	
6842 6843	0	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	\bigcirc	${ }_{\text {1．12\％}}^{1.11 \%}$	\bigcirc	1	4356 6534	1	\bigcirc	\bigcirc	\＄142325 $\$ 69315$	\bigcirc	0	0	1
6844	0	0	0	0	0	1．12\％	0	1	4356	0	0	0	\＄402635		0	0	1
6845	0	0	0	0	1	1．12\％	0	1	4792	0	0	，	\＄467 484	0	0	0	1
${ }_{6}^{6846}$	\bigcirc	0	0	0	0	${ }^{1.12 \%}$	\bigcirc	0	4792	0	0	1	\＄361478	0		－	1
6847 6848	0	0	\bigcirc	1	0	${ }_{\text {1．12\％}}^{1.12 \%}$	\bigcirc	1	6534 4356	\bigcirc	\bigcirc	0	$\$ 354161$ $\$ 470911$	\bigcirc	0	0	1
6849	0	0	1	－	${ }_{0}$	${ }^{1.14 \% \%}$	0	1	4356 4356	0	1	${ }_{0}$	S470911 S85 886	$\stackrel{0}{0}$	\bigcirc	\bigcirc	1
6850	0	0	0	0	1	1．14\％	0	1	4356	0	1	0	\＄1071496		0	0	
6851 6852	0	－	0	0	0	1．14\％	0	1	4792	1	0	0	\＄203263	0		0	1
6852 6853	\bigcirc	\bigcirc	${ }_{0}^{1}$	\bigcirc	0 1	－1．14\％	\bigcirc	1	4792 4792	1	\bigcirc	0	514651 $\$ 64395$	0	\bigcirc	\bigcirc	1
6854	0	1	0	0	${ }^{1}$	${ }_{1.71 \%}$	1	1	5200	${ }^{1}$	0		\＄596364	0	0	0	1
6855 6856	\bigcirc	0	1	0	0	${ }^{1.12 \%}$	\bigcirc	1	${ }_{4}^{4356}$	1	0	0	${ }_{\$ 121771}$	0	\bigcirc	\bigcirc	
6856 6857	0	1	0	0 1	0	－${ }_{1}^{1.14 \%}$	0	0 1	4792 6002	\bigcirc	\bigcirc	1	$\$ 359707$ $\$ 63489$	0	0	\bigcirc	1
6857 6888	0	${ }_{0}$	1	${ }_{0}^{1}$	${ }_{0}$	${ }_{1.11 \%}^{1.12 \%}$	${ }_{0}$	1	43002	1	${ }_{0}$	${ }_{0}$	5637839 $\$ 73786$	${ }_{0}$	0	${ }_{0}$	1
6859	0	0	${ }_{0}$	0	0	${ }_{1} 1.12 \%$	0	1	3920	${ }_{0}$	0	0	\＄294361	0	0		1
6860 6861	0	1	0	0	0	1．12\％	0	0	4792 3920	\bigcirc	0	1	$\$ 414468$ $\$ 44658$		－	0	
6861 6862	0	\bigcirc	1	0 1	0	${ }^{1.1 .14 \%}$	\bigcirc	1	3920 4356	0 1	\bigcirc	0	5446758 $\$ 78929$	0	0	0	1
6863	0	1	0	0		${ }^{1.111 \%}$	0	1	4356	1	0	0	\＄151636	0	0		1
6864 6855	0	1	0	0	0	${ }^{1.12 \%}$	0	1	4356	0	0	0	\＄939792	0	0	－	1
6865 6865	\bigcirc	0	\bigcirc	1	1	1．14\％	\bigcirc	1	${ }^{6} 098$	1	\bigcirc	0		0	0	\bigcirc	1
${ }_{6867}^{6866}$	0	${ }_{0}$	\bigcirc	0	0	${ }_{1.12 \%}^{1.17 \%}$	$\stackrel{0}{0}$	1	10019 3920	1	${ }_{0}^{0}$	\bigcirc	5149973 542835	\bigcirc	0	\bigcirc	1
6868	0	1	0	－	－	1．12\％		1	4356		1		\＄1053022	0	0	0	1
6899	0	1	0	0	0	1．12\％	0	1	8276	0	0	0	\＄437546	0			1
6870 6871	\bigcirc	1	\bigcirc	${ }_{1}^{0}$	0	1．1．14\％	\bigcirc	1	3920 5663	0 1	\bigcirc	0	$\$ 408760$ $\$ 72922$	0	0	\bigcirc	1
6872	1	1	0	0	0	1．11\％	0	1	4358	1	0	－	\＄63277		0	0	1
6873 6874	0	0	0	0	1	${ }^{1.111 \%}$	0	1	4356 563	1	0	0	\＄58806 $\$ 58976$	0	0	0	1
6874 6875	0	\bigcirc	\bigcirc	1	0	${ }^{1.111 \%}$	0	1	5663 4356	1	0	\bigcirc	\＄59476 $\$ 59476$	\bigcirc	\bigcirc	0	1
6885 6876	0	1	${ }_{0}$	1	\bigcirc	${ }_{\text {1．11\％}}$	0	1	${ }_{4356}^{4356}$	1	\bigcirc	${ }_{0}$	\＄597761	\bigcirc	0	\bigcirc	1
6877	0	0	0	0	0	1．11\％	0	1	4356	1	0	0	\＄61936	0	0	0	1
6878 6879	0	0	\bigcirc	0	0	1．11\％	－	1	4356 4356	1	0	\bigcirc	562159 $\$ 52607$		0	O	1
6879 6880	0	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	\bigcirc	${ }^{1.111 \%}$	\bigcirc	1	4356 4356	1	0	\bigcirc	${ }_{\text {S62 }}^{5607}$	\bigcirc	0	0	1
${ }^{6881}$	0	0		0		1．11\％		1	4356	1	0	0	\＄62830		0	0	1
6882 6883	0	－	0	1	0	${ }^{1.111 \%}$		1	6098	1	0	0	\＄156292		0	0	1
6883 6884	\bigcirc	\bigcirc	${ }_{0}^{1}$	0	0 1	${ }^{1.12 \%}$	\bigcirc	1	4792 4356	1	${ }_{1}^{0}$	0	（ $\begin{gathered}\text { \＄203263 } \\ \$ 1126918\end{gathered}$	0	\bigcirc	${ }_{0}$	1
6885	0			1	1	1．12\％		1	4556 4500	0	${ }_{0}^{1}$	0	\＄125918	${ }_{0}$	\bigcirc	\bigcirc	1
${ }_{6}^{6886}$	0	1	－		－	${ }^{1.12 \%}$	－	1	4792	0	0	0	${ }_{5}^{5807805}$	0	0	0	1
6887 6888	0			0	1	1．14\％	0	1	${ }_{4}^{4366}$		1		\＄855473	0	0	0	1
68888 6889	\bigcirc	0	\bigcirc	\bigcirc	1	${ }^{1.14 \%}$	0	1	4792 4356	\bigcirc	0	\bigcirc	（ 5307805	\bigcirc	0	0	1
6889 6890			${ }_{0}$	${ }_{1}^{0}$	\bigcirc	${ }_{1.14 \%}^{1.14 \%}$	${ }_{0}$	${ }_{1}^{1}$	4356 4356	${ }_{0}$	1	${ }_{1}^{0}$	（ ${ }_{\text {S }}$	\bigcirc	${ }_{0}$		1

observation	PROPERTY DURESS $=1$	LTV＿90\％	LTV 81\％－90\％	LTV 70\％－78\％	Ltv below 70\％	total tax burden	PARCEL IN SCEIP $=1$	conventional LOAN $=1$	Lotstiz	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	SOLD DURING 2004＿2007	Sold 2008－2012	PRICE ADJUST．TO 2012	$\begin{gathered} \text { ZIP CODE } \\ \text { Z95403 } \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95404 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
6891	－	0	0	0	0	${ }^{\text {1．14\％}}$	${ }_{0}$	1	4356	1	－	0	S143655	0	0		
6892	0	1	0	0	0	1．14\％	0	1	4356	1	0	0	\＄144985	0	0	0	
6893	0	0	1	0	0	1．87\％	1	1	4356	1	0	0	S63277	0	0	0	1
6894	0	0	0	0	0	1．11\％	0	1	4792	1	0	0	\＄63501	0	0	0	1
6895	0	0	1	0	0	1．11\％	0	1	4792	1	0	0	\＄63725	0	0	0	1
6896	0	0	0	0	1	1．12\％		1	5200	0	1	0	\＄1099970	0	0	0	1
6897	0	0	0	0	0	${ }^{1.12 \%}$	0	1	4792 5272	0	${ }_{0}$	1	\＄411078	0	0	0	1
6898	0	0	0	1	0	${ }^{1.14 \%}$	0	1	5227	0	1	0	\＄733023	0	0	0	1
6899	0	0			0	1．14\％	0	1	4792	1	0	0	\＄126432	0	0	0	1
6900	0	0	0	0	1	1．11\％	0	1	4356	1	0	0	\＄63054	0	0	0	1
6901	0	0	，	0	0	1．11\％	0	1	4356	1	0	0	\＄64395	0	0	0	1
6902	0	0	1	0	0	1．11\％	0	1	4792	1	0	0	\＄64843	0	0	0	1
6903	0		0	0	0	1．11\％	0	1	${ }^{4356}$	1	0	0	\＄182184	0	0	0	1
6904	0	0		0	0	${ }^{1.12 \%}$	0	1	${ }_{4}^{4356}$	0	0	1	\＄351244 S958112	\bigcirc	\bigcirc	0	1
6905	0	0	0		0	1．12\％	0	1	4356	0	1	0	5958112 $\$ 75634$	0	0	0	1
6906	0	0	0	0	0	1．12\％	0	1	4356	0	1	0	\＄756434	0	0	0	1
6997	0	0	－	－	1	1．12\％	0	1	4356	0	1	0	\＄1 108444	0	0	0	1
6908	0	0	0	0	1	1．12\％	0	1	4356	0	0	0	5385745	0	0	0	1
6909	0	0	0	0	0	1．12\％	0	1	4792 4356	0	0	0	5460575 $\$ 67322$	0	0	0	1
6910	0	0		0	0	${ }^{1.15 \%}$	0	1	${ }_{4}^{4356}$	1	0	0	\＄57302	\bigcirc	0	0	1
6911	0	1	0		0	1．11\％	0	1	6534	1	0	0	\＄116900	\bigcirc	0	\bigcirc	1
6912	0	0	1	0	0	1．10\％	0	1	3920	1	0	0	\＄55 899	0	0	0	1
6913 6914	\bigcirc	\bigcirc	\bigcirc	0	${ }_{0}^{1}$	${ }_{\text {1．12\％}}^{1.11 \%}$	\bigcirc	1	$\begin{array}{r}3920 \\ 3920 \\ \hline\end{array}$	${ }_{0}^{1}$	${ }_{1}$	0	$\begin{array}{r}\text { S7151 } \\ 5717431 \\ \hline\end{array}$	\bigcirc	0	0	1
${ }_{6915}$	0	0	。	1	0	${ }_{1.12 \%}$	0	1	5192	0	1	0	\＄733039	0	0	0	1
6916	0		0	0		1．14\％		1	5663	0	0	0	\＄438698	0	。	0	1
6917	0	1	0	0		1．14\％	0	1	5663	0	1	0	\＄1182340	0	0	0	1
6918	0	1	0	0	0	1．14\％	0	1	3920	0	0	0	5414517	0	0	0	1
6919	0	0	0	，	1	1．14\％	0	1	4356	1	0	0	\＄142990	0	0	0	1
6920	0	0	0	1	0	1．11\％	1	1	4356	1	0	0	\＄66408	0	0	0	1
6921	0	0	0	0	1	1．12\％	0	1	4500	0	1	0	\＄1066861	0	0	0	1
6922	0	0	1	0	0	${ }^{1.11 \%}$	0	1	${ }_{4}^{4356}$	1	0	0	\＄56570	0	0	0	1
6923	0	0	1	－	0	1．11\％	0	1	4792	1	0	0	${ }^{\$ 57911}$	0	\bigcirc	\bigcirc	1
${ }^{6924}$		0	1	0	0	1．11\％	0	1	4792	1	0	0	\＄61042	0	0	0	1
6925 6926	\bigcirc	${ }_{1}$	\bigcirc	${ }_{0}^{1}$	\bigcirc	${ }^{1.111 \%}$	\bigcirc	1	4792 4356	1	\bigcirc	\bigcirc	${ }_{\text {S }}^{561265}$	\bigcirc	\bigcirc	\bigcirc	1
6927	0	1	0	0	0	1．11\％	0	0	4356	0	0	1	\＄331355	0	0	0	1
6928	－	1	－	－	0	1．11\％	0	1	${ }_{4}^{4356}$	1	0	0	\＄103369	0	0	0	1
6929	0	0	0	0	0	1．11\％	0	1	4792	1	0	0	\＄121044	0	0	0	1
6930	0	1	0	0	0	1．11\％	0	1	4356	1	0	0	\＄168633	0	0	0	1
6931 6932	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	\bigcirc	\bigcirc	${ }_{\text {1 }}^{1.12 \%}$	\bigcirc	1	4700 4500	\bigcirc	\bigcirc	\bigcirc	S500 176 $\$ 513001$	\bigcirc	\bigcirc	0	1
6933	－	0	0	－	1	1．12\％	0	1	4356	0	1	0	\＄899463	0	0	0	1
6934	0	1	0	0	0	1．12\％	0	1	4356	0	0	0	\＄272419	0	0	0	1
6935	0	0	－	0	0	1．12\％	0	1	4356	0	0	0	\＄292971	0	0	0	1
${ }^{6936}$	0	1	0	－	0	1．12\％	0	1	6098	0	1	0	\＄993737	0	0	0	1
6937 6938	\bigcirc	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }_{1}^{1}$	${ }_{\text {1．14\％}}^{1.14 \%}$	\bigcirc	1	4792 4356	\bigcirc	${ }_{0}^{1}$	\bigcirc	5838699 5486068	\bigcirc	\bigcirc	\bigcirc	${ }_{1}^{1}$
6939	0	0	－	0	0	1．14\％	0	1	4356	0	1	0	\＄1043785	0	0	0	1
${ }^{6940}$	0	0	－	－	1	1．14\％	0	1	4792	0	0		\＄355412	0	0	0	1
6941	0	0	0	0	1	1．14\％	0	1	4792	0	0		\＄252 177	0	0	0	1
6942 693	0	1	0	0	0	1．14\％	0	1	${ }_{4}^{4366}$	1	0		\＄139665	0	0	0	1
6943 6944	0	0	1	0	0	${ }_{\text {1．15\％}}$	0	1	5227	1	0	0	562159	0	0	0	
6994 6995	\bigcirc	0	0	0	\bigcirc	${ }^{1.1 .5 \%}$	\bigcirc	1	4356 5227	1	\bigcirc	0	561042 56094	\bigcirc	\bigcirc	\bigcirc	1
6995 6946	\bigcirc	${ }_{1}$	\bigcirc	\bigcirc	\bigcirc	${ }^{1.1 .15 \%}$	\bigcirc	1	5227 4356	1	\bigcirc	\bigcirc	\＄60594	\bigcirc	\bigcirc	0	1
6947		0	0	0	0	1．15\％	0	1	4356	1		0	\＄57464	0	。	0	1
6948	0	0	0	1	0	1．15\％	0	0	4356	1	0	0	556793	0	0	0	1
6949		1	0	0	0	1．34\％	1	1	3920	1	0	0	\＄57464	0	0	0	1
6950 6951	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{1}$	${ }_{\text {2．1．29\％}}$	1	1	4792 4356	\bigcirc	${ }_{0}^{1}$	\bigcirc		\bigcirc	\bigcirc	\bigcirc	1
6952					${ }_{0}$	${ }^{\text {1．14\％}}$	${ }_{0}$	1	${ }_{4356}$	0	1		\＄662855	0	0	0	
6953	0	0	1	0	0	1．11\％	0	1	4356	1	0	0	\＄55899	0	0	0	1
6954	0	0	1	0	0	1．11\％	0	1	4356	1	0	0	\＄59476	0	0	0	1
6955	0	0	0	0	1	1．11\％	0	1	4356	1	0	0	\＄59476	0	0	0	1
6956	0	0	0	1	0	1．11\％	0	1	4792	1	0	0	\＄60371	0	0	0	1
6957 6958	0	0	0	1	，	${ }^{1.111 \%}$	0	1	4356	1	0	0	${ }_{\text {S }}^{560371}$	－	0	0	1
6958 6959	0	0	${ }_{0}^{1}$	0	0	${ }^{1.111 \%}$	\bigcirc	1	6970 7405	1	\bigcirc	0	\＄ $\begin{gathered}\text { S61042 } \\ \text { S125800 }\end{gathered}$	\bigcirc	\bigcirc	\bigcirc	1
6960	0	1	0	0	0	1．12\％	0	1	4792	0	0	0	\＄258667	0	0	0	
6961	0	1	0	0	0	1．12\％	0	1	4356	0	1	0	5969888	0	0	0	1
${ }_{6962}$	0	0	1	0	0	1．12\％	0	1	${ }_{4} 356$	0	，	0	\＄336709	0		0	
6963 6964	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	－${ }_{1}^{1.12 \%}$	0	1	4356 6970	\bigcirc	0	1	5305000 $\$ 771603$	\bigcirc	\bigcirc	\bigcirc	1
6964 6995	0	1	\bigcirc	0	0	${ }_{1.14 \%}^{1.12 \%}$	\bigcirc	1	6970 6534	\bigcirc	1	\bigcirc	（ 5771603	－	\bigcirc	\bigcirc	1
6966	0	1	0	0	0	1．14\％	0	1	4356	0	1	0	\＄736159	0	0	0	1
6967	0	0	0	0	1	1．14\％	0	1	4792	0	0	0	\＄37974	0	0	0	1
6968	0	1	0	0	0	1．14\％	0	1	4356	0	0	1	\＄397987	0	0	0	
${ }^{6969}$	0	0	0	0	1	1．14\％	0	1	${ }_{4}^{4356}$	0	0	0	\＄294825		0	0	
6970 6971	0	${ }_{1}$	${ }_{0}^{1}$	0	0	${ }_{\text {1．14\％}}^{1.14 \%}$	\bigcirc	${ }_{0}^{1}$	4735 5000	\bigcirc	0	1	\＄499693 $\$ 34897$	\bigcirc	\bigcirc	\bigcirc	1
6972	0	1	0	0	0	1．14\％	0	0	4356	0	0	，	\＄387809	0	0	0	
6973	0		0	0	0	1．14\％	0		4356	0	0	1	5485779	0			1
6974 6975	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－${ }_{\text {1．1．14\％}}$	\bigcirc	1	4356 4356	1	\bigcirc	${ }_{0}$	\＄121374	\bigcirc	\bigcirc	\bigcirc	1
6976	－		1	0	0	1．15\％		1	4356	1	0		\＄56346		0	0	
6977	0	0	0	0	1	1．15\％	0	1	4356	1	0	\bigcirc	$\underset{\$ 55452}{ }$	－	\bigcirc	0	
6978 6979	0	0	0	0	0	1．15\％	0	1	4356	1	0	0	\＄55422 $\$ 52768$	0	0	0	1
6979 6980	\bigcirc	\bigcirc	1	0	${ }_{0}$	${ }^{1.111 \%}$	\bigcirc	1	4356 4356	1	\bigcirc	\bigcirc	（ $\begin{aligned} & \text { \＄52768 } \\ & \$ 56346\end{aligned}$	\bigcirc	0	\bigcirc	1
6981	0		0	0	0	1．11\％		1	4356	1	0	0	\＄56346		0	0	
6982	0	0	1	0	0	${ }^{1.11 \%}$	0	1	4356	1	－	0	\＄56793 $\$ 12839$	\bigcirc	0	0	1
6983 6984	${ }_{0}^{1}$	1	0	0	0	1．11\％	0	1	4356 4356	1	0	0	S128359 $\$ 111585$	0	0	0	1
6984 6985	0	0	${ }_{0}$	${ }_{0}$	${ }_{0}$	${ }_{1.11 \%}^{1.1 \%}$	0	1	${ }_{4356}^{4356}$	1	0	${ }_{0}$	\＄11685	${ }_{0}^{\circ}$	0	${ }_{0}$	1
${ }_{6} 6986$			0	0	0	${ }^{1.111 \%}$	0	${ }_{0}$	4356	${ }_{0}$		1	\＄225488	0	0	0	1
6987 6988 698	\bigcirc	0	0	1	0	1．11\％	0	1	4792 4356	1	0	1	${ }_{\$ 9598318}$	\bigcirc	0	0	
6988 6989	\bigcirc	1	0	0	0	${ }_{\text {1．11\％}}^{1.11 \%}$	0	${ }_{1}^{1}$	4356 4356	\bigcirc	0	${ }_{0}^{1}$	\＄354338 $\$ 460418$	\bigcirc	0	\bigcirc	1
6990	0	0	0	0	0	1．11\％	－	1	4356	－		，	\＄398397	0	0	0	
6991	0	0		－	1	1．11\％	0	1	4356	0		0	\＄969888	0			1
6992 6993		1	0			1．11\％			4356 4356	\bigcirc	0	${ }_{1}$	\＄539934 $\$ 32500$	\bigcirc	0	0	
6993 6994	\bigcirc	1	0	\bigcirc	\bigcirc	${ }^{1.111 \%}$	\bigcirc	\bigcirc	4356 4356	\bigcirc	0	1	\＄225000 $\$ 251026$	\bigcirc	0	0	1
6995	0	1	0	0	0	${ }^{1.111 \%}$			4356	0		1	\＄407352	0	0		1
${ }_{6}^{696}$	－	1		0	0	1．12\％	0	1	4792	0	1	0	\＄951414	0	－	－	1
6997 6998	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	0	\bigcirc	${ }_{1}^{1.12 \%}$	\bigcirc	1	4792 5227	\bigcirc	0	0	\＄278 137 $\$ 951414$	\bigcirc	\bigcirc	0	1
6999	0	1	0	0	0	${ }^{1.112 \%}$		1	4792	0	1	0	${ }^{\text {che4 }}$	0			1
7000	－	1	0	0	0	1．14\％\％	0	1	4356 4356	\bigcirc	0	1	$\begin{array}{r}\text { S251026 } \\ \$ 326883 \\ \hline\end{array}$	\bigcirc	0	0	1
7001 7002	0	0	0	0 1	${ }_{0}^{1}$	${ }_{\text {1．1．14\％}}^{1.14 \%}$	0	1	4356 4356	\bigcirc	0	0	$\begin{array}{r}\text { S346 } 583 \\ \$ 38752 \\ \hline 8\end{array}$	\bigcirc	0	\bigcirc	1
7003	${ }_{0}$	0	0	1	0	${ }_{1.14 \%}^{1.14 \%}$	0	1	4356 4356	${ }_{0}^{0}$	0	1	S387422 $\$ 301232$	${ }_{0}^{0}$	0	${ }_{0}$	1
7004	0	1	0	0	0	1．14\％		1	4356	0	0	0	5480938	0	0	0	1
7005 7006	\bigcirc	0	0	0		${ }^{1.14 \%}$	0	1	4356 4356	\bigcirc	0	0	$\$ 355794$ $\$ 28993$	\bigcirc	\bigcirc	0	
7006 7007	\bigcirc	0	0	1	\bigcirc	${ }_{\text {1．14\％}}^{1.14 \%}$	0	1	4356 4356	0 1	0	1	\＄289913 $\mathbf{\$ 1 1 6 9 4 9}$	\bigcirc	0	0	1
7008	0	1		0	0	1．14\％		1	4792	1	0	0	\＄17470	0	0	0	1
7009 7010	\bigcirc	${ }_{1}$	0	0	${ }_{0}^{1}$	${ }_{\text {1．1．15\％}}^{1.1}$	${ }_{1}$	${ }_{0}^{1}$	4356 4356	${ }_{0}^{1}$	0	${ }_{1}$	\＄51874	\bigcirc	0	0	1
7011	0	1	0	0		1．14\％	1	1	${ }_{4}^{4} 992$	1		${ }_{0}$	${ }_{\text {¢ }}$		0	0	1
7012	0	1	0	0	0	${ }^{1.12 \%}$	\bigcirc	1	4356 3020	\bigcirc	1	0	S $\$ 93939354$ $\$ 16454$	\bigcirc	0	\bigcirc	1
7013 7014	\bigcirc	1	0	0	${ }_{0}^{1}$	1．10\％	0	1	3920 3920	${ }_{1}^{0}$	\bigcirc	\bigcirc	S164564 S11883	${ }_{0}$	0	\bigcirc	1
7015	0	1	0	${ }_{0}$	${ }_{0}$	${ }_{\text {1．11\％}}^{1.17 \%}$	0	1	3920 3920	1	1	${ }_{0}$	S118383 $\$ 686250$	0	\bigcirc	\bigcirc	1
7016	0	1	0	0		1．14\％		1	4356	1	1	0	${ }_{\text {¢ }}$ \＄120 732		0	0	1
7017	0	\bigcirc	0	0	1	1．11\％	0	1	4792 4792	1	0	\bigcirc		0	\bigcirc	\bigcirc	1
7018 7019	\bigcirc	\bigcirc	0	0	${ }_{0}^{1}$	${ }_{\text {1．12\％}}^{1.12 \%}$	0	1	4792 6534	${ }_{1}^{1}$	${ }_{0}^{1}$	\bigcirc	5936635 S137995	0	\bigcirc	\bigcirc	1
7020	0		0	0	1	${ }_{1.12 \%}^{1.12 \%}$	0	1	3049	0	0	0	\＄368460	${ }_{0}$	0	0	1

osservation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％90\％	LTV 70\％－78\％	$\begin{aligned} & \text { LTV beLow } \\ & 70 \% \end{aligned}$	total tax burden	parcel in SCEIP $=1$	conventional LOAN $=1$	Lot SILE	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	$\begin{aligned} & \text { SOLD DURING } \\ & \text { 2004_2007 } \end{aligned}$	Sol0 2008－2012	PRICE ADJUST．TO 2012	ZIP CODE 295403	ZIP CODE 95404	ZIP CODE 95472	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
7021	${ }_{0}$	0	0	0	1	1．12\％			3200	0	${ }_{0}$	0	5498893				
7022	0	1	0	0	\bigcirc	1．14\％	。	1	3920	0	0	1	\＄301232	。	0	0	1
7023	0		0	0	0	1．14\％		1	3049	0	0	1	\＄322 126	0			1
7024	0	0	0	0	1	1．14\％	0	1	3049	1	0	0	\＄165 245	0	0	0	1
7025	0	0	0	0	0	1．14\％	0	1	4356	0	0	1	\＄397987	0	0	0	1
7026	0	1	0	0	0	1．11\％	0	1	4356	1	0		5123703	0	0	0	1
7027	0	0	1	0	0	1．11\％	0	1	4356	1	0	0	\＄103928	0	0		1
7028	0	0	0	0	1	${ }^{1.12 \%}$	0	1	4356	1	0	0	\＄138433	0	0	0	1
7029	0	0	1	0	0	1．12\％	0	1	4500	0	0	0	\＄532239	0	0	0	1
7030	0	1	0	0	0	1．12\％	0	0	3920	0	0	1	5387809	0	0	0	1
7031	0	0	0	1	0	${ }^{1.12 \%}$	0	1	4500	0	0	0	\＄5251858	0	0	0	1
7032	0	1	0	0	0	1．12\％	0	1	4356	0	1	0	\＄1068736	0	0	0	1
7033	0	1	0	0	0	1．12\％	0	1	4356	0	1	0	5734701	0	0	0	1
7034	0	1		－	0	1．12\％	0	1	4800	0	0		\＄525826	0	0	0	1
7035	0	0	0	0	0	1．12\％	0	1	6098	0	1	0	5914182	0	0	0	1
7036	0	1	0	0	0	1．12\％	0	1	4792	0	0	0	\＄296679	0	0	0	1
7037	0	0	1	0	0	1．14\％	0	1	6098	0	1	0	\＄779829	0	0	0	1
7038	0	0	0	0	1	1．14\％	0	1	3920	0	1		5853114	0	0	0	1
7039	0	0	0	0	0	1．14\％	0	1	4356	0	1	0	\＄1049049	0	0	0	1
7040	0	1	0	0	0	1．14\％	0	1	4356	0	0	0	\＄426032	0	0	0	1
7041	1	1	0	0	0	1．14\％	0	1	4356	0	1	0	\＄1059361	0	0	0	1
7042	0	0	0	1	0	${ }^{1.14 \%}$	0	1	4356	0	0	1	\＄399366	0	0	0	1
7043 7044	0	\bigcirc	\bigcirc	0	${ }_{0}^{1}$	${ }_{\text {l }}^{1.14 \% \%}$	0	1	4792 4356	1	0	0	S268886 S126116	\bigcirc	\bigcirc	0	${ }_{1}^{1}$
7045	0	0	0	0	1	1．14\％	0	1	4356	1	0	0	\＄121771	。	0	。	1
7046	0	0	0	1	0	1．14\％		1	4356	1	0	0	\＄101972	0	0	0	1
7047	0	0	0	1	0	1．15\％	0	1	${ }_{4}^{4366}$	1	0	0	${ }_{5}^{563054}$	0	0	0	1
7048	0	1	0	0	0	1．09\％	0	1	3920	0	0	0	\＄297307	0	0	0	1
7049	0	1	1	0	0	1．12\％	0	1	4356 4356	0	0	1	S28149 $\mathbf{\$ 1 1 4 3 9}$	0	0	0	1
7050 7051	0	${ }_{0}^{1}$	${ }_{1}^{1}$	0	0	${ }^{1.111 \%}$	\bigcirc	1	4356 4356	1	\bigcirc	0	5114392 5116387	\bigcirc	0	\bigcirc	1
7052	0	1	0	0	0	1．11\％	0	1	4356	1	。	0	\＄147 178	0	。	0	1
7053	0	1	0	0	0	1．11\％	0	0	4356	1	0	0	\＄132 349	0	0	0	1
7054	0	0	0	0	0	1．11\％	0	1	4356	1		0	\＄113856	0	0	0	1
7055	0	1	0	0	0	1．12\％	0	1	4356	0	1	0	\＄646549	0	0	0	1
7056	0		0	0	0	${ }^{1.12 \%}$	0	1	${ }_{4}^{4356}$	0	0	0	5399863 S451411	0			1
7057 7058	\bigcirc	\bigcirc	0	\bigcirc	${ }_{0}^{1}$	－ 1.12%	0	1	4356 4356	\bigcirc	\bigcirc	${ }_{1}$	S4414411 $\$ 382269$	\bigcirc	0	\bigcirc	1
7058 7059	0	${ }_{0}$	1	1	${ }_{0}$	${ }^{1.12 \%}$	${ }_{0}$	1	4356 4356	\bigcirc	1	${ }_{0}$	S382269 $\$ 771603$	0	\bigcirc	\bigcirc	${ }_{1}^{1}$
7060	0	0	0	0	0	1．12\％	0	1	4356	0	0	1	\＄396817	0	0	。	1
7061	0	1	0	0	0	1．12\％	0	1	4356	0	0	0	\＄344855	0	0	0	1
7062	0	1	0	0	0	1．12\％	0	1	4356	0	1	0	\＄772031	0	0		1
7063	0	1	0	0	0	${ }^{1.12 \%}$	0	0	4356 5726	0	0	1	S281149 S498 293	0	0	0	1
7064 7065	0	${ }_{1}^{1}$	0	0	0	${ }^{1.1 .12 \%}$	0	1	5726 4500	\bigcirc	${ }_{0}$	${ }_{0}$	\＄498893 $\$ 50388$	0	0	${ }_{0}^{0}$	1
7066	${ }_{0}$	0	0	0	0	1．14\％	0	1	4356		1	0	\＄1053736	0	0	。	1
7067	0	1	0	0	0	1．14\％	0	1	4500	0	0	0	\＄462983	0	0	0	1
${ }_{7068}$	0	0	0	0	0	${ }^{1.14 \%}$	0	1	3920	0	0	0	\＄3599922	0	0	0	
7069	0	1	0	0	0	${ }^{1.14 \%}$	0	${ }_{1}$	4356 4792	${ }_{1}$	0	1	S356784 S116949	\bigcirc	0	0	1
7071	0	1	0	0	0	${ }_{1.14 \%}^{1.14 \%}$	0	1	${ }_{4}^{4956}$	1	0	0	S111949 $\$ 112388$	0	\bigcirc	。	1
7072	0	0	－	0		1．14\％	0	1	4356	1	0	0	598620	0	0	0	1
7073	0	1	－	－	0	1．11\％	0	1	4356	1	0	0	\＄125698	0	0	0	1
7074	0	0	0	0	0	1．11\％	0	1	3920	1	0	0	\＄133014	0	0	0	1
7075	0	0	0	－	0	${ }^{1.11 \%}$	0	1	4356 4356	${ }_{1}$	0	1	S316293 $\$ 165622$	0	0	\bigcirc	1
7076 7077	0	${ }_{0}^{1}$	0	0	${ }_{1}^{0}$	${ }^{1.11 \%}$	0	1	4356 3920	1	0	\bigcirc	$\$ 165622$ $\$ 16986$	0	0	\bigcirc	1
7078	0	0	0	0	0	1．11\％	0	1	4356	1	0	0	\＄125800	0	0	0	1
7079	0	1	0	0	0	1．12\％	0	1	${ }_{4}^{4356}$	\bigcirc	0	－	\＄406457	0	0	0	1
7080	0	1	0	0	0	${ }^{1.12 \%}$	0	0	${ }^{4356}$	0	0	1	\＄296211	0	0	0	1
7081 7082	0	${ }_{1}$	\bigcirc	\bigcirc	\bigcirc	1.12% 1.12% 1	\bigcirc	1	3920 3920	\bigcirc	0	0	5237000 S744765	\bigcirc	\bigcirc	0	1
7083	0	1	${ }_{0}$	0		${ }_{1}^{1.12 \%}$	0	1	3920 4356	0	1			\bigcirc	\bigcirc	${ }_{0}$	1
7084		0	0	1	0	1．12\％	0	1	5663	0	1	0	5717443	0	0	0	1
7085	0	0	1	0	－	1．12\％	0	1	5663	0	0	1	5412034	0	0		1
7086	0	1	0	0	0	1．12\％	0	1	5663	0	0	0	5420275	0	0	0	1
7087 7088	0	\bigcirc	0	0	0	${ }^{1.14 \%}$	0	1	4792	0	1	\bigcirc	5764233 969888	\bigcirc	0	0	1
7088 7089	0	0	\bigcirc	0	1	${ }^{1.14 \%}$ 1．14\％	\bigcirc	1	3920 4356	0 1	1	0	S969888 $\$ 113247$	0	0	$\stackrel{0}{0}$	${ }_{1}^{1}$
7090	0		0	1	0	1．14\％	0	1	4356	1	0	0	\＄101693		0	0	1
7091	0	1	0	0	0	1．14\％	－	0	4792	1	0	0	\＄113869	0	0		1
7092		0	0	0	0	${ }^{1.1 .15 \%}$	0	1	3049	${ }^{1}$		0	${ }_{\text {\＄406371 }}$	0	0	0	1
7093	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	${ }^{1.12 \%}$	\bigcirc	1	4356 4356	${ }_{1}$	\bigcirc	0	S414 517 S108315	\bigcirc	\bigcirc	0	1
7094 7095	0	${ }_{0}^{1}$	${ }_{0}$	1	${ }_{0}$	${ }^{1.111 \%}$	${ }_{0}$	${ }_{1}^{0}$	4356 4992	1	${ }_{0}$	0	S108 315 $\$ 115105$	0	\bigcirc	0	${ }_{1}^{1}$
7096	0	0	0	1	0	1．12\％	0	1	${ }_{4}^{4356}$	0	1	0	\＄763216		0	0	1
7097	0	1	0	－	0	1．12\％	0	1	4500	0	0	0	5459136	0	0	0	1
7098 7099	0	${ }_{0}^{1}$	0	0	0	－ 1.14%	0	1	4356 4356	0	${ }_{0}^{1}$	1	S699975 S39028	0	0	0	1
7099 7100	0	0	0	0	0	1．1．14\％	0	1	4356 4356	0	0	${ }_{0}^{1}$	S349028 S109 289	0	\bigcirc	0	1
7101	0	0	0	1	0	1．14\％	0	1	3049	1	0	0	\＄158094	0	0	0	，
7102	0	0	1	0	0	1．12\％	0	1	4356	0	0	0	5310557	0	0		1
7103 7104 7	0	0	0	0	0	${ }^{1.12 \%}$	0	1	${ }_{4}^{4356}$	1	0	0	S20863 $\$ 170892$	0	0	0	1
7104 7105	0	${ }_{0}^{1}$	1	0	0	1.14% 1.15% 1.10%	\bigcirc	1	4792 4356	1	\bigcirc	\bigcirc	$\$ 170892$ $\$ 119713$	\bigcirc	\bigcirc	\bigcirc	${ }_{1}^{1}$
7106		1	1	0	－	${ }_{1.12 \%}^{1.15 \%}$	0	1	${ }_{5}^{4327}$	${ }_{0}^{1}$	1	0	\＄662 855	0	0	0	1
7107	0	1	0	－	0	1．12\％	0	1	5227	0	1	0	\＄684690		0		1
7108 7109	0	0	0	1	0	${ }^{1.114 \%}$	0	1	4356 4356	\bigcirc	0	1	5377479 $\$ 20397$	0	0	0	1
7109 7110	\bigcirc	1	0	\bigcirc	\bigcirc	${ }^{1.1 .14 \%}$	\bigcirc	1	4356 4356	0	0	\bigcirc	5203967 $\$ 8823$	${ }_{0}^{0}$	\bigcirc	${ }_{0}$	${ }_{1}^{1}$
7111		1	0	0	0	1．11\％	0	0	3920			1	\＄293627	0	0		1
7112		1	0	0	0	${ }^{1.111 \%}$	0	1	3885	0	0	0	${ }_{\text {S }} 5292212$		\bigcirc		1
7113 7114	0	0	0	${ }_{0}^{1}$	0	1．15\％	0	1	2614 3049	0 1	\bigcirc	\bigcirc	5322402 $\$ 8900$	0	－	0	1
7114 7115	0	\bigcirc	0	1	0	－${ }_{\text {1．1．12\％}}^{1.15}$	\bigcirc	1	3049 6970	1	${ }_{1}$	\bigcirc	－ $\begin{array}{r}\text { \＄89400 } \\ \$ 1393107\end{array}$	0	\bigcirc	\bigcirc	1
7116	0	0	0	1	1	1．12\％	0	1	${ }_{7140}$	${ }_{0}$	${ }_{0}$		${ }_{\text {¢ }}$ \＄679726	0	0	－	1
7117	1	0	0	1	0	${ }^{1.14 \%}$	0	1	6970 6970	0	0		5419060 $\$ 212158$	0	0	\bigcirc	1
7118 7119	${ }_{0}^{1}$	\bigcirc	\bigcirc	\bigcirc	${ }_{1}^{0}$	${ }^{1.1 .12 \%}$	\bigcirc	1	6970 6970	1	\bigcirc	\bigcirc	$\$ 212158$ $\$ 182894$	\bigcirc	\bigcirc	\bigcirc	1
7120	0	0	0	0		1．12\％	0	1	7841	0		1	\＄396622		0	0	1
7121	0	0	0	0	0	1．12\％	0	1	7405	0			\＄1048374	0	0	0	1
7122 7123	\bigcirc	0	0	\bigcirc	1	${ }^{1.14 \%}$	\bigcirc	1	7405 6970	0	\bigcirc	\bigcirc	5370849 $\$ 187882$	\bigcirc	\bigcirc	\bigcirc	1
7124	${ }_{0}$	0	0		0	${ }_{1}^{1.12 \%}$	0	1	6970	${ }_{0}$	0	1	¢582601	\bigcirc	0	${ }_{0}$	1
7125	0	0	1	－		${ }^{1.12 \%}$	0	1	6970	0	－	1	${ }_{5518554}$	O	0	0	1
71126	－	0	0	0	0	${ }^{1.12 \%}$	0	1	${ }_{6970}$	0	0	1	\＄336375	0	0	0	1
7127 7128	0	${ }_{1}^{0}$	\bigcirc	${ }_{0}^{1}$	\bigcirc	${ }_{\text {1．12\％}}^{1.12 \%}$	\bigcirc	1	6098 6970	0	0	\bigcirc	$\underset{\substack{\text { S366 } 214 \\ \$ 1303}}{ }$	0	0	\bigcirc	1
7129	0	0	－		1	1．12\％	0	1	6970	0	0	1	\＄690625	0	0	0	1
7130	－	0	－	0	0	1．12\％	0	1	3920	0	0	1	\＄408862	0	0	0	
7131 7132	\bigcirc	0 1	\bigcirc	0	${ }_{0}^{1}$	${ }^{1.12 \%}$ 1．14\％	${ }_{0}$	${ }_{0}^{1}$	6534 6098	${ }_{0}^{1}$	\bigcirc	0 1	\＄143081 $\$ 336000$	0	\bigcirc	\bigcirc	${ }_{1}^{1}$
7133 133	\bigcirc	1	0	1	1	${ }_{1}^{1.12 \%}$	0	1	${ }_{7405}^{6098}$	${ }_{0}$	0	1	（ $\begin{array}{r}\text { S33000 } \\ \text { S6430 }\end{array}$	\bigcirc	0	${ }_{0}$	1
7134	0		1	0	0	1．14\％	0	1	6098	0	0	1	\＄456515	0	0	0	1
7135	－	－	－		1	${ }^{1.14 \%}$	0	1	3049 9 983	O	1	0	5113789 $\$ 93936$		0	0	
7136 7137	0	\bigcirc	${ }_{0}$	0	${ }_{0}^{1}$	${ }^{1.1 .12 \%}$	0	1	9583 8276	0	1	0	S939343 S117 897	0	0	0	1
7138		0		0	0	1．14\％	0	1	9148				\＄1163866		0	0	1
7139 7140	0	1	0	${ }_{1}$	\bigcirc	${ }^{1.111 \%}$	0	0	3485 3920 392	${ }_{1}$	0	1	（ ${ }_{\text {S27000 }} 594708$	\bigcirc	0	0	1
7141	0	1		1	0	${ }^{1.11 \%}$	0	1	3020 3049	1	0	0	¢184442	0	0	0	1
7142	－		\bigcirc	0	0	${ }^{1.12 \%}$	0	1	$\begin{array}{r}3049 \\ 435 \\ \hline\end{array}$		0	1		O	－	－	1
7143 7144 7	0	0			\bigcirc	${ }^{1.12 \%}$	0	1	4356 304 04	0	0	1	S392134 S28982 S	0	0	0	1
7144 7145	${ }_{0}$	1	${ }_{0}$	0	1	${ }^{1.14 \%}$	${ }_{0}$	1	3049 4356	\bigcirc	0	1	S289182 $\$ 39928$	${ }_{0}^{0}$	${ }_{0}$	\bigcirc	1
7146	－	，	0	0	0	1．14\％	0	1	5663	0	0	0	5388034	0	0	0	1
7147 7118 18	0	1	0		0	1．14\％\％	0	1	4356 4356	0	－	1	5409693 42159	0	0	0	1
7148 7149 7150	\bigcirc	0	1	0	0	（1．11\％ $\begin{aligned} & 1.11 \% \\ & 1.12 \% \\ & 1\end{aligned}$	0	1	4336 5663 4792	1	0	0	S62 1199 S15588 S 5888888	0	\bigcirc	－	1

observation	PROPERTY DURESS $=1$	LT＿－90\％	LTV 81\％ 100%	LTV 70\％78\％	$\begin{aligned} & \text { LTV below } \\ & \text { 70\% } \end{aligned}$	total tax burden	parcel in SCEIP $=1$	conventional LOAN $=1$	Lorstze	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	$\begin{aligned} & \text { SOLD DURING } \\ & \text { 2004_2007 } \end{aligned}$	Sold 2008－2012	PRICE ADJUSt．TO 2012	ZIP CODE 295403	ZIP CODE 95404	ZIP CODE 95472	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
7151	0	1	0	－	\％	1．14\％		1	4356	－	－	0	\＄354067	0	－		
7152	0	0	1	0	0	1．14\％	0	1	4356	0	0	1	\＄357023	0	0	0	1
7153	0	1	0	0	0	1．14\％	0	1	3920	0	1	0	\＄1003 112	0	0	0	1
7154	0	0	0	0	0	1．11\％	0	1	3485	1	0	0	\＄115053	0	0	0	1
7155	0	0	0	0	1	1．09\％	0	1	4792	1	0	0	\＄137670	0	0	0	1
7156	0	0	1		0	1．11\％	0	1	4356	1	0	0	\＄115990	0	0	0	1
7157	0	0	0	1	1	1．12\％	0	1	6970	0	0	0	5403003	0	0	0	1
7158	0	0	0	1	－	1．14\％	0	1	4356	0	0	0	\＄336709	0	0	0	1
7159	0	1	0	0	0	1．14\％	0	1	4356	0	1	0	\＄1031236	0	0	0	1
7160	0	0			0	1．14\％	0	，	4356	0	1	0	\＄895992	0	0	0	1
7161	0	1	0	0	0	1．14\％	0	1	${ }_{4}^{4356}$		0	0	${ }_{5}^{5356868}$	0	0	0	1
7162	0	0	0	1		1．14\％		1	4356	0	0	1	${ }_{\$ 366968}$	0	0	0	1
7163	0	0	0	0	0	1．14\％	0	1	5663	1	0	0	\＄113856	0	0	0	1
7164	0	0	0	1		1．14\％	0	1	4792	0	0	0	\＄375944	0	0	0	1
7165	0	0	0	0	0	1．11\％	0	1	4792	1	0	0	5118985	0	0	0	1
7166	0	0	0	0	1	${ }^{1.11 \%}$	0	1	4356	0	0	1	\＄254039	0	0	0	1
7167	0		0	0	0	1．11\％	0		4792	1	0	0	S1599999 S1238	0	0	0	1
7168	0	1	0	0		1．11\％	0	1	4356	1	0	0	\＄112638	0	0	0	1
7169	0	1	0	0	0	1．11\％	0	1	4792	1	0	0	\＄170 139	0	0	0	1
7170	1	1	0	0	0	1．11\％	0	0	4356	1	0	0	5113062	0	0	0	1
7171	0	1	0	0	0	${ }^{1.12 \%}$	0	1	4792	0	0	0	\＄4018522	0	0	0	1
7172	0	1	\bigcirc	0	\bigcirc	${ }_{\text {1 }}^{1.12 \%}$	0	1	${ }_{4}^{4356}$	0	\bigcirc	${ }_{1}$	5432940 S312	－	0	\bigcirc	1
7174	0	1	0	${ }_{1}^{0}$	\bigcirc	${ }_{\text {1．14\％}}^{1.12 \%}$	\bigcirc	1	3920 5227	${ }_{0}$	\bigcirc	1	S312353 S436 051	\bigcirc	${ }_{0}$	\bigcirc	1
7175	0	－	0	0	1	1．14\％	0	1	5227	0	1	0	5677672	0	0	0	1
7176	0	0	0	0	0	1．14\％	0	1	4356	0	0	1	${ }_{5351165}$	0	0	0	1
7177	0	1	0	0	0	1．14\％	0	1	4792	0	0	1	\＄251026	0	0	0	1
7178 7179	0	0	0	0	1	${ }^{1.15 \%}$	0	1	3920	1	0	0	570656 $\$ 26963$	0	0	0	1
7179 7180	0	1	0	0	0	${ }^{1.15 \%}$	0	0	3049 3099	0	0	1		0	0	0	1
7180	0	1	0	0	0	${ }^{1.144 \%}$	0	\bigcirc	3049	1	0	0	S15 835 $\$ 172525$	0	0	0	1
7181	0	1	0	0	0	1．15\％	0	1	${ }^{3049}$	1	0	0	\＄117052	0	0	0	1
7182 7183	0	1	0	\bigcirc	\bigcirc	${ }^{1.11 \%}{ }_{1.11 \%}$	\bigcirc	1	4356 4356	1	\bigcirc	\bigcirc	S122373 S119380	\bigcirc	\bigcirc	\bigcirc	1
7184	0	0	0	1	0	1．14\％	0	1	4356	0	0	1	\＄392134	0	0	0	1
7185	0	0	0	0	0	1．11\％	0	1	3049	0	0	0	\＄379974	0	0	0	1
7186	0	0	0	0	1	1．11\％	0	1	3049	0	1	0	5670653	0	0	0	1
7187	\bigcirc	1	0	0	0	1．14\％	0	1	4356	0	0	0	S321454 S22238	0	0	0	1
7188 7189	\bigcirc	1	0	\bigcirc	\bigcirc	1．11\％	\bigcirc	0	2614 4356	0 1	\bigcirc	${ }_{0}^{1}$	S292638 S10532	\bigcirc	\bigcirc	\bigcirc	1
7190	0	0	0	1	0	1．12\％	0	1	4356	0	0	1	\＄255000	0	0	。	1
7191	0	－	1	0	0	1．12\％	0	1	4356	0	0	0	\＄196550	0	0	0	1
7192	－	0	0	1	0	1．12\％	0	1	4356	0	0	1	S228434	0	0	0	1
7193	－	1	0	0	0	1．12\％	O	0	4792	0	0	1	\＄235965	0	0	0	1
7194	0	0	1	0	0	1．12\％	0	1	4792	0	0	1	\＄230944	0			1
7195	0	0	0	0	0	${ }^{1.12 \%}$	0	1	4792 4356	0	1	0	S991862 $\$ 33340$	0	0	0	1
7196 7197	\bigcirc	0	0	${ }_{0}^{1}$	${ }_{0}^{1}$	${ }^{1.14 \% \%}$	${ }_{0}$	1	4356 4356	\bigcirc	${ }_{0}$	${ }_{1}$	\＄333400 $\$ 277007$	${ }_{0}$	${ }_{0}$	0	1
7198			0	0	1	1．11\％	0	1	4356	0	1		\＄740838	0	0	。	
7199	－	0	1	0	0	1．11\％	0	1	3920	1	0	0	\＄55675	0	0	0	1
7200	0	1	0	0	0	1．11\％	0	0	3485	1	0	0	\＄106549	0	0	0	1
7201 7202	\bigcirc	1	\bigcirc	\bigcirc	0	1．15\％	\bigcirc	0	3200 6534	\bigcirc	\bigcirc	1	5315787 $\$ 555418$	0	\bigcirc	\bigcirc	1
7202 7203	\bigcirc	0	0	${ }_{1}$	1	${ }^{1.14 \%}$	\bigcirc	1	6534 6970	0	${ }_{1}^{0}$	\bigcirc	$\underset{\text { \＄535418 }}{\$ 1124985}$	0	0	0	1
7204	0	，	0	0	0	1．12\％	0	1	11326	0			\＄389392	0	0		1
7205	0	1	0	0	0	1．14\％	0	0	9583	0	0	1	\＄323824	0	0	0	1
7206	0	0	0	0	1	1．12\％	0	1	11326	1	0	0	\＄109515	0	0	0	1
7207 7208	0	1	0	0	\bigcirc	1．11\％	\bigcirc	0	5663 6970	0	0	1	S400000 $\$ 214153$	0	\bigcirc	0	1
7208 7209	\bigcirc	1	0	0	\bigcirc	${ }^{1.12 \%}$	0	1	6970 6534	1	\bigcirc	\bigcirc	\＄214153 $\$ 61489$	$\stackrel{0}{0}$	0	0	1
7210	0		0	1	0	1．12\％	0	1	6098	0	1	0	\＄1265 474	0	0	0	1
7211	0	1	0	0	0	1．12\％	0	1	8712	0	0	0	\＄512390	0	0	0	1
7212	0	1	0	0	0	1．14\％	0	1	6534	0	0	0	5495118	0	0	0	1
7213 7214	0	0	0	1	0	${ }^{1.14 \%}$	0	1	7840 6900	0	\bigcirc	0	$\$ 455271$ $\$ 166268$	\bigcirc	0	0	1
7214 7215	0	\bigcirc	\bigcirc	${ }_{1}$	0	1.14% 1.12%	\bigcirc	1	6970 4356	${ }_{0}^{1}$	\bigcirc	\bigcirc	S162688 $\$ 29924$	\bigcirc	0	0	1
7216	0	，	0	0	0	1．14\％	0	1	6098	0	1	0	\＄803224	0	0	0	1
7217	0	1	0	0	0	1．11\％	0	0	6534	0		1	5336375	0	0	0	1
7218 7219	0	0	\bigcirc	0	${ }_{0}^{1}$	1．12\％	\bigcirc	1	5663 11326	1	\bigcirc	\bigcirc	\＄128233	\bigcirc	\bigcirc	\bigcirc	1
7219 7220	0	${ }_{0}^{1}$	\bigcirc	0	${ }_{1}$	${ }^{1.12 \%}$	0	1	11326 8276	1	0	\bigcirc	S95 252 $\$ 173844$	${ }_{0}$	0	0	1
7221	0	0	0	1	0	1．12\％	0	1	6970	0	0	0	\＄443303	0	0	0	1
7222	－	0	1	0	0	1．12\％	0	1	6098	0	0	0	\＄324029	0	0	0	1
7223	0	0	0	1	1	1．12\％	0	1	5663	0	1	0	585014	0	0	0	1
7224	0	0	1	0	0	1．14\％	0	1	5663	1	0	0	5218320	0	0	0	1
7225 7226 202	0	0	0	1	0	${ }^{1.144 \%}$	0	1	7841 5663	0	\bigcirc	0	S434780 $\$ 567717$	0	0	0	1
7226 7227	0	${ }_{1}$	0	${ }_{0}^{1}$	0	${ }_{\text {1．14\％}}^{1.14 \%}$	\bigcirc	${ }_{0}^{1}$	5663 10019	0	0	1	S567717 $\$ 39889$	0	0	0	1
7228	0	0	0	0	1	1．12\％	0	1	4356	0	0	0	\＄349785	0	0	0	1
7229	0	0	0	0	1	1．12\％	0	1	7038	0	0	0	\＄553400	0			1
7230	0	1	0	0	0	1．12\％	0	1	6970	0	1	0	\＄1154629	0	0	0	1
7231 7232	0	\bigcirc	0	0	1	1．12\％	0	1	8712 10360 10	\bigcirc	1	\bigcirc	S342108 $\$ 995795$	\bigcirc	0	\bigcirc	1
7232 7233	0	0	0	0	0	${ }_{\text {1．14\％}}^{1.12 \%}$	0	1	10360 11326	${ }_{0}^{0}$	${ }_{0}^{1}$	${ }_{1}^{0}$	\＄935795 $\$ 315000$	0	0	0	1
7234	0	0	0	0	0	1．14\％	0	1	${ }_{8276}$	1	0	${ }_{0}$	${ }_{\$ 83177}$	0			1
7235	0	0	0	0	0	1．11\％	0	1	6098	1	0		\＄158287	0	0	0	1
7236	0	0	0	1	0	1．11\％	0	1	6098	1	0	0	\＄130904	0	0	0	1
7237 7238 238	0	1	0	0	0	1．12\％	0	1	6098 9083	0	1	1	$\underset{\$ 1078111}{\$ 37000}$	0	0	0	
7238 7239	\bigcirc	1	0	0	\bigcirc	${ }^{1.12 \%}$	\bigcirc	${ }_{0}^{1}$	9583 8025	\bigcirc	$\stackrel{0}{0}$	1	$\$ 377000$ $\$ 881560$	0	\bigcirc	\bigcirc	1
7240	0	0	0	0	0	1．14\％	0	1	9148	0	0	0	\＄517490	0		0	1
7241	\bigcirc	0	0	1	0	1．14\％	0	1	6534	0	0	1	\＄371518	0	0	0	1
7242 7243	\bigcirc	0	\bigcirc	1	\bigcirc	1．14\％	\bigcirc	1	6098 6098	1	0	\bigcirc		0	\bigcirc	\bigcirc	1
7244	0	1	0	0	0	${ }^{1.14 \%}$	0	1	6970	0	1	0	\＄1126918	0	0	0	1
7245	\bigcirc	1	0	0	0	1．11\％	0	1	5663	1	0	0	\＄126098	0	0		1
7246 7247	0	0	0	0	0	1．11\％	0	1	${ }_{5}^{5663}$	1	0	0	\＄118214	0	0	0	1
7247 7248	\bigcirc	0	0	0	0	${ }^{1.11 \%}$	0	1	6098 6098	${ }_{0}^{1}$	0	${ }_{1}^{0}$	S185948 $\mathbf{\$ 3 6 0} 109$	${ }_{0}$	\bigcirc	\bigcirc	1
7249	0	0	0	0	1	1．12\％	0	1	6098	0	1	0	\＄1071496	0		0	1
7250	0	0	0	0	0	1．12\％	0	1	5663	0	0	0	\＄386834	0		0	
7251 7252	0	0	0	0	${ }_{0}^{1}$	1．14\％	0	1	5663 5663	0	0	1	\＄260000 $\$ 122323$	0	0	0	1
7252 7253	${ }_{0}^{\circ}$	1	\bigcirc	${ }_{0}$	${ }_{0}$	1．10\％	${ }_{0}$	${ }_{0}^{1}$	5663 6098	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	\＄122323 $\$ 35000$	0	\bigcirc	\bigcirc	1
7254	0	1	0	0	0	1．12\％	0	1	6098	0	1	0	\＄1078 111	0	0	0	1
7255	0	1	0	0	0	1．12\％	0	1	6098	0	0	0	\＄403179	0		0	
7256 7257	\bigcirc	1	0	0	0 1	${ }_{\text {1．1．12\％}}$	\bigcirc	1	9148 10019	0	${ }_{0}^{1}$	\bigcirc		0	0	0	1
7258		0	1	0	${ }_{0}$	1．14\％		1	${ }_{6} 10970$	0		\bigcirc	\＄399910		0	${ }_{0}$	1
7259	0		0	0	1	1．11\％		1	6098	1	0	0	\＄80494	0	0		，
7260 7261	\bigcirc	0	\bigcirc	${ }_{0}^{1}$	0	1．12\％	\bigcirc	1	6970 5227	0	\bigcirc	0	$\$ 881386$ $\$ 13275$	0	\bigcirc	\bigcirc	1
7262	0	${ }_{0}$	\bigcirc	${ }_{0}$	1	${ }^{1.114 \%}$	\bigcirc	${ }_{1}^{1}$	5227 5663	1	\bigcirc	\bigcirc	S132275 $\$ 124535$	0	\bigcirc	0	1
7263	0	0	1	0	0	1．11\％	0	1	5663	1	0	0	\＄121162	0	0	0	1
7264 7265	0		0		1	${ }^{1.12 \%}$	0	1	5663	0	1		${ }_{5681571}$	0	0		1
7265 7266	0	1 1	0	0	${ }_{0}^{1}$	${ }_{\text {1．12\％}}^{1.12 \%}$	0	1	6098 6000	\bigcirc	${ }_{0}$	0	S514925 S588 651	\bigcirc	\bigcirc	\bigcirc	${ }_{1}^{1}$
7267	1	1	0	0	0	${ }^{1.14 \%}$		1	6970	0	1	0	（ $\begin{array}{r}\text { \＄138651 } \\ \$ 154629\end{array}$	0	0	0	1
7268	－	0	0	0	1	1．14\％	0	1	6970	0	1	0	\＄764233	－	0	0	1
7269 7270	－	0	${ }_{0}^{1}$	0	\bigcirc	${ }_{\text {1．14\％}}^{1.14 \%}$	0	1	6098 6098 508	0 1	\bigcirc	${ }_{0}^{1}$	S385477 S12637	\bigcirc	0	0	1
7271	0	${ }_{0}$	${ }_{0}$	0	1	1．58\％	1	1	${ }_{5663}$	1	${ }_{0}$	$\stackrel{1}{0}$	\＄$\$ 72221$	${ }_{0}$	\bigcirc	\bigcirc	1
7272	。	1	0	0	${ }_{0}$	1．11\％	${ }_{0}$	${ }_{0}$	6098	${ }_{0}$	。	1	\＄363433	0	0	。	1
7273 7274	0	0	0	1	0	${ }^{1.111 \%}$	－	1	4356 4356	1	1	0	${ }_{\text {ckin }}^{512642}$	－	0	0	1
7274 7275	0	1	0	0	\bigcirc	${ }_{\text {1．12\％}}^{1.12 \%}$	0	1	4356 4356	${ }_{0}$	1	0	${ }_{\text {S }}^{\text {S779757 }}$	0	0	0	1
7276	0	0	0	0	1	1．14\％	0	1	${ }_{4}^{4356}$	0	${ }_{0}$	0	\＄468 220	0	0	0	1
7277	1	0	0	0	0	1．14\％	0	1	3922	0	1	0	5670653	0	0	0	1
7278 7279	1	0	0	0	\bigcirc	1．14\％	\bigcirc	1	4358 5653	\bigcirc	${ }_{0}^{1}$	${ }_{0}$	5795426 $\$ 352770$	0	\bigcirc	\bigcirc	1
7280	0	1	0	，		1．11\％	0	${ }_{0}$	6534		0	0	\＄136340	0	0	0	1

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline observation \& \({ }^{\text {Propersty }}\) \& LTV＿90\％ \& LTV 81\％．90\％ \& LTV 70\％．78\％ \& LTV BELOW \& total tax \& parcelin \& conventional \& Lot SIIE \& Sold \& SOLD DURING \& Sold 2008－2012 \& PRICE ADUST．To \& ZIP CODE \& ZIP CODE \& \& \(\underset{\substack{\text { 21P CODE } \\ 94928}}{ }\) \\
\hline 7281 \& \({ }_{\text {duess }}{ }_{0}\) \& 0 \& 0 \& 0 \& \({ }^{70 \%}\) \& \({ }^{\text {BURDEN }}\) \& \({ }_{0}^{\text {cip }} 1\) \& LOAN \(=1\) \& 6098 \& OR－2000 \& 2004＿2007 \& 0 \& \({ }_{\text {S541216 }}^{2012}\) \& \({ }_{0}^{295003}\) \& \({ }^{95404}\) \& \({ }_{\substack{95472 \\ 0}}\) \& \({ }_{1}^{94928}\) \\
\hline 7282 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．12\％ \& 。 \& 1 \& 4356 \& 0 \& 0 \& 1 \& S409693 \& 0 \& \& \& 1 \\
\hline 7283 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& 4792 \& 1 \& 0 \& 0 \& \＄118715 \& \& 0 \& 0 \& 1 \\
\hline 7284 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& 4792 \& 1 \& 0 \& 0 \& \＄123038 \& 0 \& 0 \& 0 \& 1 \\
\hline 7285 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& 4792 \& 1 \& 0 \& 0 \& \＄128359 \& 0 \& 0 \& 0 \& 1 \\
\hline 7286 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．11\％ \& 0 \& 1 \& 4792 \& 1 \& 0 \& 0 \& \＄149060 \& 0 \& 0 \& 0 \& 1 \\
\hline 7287 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．11\％ \& 0 \& 1 \& 4356 \& 1 \& 0 \& 0 \& \＄99664 \& 0 \& 0 \& 0 \& 1 \\
\hline 7288 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．11\％ \& － \& 1 \& 6098 \& 1 \& 0 \& 0 \& \＄115053 \& 0 \& 0 \& 0 \& 1 \\
\hline 7289 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．11\％ \& 0 \& 1 \& 6970 \& 1 \& 0 \& 0 \& \＄113856 \& 0 \& 0 \& 0 \& 1 \\
\hline 7290 \& 0 \& 1 \& 0 \& 0 \& ， \& 1．12\％ \& 0 \& 1 \& 4792 \& 0 \& 1 \& 0 \& \＄1049986 \& 0 \& 0 \& 0 \& 1 \\
\hline 7291 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 4792 \& 0 \& 1 \& 0 \& \＄736378 \& 0 \& 0 \& 0 \& 1 \\
\hline 7292 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．14\％ \& 0 \& 1 \& 6098 \& 0 \& 1 \& 0 \& \＄795426 \& 0 \& 0 \& 0 \& 1 \\
\hline 7293 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 0 \& 4356 \& 0 \& 0 \& 1 \& \＄297215 \& 0 \& 0 \& 0 \& 1 \\
\hline 7294 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．15\％ \& 0 \& 0 \& 4356 \& 1 \& 0 \& 0 \& \＄58135 \& 0 \& 0 \& 0 \& 1 \\
\hline 7295 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& \({ }^{4356}\) \& 1 \& 0 \& 0 \& \＄133014 \& 0 \& 0 \& 0 \& 1 \\
\hline 7296 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．11\％ \& 0 \& 1 \& \({ }_{4}^{4366}\) \& 1 \& 0 \& 0 \& \＄112029 \& 0 \& 0 \& 0 \& 1 \\
\hline 7297 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．11\％ \& 0 \& 1 \& 7841 \& 1 \& 0 \& 0 \& \＄120 110 \& 0 \& 0 \& 0 \& 1 \\
\hline 7298 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．12\％ \& 0 \& 1 \& 4356 \& 0 \& 0 \& － \& 5296679 \& 0 \& 0 \& 0 \& 1 \\
\hline 7299 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& \({ }_{4} 356\) \& 0 \& 0 \& 0 \& \＄409912 \& 0 \& － \& \& 1 \\
\hline 7300 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 1 \& \({ }_{4}^{4356}\) \& 0 \& 0 \& 0 \& S397246
\(\$ 92235\) \& 0 \& 0 \& 0 \& 1 \\
\hline 7301 \& 0 \& 0 \& 0 \& 0 \& 1 \& \({ }^{1.14 \%}\) \& 0 \& 1 \& \({ }^{4336}\) \& 0 \& 0 \& 1 \& \({ }_{5362325}\) \& 0 \& 0 \& 0 \& 1 \\
\hline 7302 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．14\％ \& 0 \& 1 \& \({ }^{4356}\) \& 0 \& 0 \& 0 \& \＄365041 \& 0 \& 0 \& 0 \& 1 \\
\hline 7303 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 0 \& 4356 \& 0 \& 0 \& 1 \& \＄283 158 \& 0 \& 0 \& 0 \& 1 \\
\hline 7304 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1．14\％ \& 0 \& 1 \& \({ }^{4356}\) \& 0 \& 0 \& 0 \& \＄199331 \& 0 \& 0 \& 0 \& 1 \\
\hline 7305 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．11\％ \& 0 \& 1 \& 4792 \& 1 \& 0 \& 0 \& \＄117582 \& 0 \& 0 \& 0 \& 1 \\
\hline 7306 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& 4356 \& 1 \& 0 \& 0 \& \＄118846 \& 0 \& 0 \& 0 \& 1 \\
\hline 7307 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．11\％ \& 0 \& 1 \& \({ }^{4356}\) \& 1 \& 0 \& 0 \& \＄175032 \& 0 \& 0 \& 0 \& 1 \\
\hline 7308 \& 0 \& 0 \& 0 \& 1 \& \(\bigcirc\) \& \({ }^{1.12 \%}\) \& 0 \& 1 \& \({ }^{4356}\) \& \(\bigcirc\) \& 0 \& 1 \& \({ }_{5} 588145\) \& 0 \& 0 \& 0 \& 1 \\
\hline 7309 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．12\％ \& 0 \& 1 \& \({ }^{4356}\) \& 0 \& 1 \& 0 \& \＄779829 \& 0 \& 0 \& 0 \& 1 \\
\hline 7310 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 4500 \& 0 \& 0 \& 0 \& \＄500176 \& 0 \& 0 \& 0 \& 1 \\
\hline 7311 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 7405 \& 0 \& 1 \& 0 \& \＄717443 \& 0 \& 0 \& 0 \& 1 \\
\hline 7312
7313 \& 0 \& 1 \& 0 \& 0 \& 0 \& \({ }^{1.14 \%}\) \& 0 \& 0 \& 4356
4356 \& 0 \& 0 \& 1 \& \＄353460 \& 0 \& 0 \& 0 \& 1 \\
\hline 7313 \& 0 \& 1 \& 0 \& 0 \& 0 \& \({ }^{1.14 \%}\) \& 0 \& 0 \& \({ }^{4356}\) \& 0 \& 0 \& 1 \& \＄270000 \& 0 \& 0 \& 0 \& 1 \\
\hline 7314
7315 \& 0 \& － \& 0 \& 1 \& 0 \& 1．14\％\％ \& 0 \& 1 \& 4792
4356 \& 0 \& 0 \& 0 \& \({ }_{\text {S }} \mathbf{\$ 1 1 4 6 2 9}\) \& 0 \& 0 \& 0 \& 1 \\
\hline 7315
7316 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }_{0}^{1}\) \& \({ }^{1.111 \%}\) \& \(\bigcirc\) \& 1 \& 4356
6098 \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& S111685
\(\$ 116900\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \\
\hline 7317 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．11\％ \& 0 \& 1 \& 7841 \& 1 \& 0 \& 0 \& \＄179925 \& 0 \& 0 \& 0 \& 1 \\
\hline 7318 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 6534 \& 0 \& 0 \& 0 \& \＄337799 \& 0 \& 0 \& 0 \& 1 \\
\hline 7319 \& 1 \& 1 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 1 \& 4792 \& 0 \& 1 \& 0 \& \＄711204 \& 0 \& 0 \& 0 \& 1 \\
\hline 7320 \& 0 \& 1 \& 0 \& 0 \& 0 \& \({ }^{1.14 \%}\) \& 0 \& 0 \& \({ }^{4} 3756\) \& 0 \& 0 \& 1 \& \＄354568 \& 0 \& 0 \& 0 \& 1 \\
\hline 7321
7322 \& 0 \& 0 \& \({ }_{1}\) \& \(\bigcirc\) \& 0 \& \({ }^{1.15 \%}\) \& 0 \& 1 \& \({ }_{6}^{4992}\) \& 1 \& 0 \& 0 \& \({ }_{\text {\＄}}^{5612042}\) \& 0 \& － \& 0 \& 1 \\
\hline 7322
7323 \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }_{0}^{1}\) \& \({ }_{1}\) \& \({ }_{0}\) \& \({ }_{\text {1．114\％}}^{1.14}\) \& \({ }_{0}\) \& 1 \& 6534
4792 \& \({ }_{0}^{1}\) \& \({ }_{1}\) \& \({ }_{0}\) \& \(\underset{\substack{\text { \＄126 } \\ \$ 59593 \\ \hline 980}}{ }\) \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \\
\hline 7324 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 4356 \& 0 \& 0 \& 0 \& \＄385732 \& 0 \& 0 \& 0 \& 1 \\
\hline 7325 \& 0 \& 1 \& 0 \& 0 \& 0 \& \({ }^{1.14 \%}\) \& 0 \& 1 \& \({ }^{4} 792\) \& 0 \& 1 \& 0 \& \＄918738 \& 0 \& 0 \& 0 \& 1 \\
\hline \({ }_{7}^{7326}\) \& \(\bigcirc\) \& 0 \& 0 \& 0 \& 0 \& \({ }^{1.14 \%}\) \& 0 \& 1 \& \({ }^{4356}\) \& 0 \& 0 \& 1 \& \＄277108 \& 0 \& 0 \& 0 \& 1 \\
\hline 7327
7328 \& \(\bigcirc\) \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }_{0}\) \& \({ }_{\text {1．14\％}}^{1.14 \%}\) \& \(\bigcirc\) \& 1 \& 4792
4356 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\underset{\substack{\text { \＄398 } \\ \$ 297 \\ \hline 874 \\ \hline}}{ }\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \\
\hline 7329 \& 0 \& \({ }_{0}\) \& 0 \& 1 \& 0 \& \({ }_{1.11 \%}^{1.14 \%}\) \& 0 \& 1 \& \({ }_{4}^{4356}\) \& 0 \& 0 \& 0 \& \({ }_{\$ 385} 732\) \& 0 \& 0 \& 0 \& 1 \\
\hline 7330 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．15\％ \& 0 \& 1 \& 4356 \& 1 \& 0 \& 0 \& \＄59253 \& 0 \& 0 \& 0 \& 1 \\
\hline \({ }_{7331}\) \& 0 \& 1 \& 0 \& 0 \& 0 \& \({ }^{1.11 \%}\) \& 0 \& 0 \& \({ }^{6} 998\) \& 0 \& 0 \& 1 \& \＄331300 \& 0 \& 0 \& 0 \& 1 \\
\hline 7332 \& 0 \& 0 \& 1 \& 0 \& 0 \& \({ }^{1.111 \%}\) \& 0 \& 1 \& \({ }_{6}^{6098}\) \& 1 \& 0 \& 0 \& \＄116988 \& 0 \& 0 \& 0 \& 1 \\
\hline 7333
7334 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& \({ }_{6}^{6098}\) \& 1 \& 0 \& 0 \& \({ }_{\$ 9112817}\) \& \& － \& 0 \& 1 \\
\hline 7334
7335 \& \(\bigcirc\) \& 1 \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }^{1.111 \%}\) \& \(\bigcirc\) \& 1 \& 5663
6970 \& \({ }_{1}^{1}\) \& \({ }_{0}^{1}\) \& 0 \& \(\underset{\substack{\text { S711217 } \\ \$ 938}}{ }\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \\
\hline 7336 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& 8276 \& 0 \& 0 \& 0 \& \＄353491 \& 0 \& 0 \& 0 \& 1 \\
\hline 7337
7338 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．14\％\％ \& 0 \& 1 \& 4356
8820 \& 0 \& 0 \& 0 \& \begin{tabular}{|c}
\(\$ 236416\) \\
\(\$ 570714\)
\end{tabular} \& 0 \& \(\bigcirc\) \& 0 \& 1 \\
\hline 7338 \& 0 \& 1 \& 0 \& 0 \& 0 \& \({ }^{1.114 \%}\) \& 0 \& 1 \& \({ }^{8820}\) \& 0 \& 0 \& 0 \& \＄570714 \& 0 \& － \& 0 \& 1 \\
\hline 7339
7340 \& \(\bigcirc\) \& \({ }_{0}^{1}\) \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }_{0}\) \& －\({ }_{\text {1．1．12\％}}^{1.12 \%}\) \& \(\bigcirc\) \& \({ }_{1}\) \& 6098
5663 \& 0 \& \(\bigcirc\) \& 1 \& \＄504 152
\(\mathbf{S 4 5 0 9 7}\) \& 0 \& － \& \(\bigcirc\) \& 1 \\
\hline 7341 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 0 \& 9148 \& 0 \& － \& 1 \& \＄321314 \& \& － \& 0 \& 1 \\
\hline 7342 \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 6970 \& 1 \& 0 \& 0 \& \＄229612 \& 0 \& 0 \& 0 \& 1 \\
\hline 7343 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 0 \& 7405 \& 0 \& 0 \& 1 \& \＄587254 \& 0 \& 0 \& 0 \& 1 \\
\hline 7344
7345 \& 0 \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& －\({ }_{\text {1．1．12\％}}^{1.12 \%}\) \& \(\bigcirc\) \& 1 \& 7405
6970 \& 1 \& 0 \& \({ }_{0}^{1}\) \& \＄387585
\(\$ 212823\) \& \(\bigcirc\) \& 0 \& 0 \& 1 \\
\hline 7346 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 0 \& 6970 \& \& 。 \& 1 \& \＄378000 \& 0 \& 0 \& 0 \& 1 \\
\hline 7347 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．12\％ \& 0 \& 1 \& 11761 \& 1 \& 0 \& 0 \& \＄186220 \& 0 \& 0 \& 0 \& 1 \\
\hline 7348 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 4356 \& 0 \& 0 \& 0 \& \＄377096 \& 0 \& 0 \& 0 \& 1 \\
\hline 7349
7350 \& 0 \& 0 \& 0 \& 0 \& 1 \& \({ }^{1.12 \%}\) \& 0 \& 1 \& 10019 \& 0 \& 0 \& 0 \& \＄521025 \& 0 \& \& 0 \& 1 \\
\hline 7350
7351 \& 0 \& 0 \& \(\bigcirc\) \& 1 \& \(\bigcirc\) \& 1．14\％
\(1.90 \%\) \& 0
1 \& 1 \& 6970
7000 \& \({ }_{0}^{0}\) \& \(\bigcirc\) \& \({ }_{0}^{1}\) \& \＄415000
\(\$ 545064\) \& \(\bigcirc\) \& \(\bigcirc\) \& － \& 1 \\
\hline 7352 \& － \& 0 \& \& \({ }_{0}\) \& 。 \& 1．11\％ \& \({ }_{0}\) \& 1 \& 12197 \& 1 \& 0 \& 0 \& ¢ \& 0 \& 0 \& 0 \& 1 \\
\hline 7353 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 1 \& 6534 \& 0 \& 0 \& 1 \& \＄356457 \& 0 \& 0 \& 0 \& 1 \\
\hline 7354 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 0 \& 8276 \& 0 \& 0 \& 1 \& 5498612 \& 0 \& 0 \& 0 \& 1 \\
\hline 7355 \& 0 \& 1 \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& 1．14\％ \& 0 \& 1 \& 7140 \& 0 \& 0 \& 0 \& \({ }_{5622014}\) \& － \& 0 \& 0 \& 1 \\
\hline 7356
7357 \& 0 \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }^{1.14 \%}\) \& 0 \& 1 \& 5000
8692 \& \(\bigcirc\) \& 0
1 \& \({ }_{0}\) \& \＄589951
\(\mathbf{\$ 1 0 3 9 9 8}\) \& 0 \& \(\bigcirc\) \& 0 \& 1 \\
\hline 7358 \& 0 \& 0 \& \& － \& 1 \& 1．12\％ \& 0 \& 1 \& 6098 \& 0 \& 1 \& 0 \& \＄1088632 \& － \& \& － \& 1 \\
\hline 7359 \& 0 \& 0 \& － \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& 5663 \& 1 \& 0 \& 0 \& 578258 \& 0 \& 0 \& 0 \& 1 \\
\hline 7360 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．12\％ \& 0 \& 1 \& 10019 \& \& 1 \& 0 \& \＄1145392 \& 0 \& 0 \& 0 \& 1 \\
\hline 7361
7362 \& 0 \& 0 \& 0 \& 0 \& 1 \& \({ }^{1.12 \%}\) \& 0 \& 1 \& 7405 \& 0 \& 0 \& 0 \& \＄360651 \& 0 \& 0 \& 0 \& 1 \\
\hline 7362
7363 \& 0 \& \({ }_{1}^{0}\) \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \& \({ }^{1.14 \%}\) 1．14\％ \& \(\bigcirc\) \& 1 \& 8000
6534 \& \(\bigcirc\) \& \({ }_{1}^{0}\) \& \(\bigcirc\) \& \＄56194994 \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \& 1 \\
\hline 7364 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 1 \& 6534 \& 0 \& 1 \& 0 \& \＄974787 \& 0 \& 0 \& 0 \& 1 \\
\hline 7365 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．14\％ \& \& 1 \& \({ }^{3920}\) \& 1 \& 0 \& 0 \& S115949

S15 \& 0 \& 0 \& \bigcirc \& 1

\hline 7366
7367 \& \bigcirc \& ${ }_{0}^{1}$ \& \bigcirc \& \bigcirc \& ${ }_{1}$ \& －${ }_{\text {1．112\％}}^{1.12 \%}$ \& \bigcirc \& 1 \& 6098

12197 \& 1 \& \bigcirc \& 0 \& | S145651 |
| :--- |
| S158 |
| 1000 | \& \bigcirc \& \bigcirc \& \bigcirc \& 1

\hline 7368 \& 0 \& \& 0 \& 1 \& 0 \& 1．12\％ \& 0 \& 1 \& 5663 \& 0 \& 1 \& 0 \& \＄999407 \& 0 \& 0 \& 0 \& 1

\hline 7369 \& － \& 0 \& 0 \& 1 \& 0 \& 1．12\％ \& 0 \& 1 \& 7841 \& 0 \& 0 \& 0 \& \＄324029 \& 0 \& 0 \& 0 \& 1

\hline 7370
7371 \& 0 \& 0 \& 0 \& \bigcirc \& 0 \& ${ }^{1.114 \%}$ \& 0 \& 1 \& 8760
8276 \& 0 \& 0 \& 0 \& （ 517126 \& \bigcirc \& 0 \& \bigcirc \& 1

\hline 7371
7372 \& 0 \& 0 \& ${ }_{0}^{1}$ \& \bigcirc \& \bigcirc \& ${ }^{1.14 \%}$ \& \bigcirc \& 1 \& 8276
6098 \& ${ }_{1}^{0}$ \& ${ }_{0}^{1}$ \& ${ }_{0}$ \& \& 0 \& \bigcirc \& \bigcirc \& 1

\hline 7373 \& 0 \& \& 1 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 7320 \& 0 \& 0 \& 0 \& \＄545064 \& 0 \& 0 \& 0 \& 1

\hline 7374 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& 7405 \& 1 \& 0 \& 0 \& \＄152966 \& 0 \& 0 \& 0 \&

\hline 7375
7376 \& \bigcirc \& ${ }_{0}^{1}$ \& \bigcirc \& \bigcirc \& ${ }_{1}$ \& ${ }_{1}^{1.12 \%}$ \& \bigcirc \& 1 \& 6970
6970 \& 1 \& ${ }_{0}$ \& 0 \& \＄203263
$\$ 171392$ \& 0 \& \bigcirc \& \bigcirc \& 1

\hline 7377 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．14\％ \& O \& 1 \& 6970 \& \& 0 \& 1 \& \＄416704 \& 0 \& 0 \& 0 \& 1

\hline 7378 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．14\％ \& 0 \& 1 \& 7405 \& 1 \& 0 \& 0 \& \＄147343 \& 0 \& 0 \& 0 \& 1

\hline 7379
7380 \& \bigcirc \& \bigcirc \& \bigcirc \& 1 \& 1 \& 1．12\％ \& \bigcirc \& 1 \& 10890
6970 \& \bigcirc \& 1 \& \bigcirc \& ${ }_{\text {S }}^{5577126}$ \& \bigcirc \& \bigcirc \& \bigcirc \& 1

\hline 7381 \& ${ }_{0}$ \& ${ }_{0}^{0}$ \& \bigcirc \& ${ }_{0}^{1}$ \& ${ }_{1}$ \& 1.12%
1.09% \& \bigcirc \& 1 \& 6970
6970 \& ${ }_{1}^{0}$ \& ${ }_{0}^{1}$ \& \bigcirc \& $\$ 1053022$
$\$ 174581$ \& \bigcirc \& \bigcirc \& \bigcirc \& 1

\hline 7382 \& － \& 0 \& 0 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& 6534 \& 0 \& 1 \& 0 \& \＄722 122 \& 0 \& \bigcirc \& 0 \& 1

\hline 7383
7384 \& － \& 1 \& \bigcirc \& 0 \& \bigcirc \& ${ }^{1.111 \%}$ \& \bigcirc \& 1 \& 6970
8712 \& 1 \& － \& 1 \& S13394
$\$ 35657$ \& 0 \& \bigcirc \& 0 \& 1

\hline 7384
7385 \& 0 \& \bigcirc \& \bigcirc \& ${ }_{0}^{1}$ \& \bigcirc \& ${ }^{1.11 \%}$ \& \bigcirc \& 1 \& 8712
6098 \& ${ }_{1}^{1}$ \& \bigcirc \& 1 \& 5356457
$\$ 207027$ \& 0 \& \bigcirc \& 0 \& 1

\hline 7386 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 5663 \& 0 \& 0 \& 0 \& \＄254959 \& 0 \& － \& 0 \& 1

\hline | 7387 |
| :--- |
| 7388 | \& 0 \& 0 \& 0 \& 0 \& 0 \& ${ }^{1.12 \%}$ \& 0 \& 1 \& 7000 \& 0 \& 0 \& 0 \& \＄557889 \& 0 \& 0 \& \bigcirc \&

\hline 7388
7389 \& 0 \& 0 \& \bigcirc \& \bigcirc \& 0 \& 1．14\％ \& \bigcirc \& 1 \& 6970

6098 \& 0 \& 1 \& \bigcirc \& | $\$ 805151$ |
| :---: |
| $\$ 13679$ | \& \bigcirc \& \bigcirc \& \bigcirc \& 1

\hline 7389
7390 \& 0 \& ${ }_{0}$ \& ${ }_{0}$ \& ${ }_{0}$ \& 1 \& ${ }_{1.12 \%}^{1.12 \%}$ \& ${ }_{0}^{\circ}$ \& 1 \& 6098
6000 \& 1 \& 1 \& 0 \& ¢136079
$\$ 9393$ \& ${ }_{0}$ \& ${ }_{0}$ \& ${ }_{0}$ \& 1

\hline 7391 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．12\％ \& 0 \& 1 \& 5663 \& 0 \& 1 \& 0 \& \＄847086 \& 0 \& 0 \& 0 \& 1

\hline 7392
7393 \& 0 \& 0 \& 1 \& 0 \& 0 \& 1．14\％\％ \& 0 \& 1 \& 5663
563 \& 1 \& － \& 0 \& \＄146316 \& 0 \& 0 \& 0 \& 1

\hline 7393
7394 \& ${ }_{0}$ \& 0 \& 0 \& 0 \& \bigcirc \& （1．14\％ \& ${ }_{1}$ \& 1 \& 5663
6098 \& ${ }_{0}^{1}$ \& ${ }_{1}$ \& 0 \& $\$ 142990$
$\$ 1043785$ \& 0 \& 0 \& 0 \& 1

\hline 7395 \& \& 0 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 6970 \& \& 0 \& 0 \& 5367765 \& 0 \& 0 \& 0 \& 1

\hline 7396 \& 0 \& 1 \& \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& 3920 \& 0 \& 1 \& 0 \& 5855473 \& 0 \& 0 \& 0 \& 1

\hline 7397
7398 \& \bigcirc \& 1 \& 0 \& \bigcirc \& \bigcirc \& 1．14\％ \& \bigcirc \& 0 \& 3920
4356 \& \bigcirc \& 1 \& ${ }_{1}$ \& S926238
S25
S \& \bigcirc \& \bigcirc \& \bigcirc \& 1

\hline 7398
7399 \& 0 \& 1 \& 0 \& 0 \& ${ }_{1}$ \& ${ }^{1.111 \%}$ \& \bigcirc \& ${ }_{1}$ \& 4356
4356 \& 0 \& 0 \& ${ }_{0}^{1}$ \& ${ }_{\text {S }}^{5265000}$ \＄129077 \& 0 \& 0 \& 0 \& 1

\hline 7400 \& 0 \& 0 \& \& 0 \& 1 \& 1．15\％ \& \& \& 4356 \& \& 0 \& 1 \& \＄321314 \& \& 0 \& 0 \& 1

\hline 7401 \& 0 \& 0 \& 0 \& \& 0 \& 1．11\％ \& － \& 1 \& 4792 \& 1 \& 0 \& 0 \& ${ }^{589} 121$ \& 0 \& 0 \& 0 \& 1

\hline 7402
7403 \& 0 \& \& 0 \& 0 \& 1 \& ${ }^{1.111 \%}$ \& 0 \& 1 \& 7405 \& \& 0 \& 0 \& \＄72892 \& \& 0 \& 0 \& 1

\hline 7403
7404 \& 0 \& ${ }_{0}^{1}$ \& 0 \& ${ }_{1}$ \& \bigcirc \& ${ }^{1.1 .12 \%}$ \& ${ }_{0}^{1}$ \& ${ }_{1}^{1}$ \& 6098
6098 \& 0 \& \bigcirc \& 1 \& \＄323322
$\$ 38651$ \& 0 \& \bigcirc \& \bigcirc \& 1

\hline 7405 \& \& \& \& ${ }_{0}$ \& 0 \& ${ }^{1.12 \%}$ \& \& 1 \& 6000 \& 0 \& 0 \& 1 \& ${ }^{\text {S }}$ \& \& 0 \& 0 \& 1

\hline 7406 \& 0 \& 1 \& 0 \& 0 \& 0 \& ${ }^{1.88 \%}$ \& 1 \& 1 \& 6000 \& 0 \& 0 \& 0 \& \＄513001 \& 0 \& 0 \& 0 \& 1

\hline 7407
7408 \& 0 \& \& － \& 0 \& 0 \& 1．12\％ \& \& 1 \& ${ }_{6} 6970$ \& 0 \& 0 \& 0 \& 5377758
$\$ 5975$ \& 0 \& 0 \& \bigcirc \& 1

\hline 7408
7409 \& 0 \& \bigcirc \& 0 \& 1 \& 0 \& ${ }^{1.111 \%}$ \& 0 \& 1 \& 6534
4792 \& 1 \& 0 \& \bigcirc \& \＄62607 \& \bigcirc \& 0 \& 0 \& 1

\hline 7410 \& ${ }_{0}$ \& 0 \& 0 \& 0 \& 1 \& ${ }_{1}^{1.11 \%}$ \& ${ }_{0}$ \& 1 \& ${ }_{4792}$ \& 1 \& 0 \& ${ }_{0}$ \& \＄93870 \& 0 \& 0 \& ${ }_{0}$ \& 1

\hline
\end{tabular}

observation	PROPERTY DURESS $=1$	LT＿－90\％	LTV 81\％ 100%	LTV 70\％．78\％	$\begin{aligned} & \text { LTV below } \\ & \text { 70\% } \end{aligned}$	total tax burden	parcel in SCEIP $=1$	conventional LOAN $=1$	Lorstze	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	$\begin{aligned} & \text { SOLD DURING } \\ & \text { 2004_2007 } \end{aligned}$	Sold 2008－2012	PRICE ADJUSt．TO 2012	ZIP CODE 295403	ZIP CODE 95404	ZIP CODE 95472	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
7411	0	0	1	0	，	1．11\％		1	4356	－	－	0	\＄169386	0	－		
7412	0	0	0	0	1	1．11\％	0	1	4792	1	。	0	\＄125 167	0	0	0	1
7413	0	0	0	0	0	${ }_{1.12 \%}$	0	1	3485	0	。	0	\＄376520	0	0	0	1
7414	0	1	0	0	。	1．12\％	0	1	4500	0	0	0	5442463	0	0	0	1
7415	0	0	0	1	0	1．14\％	0	1	3920	0	0	0	\＄380296	0	0	0	1
7416	0	0			0	1．14\％	0	1	4356	0	0	1	5380429	0	0	0	1
7417	0	0	0	0	1	1．14\％	0	1	4792	0	1	0	\＄1003 112	0	0	0	1
7418	0	0	1	0	－	1．14\％	0	1	4356	0	1	0	\＄1088 112	0	0	0	1
7419	0	1	0	0	0	1．14\％	0	1	4356	0	1	0	5712894	0	0	0	1
7420	0				0	1．14\％	0	0	4356	0	0	1	5354568	0	0	0	1
7421	0		0	0	1	1．14\％	0	1	4792	1	0	0	\＄120420	0	0	0	1
7422	0	0	0	1	0	1．15\％		1	4356	0	0	1	\＄321314	0	0	0	1
7423	0	0	0	0	0	1．11\％	0	1	6970	1	0	0	\＄62 159	0	0	0	1
7424	0	0	0	1		1．12\％	0	1	6098	0	1	0	\＄701846	0	0	0	1
7425	0	1	0	0	0	1．12\％	0	1	5663	0	1	0	S979 126	0	0	0	1
7426	0	0	0		0	${ }^{1.11 \%}$	0	1	${ }^{4356}$	1	0	0	\＄62607	0	0	0	1
7427	0	0	0	0	1	1．11\％	0	1	3920	0	1	0	\＄977987	0	0	0	1
7428	0	0	0	1	0	${ }^{1.111 \%}$	0	1	3920	1	0	0	${ }_{5} 123271$	0	0	0	1
7429	0		0	0		1．11\％	0	1	3920	0	1	0	5935613	0	0	0	1
7430	0	0	0	0	0	1．11\％	0	1	3920	0	0	0	\＄523261	0	0	0	1
7431	0		0	0	0	${ }^{1.11 \%}$	0	0	3920	0	0	1	${ }_{\text {S }}^{5} 54902888$	0	0	0	1
7432 7433	0	0	0	0	1	1．14\％	\bigcirc	1	4356 3920	0	${ }_{1}$	0	$\$ 3898186$ $\$ 537881$	0	0	\bigcirc	1
7433	\bigcirc	\bigcirc	0	${ }_{0}$	${ }_{0}^{1}$	${ }^{1.1 .12 \%}$	\bigcirc	1	3920 4366	${ }_{0}$	1	\bigcirc	\＄634781	${ }_{0}$	${ }_{0}$	\bigcirc	1
7435	0	－	0	0		1．15\％	0	1	4792	1	0	0	\＄62 159	0	0	0	1
7436	0	0	1	0	0	1．11\％	0	1	4792	0	0	1	\＄346812	0	0	0	1
7437	0	1	0	0	0	1．11\％	0	1	4356	1	0	0	S115057	0	0	0	1
7438 7439	0	0	\bigcirc	\bigcirc	\bigcirc	${ }_{\text {ckind }}^{1.11 \%}$	0	1	5227 4792	1	\bigcirc	\bigcirc	S137670 $\$ 250323$	\bigcirc	\bigcirc	0	1
7439	0	1	0	0	0	${ }_{\text {1．12\％}}$	0	1	4792	0	0	0	S250323 S397297	0	0	0	1
7440	0	0	0	0	1	${ }^{1.12 \%}$	0	1	4356 4356	0	0	1	5397987 $\$ 946863$	0	0	0	1
7441	\bigcirc		0	0	0	${ }^{1.12 \%}$	0	1	${ }_{5}^{4366}$	0	1	0	\＄996863	0	0	0	1
7442 7443	0	\bigcirc	0 1	${ }_{0}^{1}$	\bigcirc	－ 1.12%	\bigcirc	1	5000 4356	\bigcirc	\bigcirc	\bigcirc	5500176 S267938	\bigcirc	\bigcirc	\bigcirc	1
7444	0	0	0	0	1	1．12\％	0	1	4356	0	0	0	\＄403003	0	0	0	1
7445	0	1	0	0	0	1．12\％	0	1	4792	0	0	0	\＄397246	0	0	0	1
7446	－	0	0	0	1	${ }^{1.12 \%}$	0	1	6534 5	0	0	0	\＄3888034	0	0	0	1
7447	\bigcirc		1	0	0	1．12\％	0	1	5663	0	1	0	\＄77989	0	0	0	1
7448	0	0	0	0	0	1．14\％	0	1	${ }_{5}^{4366}$	0	0	1	\＄374576	0	0	0	1
7449 7450	\bigcirc	${ }_{1}$	\bigcirc	0	\bigcirc	${ }^{1.14 \%}$	\bigcirc	1	5663 6534	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	\＄648818	\bigcirc	0	\bigcirc	1
7450 7451	\bigcirc	1	0	\bigcirc	\bigcirc	${ }^{1.14 \%}$ 1．14\％	\bigcirc	\bigcirc	6534 4356	0	0	1	S321314 $\$ 359707$	0	0	\bigcirc	1
7452			0	0	1	1．14\％	0	1	6098	0	0	1	\＄365076	0	0	0	1
7453	0	－	1	0	0	1．14\％	0	1	4792	0	0	0	\＄374217	0	0	0	1
7454	0	1	0	0	0	1．14\％	0	1	4700	0	0	0	5496970	0			1
7455 7456	\bigcirc	0	0	0	0	1．14\％	0	1	4356 4356	\bigcirc	0	0	$\$ 321454$ $\$ 38572$	0	0	0	1
7456 7457	\bigcirc	0	0	0	${ }_{1}$	${ }^{1.14 \%}$	${ }_{0}$	1	4356 4792	${ }_{1}$	0	${ }_{0}$	\＄385732 $\$ 118530$	${ }_{0}$	${ }_{0}$	0	1
7458	0	0	0	0	${ }_{0}$	1．15\％	0	1	4356	1		0	558135	0	0	0	1
7459	0	，	0	0	0	1．15\％	0	1	4792	1	0	0	\＄61712	0	0	0	1
7460	0	1	0	0	0	1．14\％	0	1	4792	0	1	0	\＄835344	0	0	0	1
7461 7462	\bigcirc	0	\bigcirc	\bigcirc	0	1．14\％	\bigcirc	1	5663 4356	\bigcirc	0	\bigcirc	5375938 $\$ 382896$	0	\bigcirc	\bigcirc	1
7462 7463	0	0	0	0	${ }_{0}^{1}$	${ }^{1.14 \%}$	0	1	4356 4550	0	0	${ }_{1}^{0}$	S382896 $\$ 365649$	0	0	0	1
7464	0		0	0	1	1．14\％	0	1	4356	0	0	1	\＄323322	0	0		1
7465	0	0	0	0	1	0．72\％	0	1	4792	0	0	0	\＄455 288	0	0	0	1
7466	0	1	0	0	0	1．12\％	0	1	4356	0	1	0	5960651	0	0	0	1
7467 7468	0	0	1	0	\bigcirc	1．12\％	\bigcirc	1	4356 4356	\bigcirc	0	0	$\$ 334530$ $\$ 67851$	0	\bigcirc	0	1
7468 7469	0	1	0	0	\bigcirc	${ }^{1.12 \%}$	0	1	4356 4992	\bigcirc	${ }_{1}^{1}$	0	${ }_{\substack{\text { S678 } \\ \$ 655 \\ \hline 557}}$	$\stackrel{0}{0}$	0	0	1
7470	0		0	0	0	1．12\％	0	1	5151	0		0	\＄498893	0	0	0	1
7471	0	1	0	0	0	1．12\％	0	1	5227	0	0	1	\＄409693	0	0	0	1
7472	－	0	0	1	0	1．13\％	0	1	3920	0	0	1	5315787	0	0	0	1
7473 7474	0	0	0	0	0	1．14\％	0	1	4792 4356	0	0	1	5410863 S99395	\bigcirc	0	0	1
7474 7475	0	\bigcirc	\bigcirc	0	${ }_{1}^{0}$	${ }^{1.14 \%}$ 1．14\％	\bigcirc	1	4356 4356	\bigcirc	1	0	S993 905 $\$ 67841$	\bigcirc	0	0	1
7476	0	0	0	0	0	1．14\％	0	1	6970		0	0	\＄158846	0	0	0	1
7477		1	0	0	0	1．11\％	0	1	4700	0	0	0	5455288	0	0	0	1
7478 7479	0	1	\bigcirc	0	\bigcirc	1．11\％	\bigcirc	1	4792 5227	\bigcirc	0	0	S356946 $\$ 364002$	\bigcirc	\bigcirc	\bigcirc	1
7489	${ }_{0}$	1	${ }_{0}$	${ }_{0}$	${ }_{0}$	${ }_{1.14 \%}^{1.1 \%}$	${ }_{0}$	1	5227 4792	${ }_{0}$	1	1	S64002	0	0	0	1
7481	0	0	1	0	0	${ }^{1.14 \%}$	0	1	4356 4365	0		1	S454 174 S35 S	0		0	1
7482 7883	0	1	0	0	0	1．14\％	0	1	4356 4356	0 1	0	0	5885732 $\$ 110203$	0	0	0	1
7483 7484	\bigcirc	1	0	0	0	${ }^{1.14 \% \%}$	0	1	4356 4675	${ }_{0}^{1}$	0	${ }_{1}^{0}$	（ ${ }_{\text {S1120 }} \mathbf{2 0 3}$	\bigcirc	0	0	1
7485	0	0	0	0	0	1．11\％	0	1	4792	0	0	1	S333607	0	0	0	1
7486	0	0	0	1	0	1．14\％	0	1	4792	0	，	1	5386282	0	0	0	1
7487	0	1	0	0	0	${ }^{1.144 \%}$	0	1	${ }^{4356}$	0	1	0	\＄918738	0	0	0	1
7488 7489	0	0	0	0	1	1．15\％	0	1	3920 6098	1	0	0	\＄96710	0	0		1
7489 7490	\bigcirc	${ }_{0}^{1}$	0	0	${ }_{1}^{1}$	${ }^{1.12 \%}$ 1．1\％	\bigcirc	1	6098 6098	1	0	\bigcirc	S199499 \＄152 301	0	0	0	1
7491	0	1	0	0	0	1．14\％	0	1	6970	0	0	1	\＄513872				1
7492	0	1	0	0	0	1．14\％	0	0	9148	0		1	$\begin{array}{r}\text { S470 } 911 \\ \$ 306252 \\ \hline\end{array}$	0	0	0	
7493 7494	0	1	0	0	0	${ }_{\text {1 }}^{1.11 \%}$	0	1	6970 6970	0	0	0	$\$ 306252$ $\$ 778636$	0	0	\bigcirc	1
7494 7495	0	0	0	0	1	1．12\％	0	1	6970	0	1	0	5788636	0		0	1
7495 7496	\bigcirc	${ }_{0}$	0	\bigcirc	1	${ }_{\text {1．12\％}}^{1.12 \%}$	\bigcirc	1	6534 6970	\bigcirc	\bigcirc	${ }_{0}^{1}$	S573570 S40303	${ }_{0}$	${ }_{0}$	\bigcirc	1
7497		0	1	0	0	1．11\％	0	1	3049	0	1	0	S951414	0			1
7498		0	0	0	0	1．11\％	0	1	3049	0	1	0	S779829		0	0	
7499	0	0	0	0	0	1．14\％	0	1	3049	0	0	1	\＄276129	0		0	1
7500	\bigcirc	1	0	0	0	${ }^{1.111 \%}$	0	1	${ }_{5}^{5663}$	1	0	0	\＄120 110	0	0	0	1
7501 7502	\bigcirc	0 1	0	\bigcirc	${ }_{0}^{1}$	${ }^{1.39 \%}$	${ }_{0}^{1}$	${ }_{0}^{1}$	5663 5663	0	\bigcirc	1	$\$ 400704$ $\$ 321314$	\bigcirc	\bigcirc	\bigcirc	1
7503		1	0	0	0	1．11\％	0	1	4356	1	0	0	\＄167880	0		0	1
7504		0	1	0	0	1．12\％	0	1	4356	0	1	0	5907473	0	0	0	1
7505 7506	\bigcirc	${ }_{0}$	0	0	${ }_{1}$	${ }^{1.14 \%}$	\bigcirc	1	4792 6534	${ }_{1}$	\bigcirc	${ }_{0}^{1}$	S362871 S173	0	0	0	1
7507	0	1	0	0	0	1．14\％	O	0	5663	1	。	0	\＄173150	0			1
7508	0	1	0	0	0	1．12\％	0	1	5663	0	0	0	\＄245688	0	0	0	1
7509 7510	0	0	0	0	1	1．12\％	0	1	6970 563	0	0			0	\bigcirc	\bigcirc	
7510 7511	0	1	0	0	\bigcirc	${ }^{1.14 \%}$	\bigcirc	1	5663 3049	0	${ }_{0}^{1}$	0		0	0	0	1
7512		0	0	0	0	1．14\％	O	1	4356	0	0	0	\＄365041	0	0	0	1
7513	0	0	0	0	0	1．14\％	0	1	3485	0	0	1	\＄308167	0	0	0	，
7514 7515	\bigcirc	1	0	\bigcirc	0	1．14\％	\bigcirc	1	3485 1307 139	1	\bigcirc	\bigcirc	S148307 S16909	0	\bigcirc	\bigcirc	1
${ }_{7516}$	0	0	${ }_{0}$	${ }_{0}$	${ }_{0}$	${ }^{1.1 .19 \%}$	\bigcirc	1	${ }_{5663}^{1307}$	${ }_{0}$	${ }_{0}$	\bigcirc	\＄169099	0	0	\bigcirc	1
7517	0	1	0	0	0	1．12\％	0	1	7405	0	0		\＄616019	0	0		1
7518 7519	${ }_{0}$	0	0	0	1	－ $1.1 .12 \%$	\bigcirc	1	6970 8712	${ }_{1}$	0	${ }_{0}^{1}$	\＄4367866 $\$ 210827$	0	\bigcirc	\bigcirc	1
7519 7520	${ }_{0}^{\circ}$	${ }_{0}$	\bigcirc	${ }_{0}^{\circ}$	1	1．12\％	\bigcirc	1	8712 6098	${ }_{0}^{1}$	\bigcirc	${ }_{0}^{0}$	S121827 $\$ 604505$	${ }_{0}^{\circ}$	\bigcirc	${ }_{0}^{\circ}$	1
7521 7522	0	0	0	1	0	1．14\％	\bigcirc	1	6970 8276	0	1		\＄133483	0	0	O	
7522 7523	0	1	0	0	0	${ }^{1.14 \%}$ 1．12\％	\bigcirc	1	8276 6970	0	0	${ }_{0}^{1}$		0	0	0	1
7524			1			1．14\％		1	6098	0	1	0	\＄1383708	0		0	1
7525 7526	0	1	0	0	0	1．14\％	0	0	6970	0	0		\＄326334	0	0	0	1
7526 7527	0	0 1	0	1	0	${ }^{1.14 \%}$	0	1	8276 6098	1	0	0	$\$ 159984$ $\$ 139665$	0	0	0	1
7528	0		1	0	－	${ }_{1.11 \%}^{1.11 \%}$	0	1	${ }_{7} 7005$	1	0	0	S139665 $\$ 151965$	0	0	0	1
7529	－	1	0	0	0	${ }^{1.12 \%}$	0	0	6098	0		1	\＄438957	0	－	0	1
7530 7531	0	1 1	0	0	0	${ }_{\text {1．12\％}}^{1.12 \%}$	0	1	6970 7841	\bigcirc	0	${ }_{0}^{1}$	5614539 $\$ 370849$	0	0	\bigcirc	1
7532	0	${ }_{0}$	1	0	0	1．14\％	0	1	13068	0	。	1	5483 189		0	。	1
7533 7534	0	0	1	0	0	1．14\％\％	－	1	7405	0	0	，	S343035 S58951	0	0	0	1
7534 7535	0	1	0	0	0	${ }_{\text {1．14\％}}^{1.14 \%}$	\bigcirc	1	7000 5663	0	0	0	${ }_{\text {S }}^{5389959}$	0	0	0	1
7536	0	1				1．14\％	1	1	6534	1	0	0	S176244	0	0	0	1
7537 7538	0	1	0	0	\bigcirc	1．25\％	${ }_{0}^{1}$	${ }_{1}$	6098 9583	${ }_{0}$	${ }_{0}$	1	S442102 $\$ 551476$	0	\bigcirc	\bigcirc	1
7539 7540						－		1	5663 7140	0			S391489 S615 601		\bigcirc	\bigcirc	1

observation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％ 100%	LTV 70\％．78\％	$\begin{aligned} & \text { LTV below } \\ & \text { 70\% } \end{aligned}$	total tax burden	parcel in SCEIP $=1$	conventional LOAN $=1$	Lorstze	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	$\begin{aligned} & \text { SOLD DURING } \\ & \text { 2004_2007 } \end{aligned}$	Sold 2008－2012	PRICE ADJUSt．TO 2012	ZIP CODE 295403	ZIP CODE 95404	ZIP CODE 95472	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
7541	0	1	0	0	\％	1．11\％			4356	－	－	1	\＄356457	－	－		
7542	0	1	0	0	0	1．12\％	0	1	6970	0	1	0	5920198	0	0	0	1
7543	0	0	0	1	0	${ }_{1.12 \%}$	0	1	6970	0	。	0	\＄500 875	0	0	0	1
7544	0	0	0		－	1．14\％	0	1	6098	0	0	0	\＄431789	0	0	0	1
7545	0	1		0	0	1．14\％	0	0	17860	0	0	1	5395000	0	0	0	1
7546	0	0	0		1	1．12\％	0	1	6970	0	0	0	\＄329 129	0	0	0	1
7547	0		0	0	1	1．12\％	0	1	18731	0	0	0	\＄516995	0	0	0	1
7548	0	0	0	0	1	1．12\％	0	1	6534	0	0	1	\＄445 607	0	0	0	1
7549	0	0	0	0	0	1．11\％	0	1	6098	1	0	0	S118118	0	0	0	1
7550	0	0	0		0	1．11\％	0	1	5227	1	0	0	\＄122 292	0	0	0	1
7551	0	0	0	0	0	${ }^{1.12 \%}$	0	1	7405 563	0	0	0	${ }_{\text {S }} 5827772$	0	0	0	1
7552	0	1	0	0		1．12\％		1	5663	0	1	0	5690149	0	0	0	1
7553	0	0	0	0	1	1．14\％	0	1	5663	1	0	0	\＄171644	0	0	0	1
7554	0	1	0	0		1．11\％	0	1	6970	1	0	0	\＄150971		0	0	1
7555	0	0	0	1	0	1．11\％	0	1	5227	1	0	0	\＄58135	0	0		1
7556	0	1	0	0	0	1．10\％	0	0	6098	0	0	1	\＄360474	0	0	0	1
7557	0	1	0	0	1	1．11\％	0	0	5663 563	0	0	1	S319500 S17239	0	0	0	1
7558	0	0	0	0	1	${ }^{1.111 \%}$	0	1	5663	1	0	0	\＄172397	0	0	0	1
7559	\bigcirc	1	0	0	0	1．12\％	0	0	6098	0	0	1	${ }_{5392920}$	0	0	0	1
7560	0	0	1	0	0	1．12\％	0	1	6200	0	0	1	\＄525577	0	0	0	1
7561 7562	0	\bigcirc	1	\bigcirc	0	${ }_{\substack{1.12 \% \\ 1.12 \%}}^{1.2}$	\bigcirc	1	6098 6098	\bigcirc	${ }_{1}$	\bigcirc	\＄557889 S7798929	\bigcirc	0	0	1
7562 7563	0	${ }_{1}$	\bigcirc	0	0	${ }_{\text {1．1．12\％}}^{1.12 \%}$	\bigcirc	1	6098 5663	${ }_{0}$	${ }_{0}^{1}$	1	5779829 $\$ 885477$	0	0	0	1
7564	。	${ }_{0}$	。	0		1．14\％	0	1	6098	1	0	${ }_{0}$	¢103369	0	。	0	1
7565	0	1	0	0	0	1．15\％	0	0	5663	0	0	1	5332000	0	0	0	1
7566	0	0	0	0	0	1．12\％	0	1	7405	1	0	0	S199499	0	0	0	1
7567	0	0	0	0	0	1．12\％	0	1	10019	1	0	0	5143081	0	0	0	1
7568 759	0	0	0	0	1	${ }_{1}^{1.12 \%}$	0	1	${ }_{1}^{11761}$	1	0	0	\＄134100	0	0	0	1
7569 7570	\bigcirc	1	0	0	0	${ }_{\text {1．1．12\％}}^{1.12 \%}$	${ }_{0}$	1	8276 10454	${ }_{0}$	1	${ }_{0}$	S701846 S1090 309	${ }_{0}$	${ }_{0}$	\bigcirc	1
7571			0		0	1．14\％	O	1	6534	0	0		\＄532601	0	0	0	1
7572	0	0	0	0	0	1．11\％	0	1	5663	1	0	0	\＄135674	0	0	0	1
7573 7574	0	0	0	0	0	1．11\％	0	1	7405 5663	1	\bigcirc	0	S12620 S180678 S	0	0	0	1
7574 7575	${ }_{0}^{1}$	${ }_{0}$	${ }_{0}^{1}$	${ }_{1}$	0	${ }_{1}^{1.112 \%}$	0	1	5663 6098	${ }_{0}^{1}$	0	0	$\$ 188678$ $\$ 460575$	0	${ }_{0}$	0	1
7576	0	0	0	${ }_{0}$	1	${ }_{1.12 \%}^{1.12 \%}$	0	1	6534	0	1		\＄873409	0	0	0	1
7577	－	－	0	1	1	1．13\％	－	1	6970	0	，	1	\＄412 186	0	0	0	1
7578	0	0	0	0	0	1．14\％	0	1	6000	0	1	0	\＄1046236	0	0	0	1
7579	1	0	0	1	0	1．14\％	0	1	6098	0	0	0	\＄254959	0	0	0	1
7580	0	0	0	0	0	1．14\％	0	1	7841	0	0	1	S296211 $\$ 363515$	0	0	0	1
$\begin{array}{r}7581 \\ 7592 \\ \hline\end{array}$		1	0	0	0	${ }^{1.14 \%}$	0	0	4792	0	0	1	S331355 $\$ 361478$	0	0	0	1
7582	0	1	0	0	0	1．14\％	0	0	10454	0	0	1	\＄361478		0	0	1
7583 7584	\bigcirc	1	0	0	0	${ }^{1.1 .10 \%}$	\bigcirc	${ }_{1}$	5663 9148	\bigcirc	0	${ }_{0}^{1}$	$\$ 331355$ $\$ 454818$	\bigcirc	\bigcirc	0	1
7585	0	0	0	0	0	1．11\％	0	1	5663	0	0	1	\＄296211	0	0	0	1
7586	0	1	0	0	0	1．12\％	－	1	¢ 5663	0	1	0	${ }_{\substack{\text { S1 }}}^{51076236}$	0	0	0	1
7587 7588		1	0	0	0	${ }^{1.12 \%}$	0	1	5663	0	1		\＄880377	0	0	0	1
7588 7589	0	0	0	0	0	1．12\％	0	1	6098	0	0	0	${ }_{5348151}$	0		－	1
7589 7590	\bigcirc	0	0	\bigcirc	${ }_{0}^{1}$	${ }^{1.12 \%}$	\bigcirc	1	6098 5663	\bigcirc	\bigcirc	${ }_{1}^{0}$	$\$ 281845$ $\$ 32634$	$\stackrel{0}{0}$	\bigcirc	\bigcirc	1
7591	0	0	0	0	1	1．12\％	0	1	5663	0	0	0	\＄296679	0	0	0	1
7592	0	1	0	0	0	1．12\％	0	1	5663	0	1	0	\＄772031	0	0	0	1
7593	0	1	0	0	0	1．14\％	0	0	6098	0	0	1	\＄375813	0	0	0	1
7594 7595	0	0	0	1	0	1．14\％	0	1	5663	0	0	0	\＄420275	0	0	0	1
7595 7596	\bigcirc	${ }_{1}$	0	\bigcirc	\bigcirc	${ }^{1.1 .14 \%}$	\bigcirc	${ }_{1}^{1}$	11326 6534	1	\bigcirc	\bigcirc	S145397 S174656	\bigcirc	${ }_{0}$	0	1
7597	0	1	0	0	0	1．14\％	0	1	5663	1	0	0	\＄162610	0	0	0	1
7598	0		1	0	0	1．28\％	1	1	6098	0	－	0	\＄450 212	0	0	0	1
$\begin{array}{r}7599 \\ 7500 \\ \hline\end{array}$		1	0	0	0	1．11\％	0	1	${ }_{5}^{5227}$	1	0	0	\＄127029	0	0		1
7600	0	1	0	0	0	1．10\％	0	1	4356	0		0	\＄76950	0	0	0	1
7601 7602	\bigcirc	0	1	0	\bigcirc	${ }_{\text {1 }}^{1.12 \%}$	\bigcirc	1	5663 4356	\bigcirc	\bigcirc	0	$\$ 373213$ $\$ 405882$	\bigcirc	\bigcirc	0	1
7603	0	0	0	1	0	1．14\％	0	1	5663	0	0		\＄397246	0	0	0	1
7604	0	0	0	0	0	1．14\％	0	1	4356	0	0	0	5411063	0	0	0	1
7605	0	0	0	1	0	1．14\％	0	1	4356	0	0	0	5390212	0	0	0	1
7606 7607	0	0	0	0	0	1．14\％	0	1	4356 4356	0	0	0	\＄217874	0	0	0	1
7607 7608	0	1	0	0	0	${ }^{1.14 \%}$	\bigcirc	${ }_{1}^{1}$	4356 7841	\bigcirc	\bigcirc	${ }_{0}^{1}$	$\$ 267000$ $\$ 441001$	${ }_{0}^{0}$	\bigcirc	0	1
7609	0	，	1	0	0	1．12\％	0	1	6970	0	0	0	S414517	0	－	－	1
7610	0	1	0	0	0	1．12\％	0	1	11326	0		0	S669282	0	0	0	1
7611	－	0	0	0	1	1．14\％	0	1	6534	0		0	${ }_{5267938}$	0	0	0	1
7612 7613	0	1	0	0	0	1．14\％	0	0	5663	0		1	5261067	0		－	1
7613 7614	\bigcirc	\bigcirc	0	0	1	${ }^{1.111 \%}$	\bigcirc	1	5663 6098	1	\bigcirc	0	S64395 $\$ 12969$	${ }_{0}$	\bigcirc	0	1
7615	0	0	0	0	0	1．11\％	0	1	7841	1	0	0	\＄120 108	0	0	0	1
7616	0	0	0	0	0	1．11\％	0	1	5663	1	0	0	S122916	0	0	0	1
${ }_{7617}^{7617}$	0	0	0	0	1	${ }^{1.12 \%}$	0	1	${ }_{5}^{5663}$	1	0	0		0	0	0	1
7618 7619	0	0	0	0	1	1．12\％	0	1	6534	0	1	0	\＄1122837	0	0	0	1
7619 7620	${ }_{0}^{1}$	0	0	${ }_{1}^{0}$	\bigcirc	（1．12\％	\bigcirc	1	6000 5663	\bigcirc	\bigcirc	\bigcirc	${ }_{\5492481	0	0	0	1
7621	0	1	0	0	0	1．12\％	0	1	6534	0		0	\＄378823				1
7622	0	0	0	1	0	1．12\％	0	1	7841	0	1	0	$\begin{array}{r}573339 \\ \hline 33489\end{array}$	0	－	0	
7623 7624	0	0	0	0	${ }_{1}$	${ }_{1}^{1.14 \%}$	\bigcirc	1	7841 5663	0	${ }_{0}$	${ }_{0}$	5344882 454818	0	0	${ }_{0}$	1
7625	0	0	0	0	1	1．14\％	0	1	6534	0		1	${ }_{\text {S }}^{501232}$	0	0	。	1
7626	0	0	0	0	0	1．14\％	0	1	5663	0	0		\＄263303	0	0	0	1
7627 7628 7	0	0	1	0	0	${ }^{1.15 \%}$	0	1	5663 6098	0	1	0	5498800 $\$ 686250$	0	0	\bigcirc	
7628 7629	0	$\stackrel{0}{0}$	0	0	0	${ }^{1.14 \%}$	0	1	6098 4356	${ }_{1}^{0}$	${ }_{0}^{1}$	0	$\$ 688250$ $\$ 110437$	\bigcirc	$\stackrel{0}{0}$	\bigcirc	1
7630	－	1	0	0	0	1．14\％	0	1	4356	1	0	0	\＄167880	0	0	0	1
7631	0	0	1	0	0	1．11\％	0	1	4356	1	0	0	\＄115 378	0	0	0	1
7632 7633	\bigcirc	\bigcirc	0	\bigcirc	1	1．11\％	\bigcirc	1	4792 4356	1	\bigcirc	0	S167127 S472 21	0	\bigcirc	\bigcirc	1
${ }_{7634} 763$	${ }_{0}$	1	${ }_{0}$	${ }_{0}$	${ }_{0}$	${ }^{1.12 \%}$	\bigcirc	1	${ }_{4}^{4356}$	\bigcirc	1	${ }_{0}^{1}$	5427251 $\$ 748636$	\bigcirc	\bigcirc		1
7635	－	0	0	0	0	1．12\％	0	1	${ }_{4}^{4366}$	0	0	0	\＄414517	0		0	1
7636 7637	0	1	0	0	0	－ 1.12%	0	1	4792 4356	0	1	0	\＄1064 106	0	0	0	1
7637 7638	\bigcirc	${ }_{0}$	1	${ }_{0}$	${ }_{0}$	${ }^{1.14 \%}$	\bigcirc	1	4356 4356	0	${ }_{0}^{1}$	0	\＄688250	$\stackrel{0}{0}$	$\stackrel{0}{0}$	\bigcirc	1
7639	0	0	0	0	1	1．14\％	0	1	5227	0	1	0	\＄704507	0		0	1
7640	0	1	0	0	0	1．11\％	0	1	7405	1	0	0	\＄167 127	0		0	1
7641		0	0	0	0	1．84\％	1	1	${ }_{6} 6354$	1	0	0	S170 139 $\$ 156964$	0		0	1
7642 7643	0	1	0	0	0	1．11\％	0	1	4356	1	0	0	\＄156964	0	0	0	1
7643 7644	\bigcirc	0	${ }_{1}$	0	0	${ }^{1.111 \%}$	\bigcirc	1	6534 6098	1	0	${ }_{0}$	\＄109994 $\$ 111725$	${ }_{0}^{0}$	${ }_{0}^{0}$	0	1
7645	0	0	0	0	0	1．11\％	0	1	4356	0	0	1	\＄245000	0		0	1
7646	0	1	0	0	0	1．12\％	0	1	4356	0	1	0	572968	0	0	0	1
7647 7648	${ }_{0}^{1}$	1	\bigcirc	\bigcirc	\bigcirc	${ }_{\text {1．12\％}}^{1.12 \%}$	\bigcirc	1	4792 4356	\bigcirc	0 1	\bigcirc	\＄355109 $\$ 639460$	0	\bigcirc	0	1
7649	。	0	0	0	0	1．12\％	0	1	4356	0	1		\＄348970				1
7650	0	0	0	1	0	1．14\％	0	1	5663	1	0	0	\＄109898	0	0	0	1
7651 7652	0	0	1	0	0	1．14\％	\bigcirc	1	6534 6534	1	0	0	589121 $\$ 57688$	0	0	0	
7652 7653	0	\bigcirc	0	0	${ }_{0}^{1}$	1．1．12\％	\bigcirc	1	6534 4792	${ }_{0}^{1}$	0	0	$\$ 57688$ 5483503	0	0	0	1
7654	0	1	0	0	0	1．14\％	0	1	8276	1	0		\＄129689	0	0	0	1
7655 7656	0	0 1	0	0	${ }_{0}^{1}$	1．10\％	0	1	4356 4356	${ }_{0}^{1}$	${ }_{1}$	0	S102765 S905229	\bigcirc	\bigcirc	\bigcirc	${ }_{1}^{1}$
7657	0	0	0	0	0	${ }^{1.11 \%}$		1	4590	0	1	0	\＄678451	0	0	－	1
7658	0	1	0	0	0	1．11\％	0	1	4356	1	0	0	\＄86606	－	0	0	1
7659 7660	0	0	\bigcirc	0	\bigcirc	${ }^{1.11 \%}$	0	1	4356 4356	1	\bigcirc	\bigcirc	588283 $\$ 92473$	0	0	0	1
7661	0	1	0	0	${ }_{0}$	${ }_{\text {1．11\％}}$	${ }_{0}$	1	${ }_{4} 4366$	1	0	\bigcirc	\＄162987	0	\bigcirc	\bigcirc	1
7662	。	1	0	0	0	1．11\％	0	1	4356	${ }_{0}$	0	0	${ }_{5382853}$	0	0	。	1
7663 7654	0	，	0	0	0	${ }^{1.111 \%}$	－	1	4356 4792	0	0	1	\＄960651	－	0	0	1
7664 7665	0	0	0 1	0	${ }_{0}^{1}$	${ }^{1.111 \%}$	0	1	4792 4356	0	0	1	${ }_{\text {S252641 }}^{537697}$	0	0	0	1
7666	0		\bigcirc	0	0	1．11\％		1	4356 4356	0		0	\＄5362703	0	0	0	1
7667	0	1	0	0	0	1．11\％	0	0	4356	0	0	1	\＄258000	0	0	0	1
7668 7669		1	0	0	0	1．14\％	0	0	6534	0	0	1	5335011	0	0	0	1
						${ }_{\text {1．1．4\％}}^{1.14 \%}$			4788 4356		${ }_{1}^{0}$		\＄83813 $\$ 94883$	0	0		${ }_{1}^{1}$

observation	PROPERTY DURESS $=1$	LTV＿90\％	LTV 81\％－90\％	LTV 70\％．78\％	$\begin{gathered} \text { LTV BELOW } \\ 70 \% \end{gathered}$	total tax burden	PARCEL IN SCEIP＝ 1	conventional LOAN $=1$	tor size	$\begin{aligned} & \text { SOLD } \\ & \text { PRIOR_2000 } \end{aligned}$	SOLD DURING 2004＿2007	SOLD 2008－2012	PRICE ADJUSt．to 2012	$\begin{gathered} \text { ZIP CODE } \\ \text { Z95403 } \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95404 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
7671	S	0	0	0	1	1．14\％		1	4356	0_{0}	${ }_{0}$	0	${ }_{5325268}$	0	0	O	1
7672	0	0	0	1	0	1．14\％	0		4356	0	0	0	5442463	0	0	0	1
7673	0	1	0	0	0	1．14\％	0	0	4356	0	0	1	5337158	0	0	0	1
7674	0	0	0	1	0	1．14\％	0	1	4356	0	0	1	5315787	0	0	0	1
7675	0	1	0	0	0	1．14\％	0	0	4356	0	0	1	\＄310247	0	0	0	1
7676	0	0	0	0	，	1．15\％	0	1	5663	1	0	0	\＄53663	0	0	0	1
7677	0	0	0	－	1	${ }^{1.111 \%}$	0	1	4356 4356	1	0	0	\＄59029	0	0	0	1
7678	0	1	0	0	0	${ }^{1.111 \%}$	0	1	4356	1	0	0	\＄111732	0	0	0	1
7679	0	1			0	1．11\％	0	0	4356	1	0	0	\＄111732	0	0	0	1
7680	0	0	0	1	0	1．11\％	0	1	4356	0	0	1	\＄286170	0	0	\bigcirc	1
7681	0	1	－	－	0	1．11\％	0		4356	0	0	1	5332408	0	0	0	1
7682	0	1	0	0	－	1．11\％	0	0	6534	0	0	1	\＄247010	0	0	0	1
${ }_{7683}$	0	0	0	0	0	${ }^{1.14 \%}$	0	1	4356	0	0	1	\＄270 104	0	0	0	1
7684	0	0		0	1	${ }^{1.14 \%}$	0	1	${ }^{4356}$	0	0	0	\＄198404	\bigcirc	\bigcirc	0	1
7685	0		0	0	0	1．15\％	0	1	4356	1	0	0	S105 445 $\$ 135957$	0	0	0	1
7686	0	0	0	0	1	1．14\％	0	1	9148	0	1	0	\＄1359357	0	0	0	1
7687	0	0	－	－	0	1．12\％	0	1	7841	0	0	0	\＄605341	0	0	0	1
7688	0	1	0	0	－	1．14\％	0	1	6534	0	0	0	\＄483604	0	0	0	1
7689	1	0			0	${ }^{1.14 \%}$	0	1	${ }^{6} 098$	0	0	1	5544306	0	0	0	1
7690	0	0	0	0	0	1．12\％	0	1	${ }^{6970}$	1	0	0	S191228 $\$ 971219$	\bigcirc	0	0	1
7691	0	0	0	1	0	1．14\％	0	1	6970	0	1	0	\＄977214	\bigcirc	0	\bigcirc	1
7692	0	0	0	0	1	1．12\％	0	1	14375	1	0	0	\＄170 479	0	0	0	1
7693 7694	0	${ }_{0}^{1}$	\bigcirc	${ }_{1}^{0}$	\bigcirc	${ }_{\text {1．12\％}}^{1.12 \%}$	0	1	6098 6970	${ }_{0}^{1}$	\bigcirc	\bigcirc	$\begin{array}{r}\text { S } \\ \text { S675 } \\ \$ 618 \\ \hline 18\end{array}$	\bigcirc	0	0	1
7695	0	1	。	${ }_{0}$	0	${ }_{1.11 \%}^{1.12 \%}$	0	1	7405	0	。	0	¢	0	0	0	1
7696	0	1	0	0	0	1．12\％	0	1	9583	1	0	0	\＄172918	0	。	0	1
7697	0	0	0	0	1	1．12\％	0	1	6534	1	0	0	\＄148069	0	0	0	1
7698	0	1	0	0	0	1．12\％	0	0	5663	0	0	1	533363	0	0	0	1
7699	0	0	0	－	0	1．12\％	0	1	7841	－	0	1	\＄556 204	0	0	0	1
7700	0	0	0	0	0	1．12\％	0	1	8276	0	0	1	\＄532044	0	0	0	1
7701	0	0	0	1	0	1．12\％	0	1	6970	0	0	0	\＄541176	0	0	0	1
7702	0	0		0	0	${ }^{1.14 \%}$	0	1	${ }^{6970}$	0	0	0	\＄448946	0	0	0	1
7703	0	0	0	0	0	1．14\％	0	1	5663	0	1	0	\＄779829	\bigcirc	\bigcirc	0	1
7704	0	1	－	0	0	1．14\％	0	1	5663	0	0	1	\＄317297	0	0	0	1
7705 7706	\bigcirc	${ }_{0}$	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }^{1.14 \%}$ 1．1\％	${ }_{1}$	1	5663 5663	\bigcirc	\bigcirc	${ }_{0}^{0}$	5423729 $\$ 368995$	\bigcirc	\bigcirc	\bigcirc	1
7707	0		0	0	0	2．14\％	1	0	6970	0	0	1	\＄487484	0	0	0	1
7708	－	1	0	，	0	1．10\％	0	1	${ }^{6970}$	0	1	0	\＄786700	\bigcirc	0	\bigcirc	1
7709		0	0	1	0	1．11\％	0	1	6970	1	0	0	\＄82283	0	0	0	1
7710	0	1	0	0	0	1．12\％	0	1	6534	0	0	0	\＄495 118	0	0	0	1
7711 7712	\bigcirc	\bigcirc	\bigcirc	1	\bigcirc	${ }_{\text {1．1．12\％}}^{1.12 \%}$	\bigcirc	1	${ }_{9}^{6983}$	\bigcirc	1	\bigcirc	$\$ 880634$ $\$ 1246999$	\bigcirc	\bigcirc	\bigcirc	1
7713	－	0	0	0	0	1．11\％	O	1	6098	1	0	0	\＄66631	0	0	0	1
7714	0	1	0	0	0	1．11\％	0	1	5663	1	0	0	580271	0	0	0	1
7715	0	1	－	0	0	1．12\％	0	1	5663	1	0	0	\＄143081	0	0	0	1
7716	0	0	0	0	1	1．12\％	0	1	7405	0	0	0	\＄443 303	0	0	0	1
7717 7718	\bigcirc	\bigcirc	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	${ }_{\text {1．12\％}}^{1.12 \%}$	\bigcirc	1	11761 10019	\bigcirc	${ }_{0}^{0}$	${ }_{1}^{0}$	5609189 $\$ 33687$	\bigcirc	\bigcirc	\bigcirc	1
7719	0	1	0	0	0	1．12\％	0	1	9583	0	1	0	\＄1406232	0	0	0	1
7720	0	1	0	0	0	1．13\％	0	0	${ }_{6}^{6098}$	0	0	1	\＄448751	0	0	0	1
7721	0	1	－	0	0	${ }^{1.14 \%}$	0	0	${ }_{5}^{5663}$	0	0	，	\＄456515	0	0	0	1
7722		0	0	0	1	1．12\％	0	1	9583	1	0		\＄154879	0	0	0	1
7723 7724	\bigcirc	0	0	${ }_{0}$	1	${ }_{\text {l }}^{1.12 \% \%}$	0	1	${ }_{6}^{1107}$	0	${ }_{0}$	\bigcirc		\bigcirc	\bigcirc	${ }_{0}$	1
7725	0	1	0	0	0	1．11\％	0	0	6534	0	0	1	\＄36909	0	0	0	1
7726	0	0	，	1	0	1．12\％	0	1	7405	1	0	0	\＄153 177	0	0	0	1
7727	0	0	1	0	0	1．12\％	0	1	6098	0	0	－	\＄466332	0	0	0	1
7728	0	0	0	0	1	1．12\％	0	1	13939	1	0	0	\＄142 482	0	0	0	1
7729 7730	0	0	0	0	0	${ }_{1}^{1.12 \%}$	0	1	7841 4792	0	0	0	$\begin{array}{r}\text { S223437 } \\ \$ 26433 \\ \hline\end{array}$		－	0	1
7730 7731	\bigcirc	0	${ }_{1}$	\bigcirc	${ }_{0}^{1}$	${ }_{\text {1．1．12\％}}^{1.12 \%}$	0	${ }_{0}^{1}$	${ }_{5663}^{4792}$	${ }_{1}$	${ }_{0}^{1}$	\bigcirc	S764233 $\mathbf{S 1 2 9 8 9}$	\bigcirc	\bigcirc	\bigcirc	1
7732		1	0	0	0	1．12\％	0	0	6098	0	0	1	\＄408862	0	。	0	1
7733	0	0	1	0	0	0．94\％	0	1	9583	1	0	0	\＄151304	0	0	0	1
7734	0	1	0	0	0	${ }^{1.11 \%}$	0	1	5663	1	0	0	\＄102287	0	0	0	1
7735	0	0	0	0	0	1．11\％	0	1	10890	1	0	0	\＄131651	0	0	0	1
7736	0	0	0	0	1	1．11\％	0	1	6970	1	0	0	\＄90333	0	0	0	1
7737 7738	\bigcirc	\bigcirc	1	0	\bigcirc	－${ }_{\text {1．12\％}}$	\bigcirc	1	6970 5663	1	\bigcirc	0	$\$ 125719$ $\$ 396215$	\bigcirc	\bigcirc	\bigcirc	1
7738 7739	0	0	\bigcirc	${ }_{1}$	0	${ }_{\text {1．12\％}}^{1.12 \%}$	\bigcirc	1	5663 7405	\bigcirc	${ }_{1}$	0	\＄396215 $\$ 818821$	\bigcirc	\bigcirc	\bigcirc	1
7740	0	－	0	0	1	1．12\％	0	1	11761	0	1	0	\＄850 014	0	。	0	1
7741	0	1	0	0	0	1．14\％	0	0	15246	0	0	1	5493926	0	0	0	1
7742	0	0	0	0	1	${ }^{1.14 \%}$	0	1	9148	1	0	0	\＄142 236	0		0	1
7743 7774	\bigcirc	0	\bigcirc	\bigcirc	0	${ }^{1.15 \%}$	0	1	6970 5663	1	\bigcirc	${ }_{1}$	\＄564838	\bigcirc	\bigcirc	\bigcirc	1
7744 7745	0	${ }_{0}^{1}$	\bigcirc	$\stackrel{0}{0}$	${ }_{1}^{1}$	${ }_{\text {1．12\％}}^{1.11 \%}$	\bigcirc	${ }_{1}^{1}$	5663 6098	\bigcirc	0	${ }_{0}^{1}$	\＄341396 $\$ 449061$	\bigcirc	\bigcirc	0	1
7746	0	1	0	0	0	1．12\％	0	1	6098	0	0		\＄519413	－	0	0	1
7747	0	0	0	0	1	1．15\％	0	1	6970	1	0	0	\＄126337	0	0	0	1
7748	0	0	0	1	0	1．11\％	0	0	4356	1	0	0	\＄146429	0	0	0	1
7749	0	1	0	0	0	1．15\％	0	0	6970	0	0	1	\＄400000	0	0	0	1
7750 7751	\bigcirc	1	0	0	0	${ }_{\text {1．14\％}}^{1.14 \%}$	\bigcirc	1	9148 5663	${ }_{1}$	0	0	\＄413 366 $\$ 13835$	\bigcirc	\bigcirc	\bigcirc	1
7752	0	1	0	0	0	1．14\％	0	1	4356	0	0		\＄432940		0	0	1
7753	0	0	0	0	0	1．14\％		1	6098	0	1	0	\＄756434	0	0	0	1
7754 7755	\bigcirc	${ }_{0}^{1}$	\bigcirc	\bigcirc	\bigcirc	${ }^{1.11 \%}$	\bigcirc	1	6970 6534	${ }_{1}^{0}$	\bigcirc	\bigcirc	5256500 $\$ 74004$	\bigcirc	\bigcirc	\bigcirc	1
7756	－		0	0	0	1．11\％		1	5663	1	0		\＄180678		0	0	1
7757	0	0	0	0	0	1．14\％	0	1	8300	\bigcirc	0	\bigcirc	\＄513001	－	\bigcirc	0	1
7758 7759 780	0	0	0	0	1	1．14\％	0	1	${ }_{5}^{5663}$	\bigcirc	1	0	\＄1154629	0	0	－	1
7759 7760	0	0	${ }_{1}^{0}$	0	${ }_{0}^{1}$	${ }^{1.1 .11 \%}$	${ }_{0}^{1}$	1	7405 6970	${ }_{1}^{0}$	\bigcirc	0	\＄296679 $\$ 126363$	\bigcirc	\bigcirc	\bigcirc	1
7761	0		1	0	0	1．11\％		1	4792	1	0	0	\＄129689		0	0	
7762	0	－	1	0	0	${ }^{1.11 \%}$	0	1	4792	1	0	0	S12292 $\$ 12398$	\bigcirc	0	0	
7763 7764	\bigcirc	0	0	0	1	${ }^{1.111 \%}$	0	1	4356 7405	1	0	\bigcirc	$\$ 103369$ $\$ 12239$	0	0	\bigcirc	1
77765	${ }_{0}^{\circ}$	${ }_{0}$	${ }_{0}$	${ }_{0}$	1	${ }_{1.12 \%}^{1.17 \%}$	0	1	74356	1	0	${ }_{0}$	\＄416820	${ }_{0}^{\circ}$	0	${ }_{0}$	1
7766	－	1	0	0	0	1．12\％	0	1	4356	0	0	－	\＄40769	0	0	0	1
7767 7768 78	0	1	0	0	0	1．12\％	0	1	6970 4356	\bigcirc	1	\bigcirc	$\$ 32929$ $\$ 681571$	\bigcirc	0	0	
7768 7769	\bigcirc	1	0	0	\bigcirc	${ }_{\text {1．14\％}}^{1.14 \%}$	0	1	4356 4356	\bigcirc	${ }_{0}^{1}$	\bigcirc	\＄681 571 $\$ 408760$	\bigcirc	\bigcirc	0	1
7770	，	，	0	1	0	1．14\％	－	1	4356	0	1	0	\＄814 142	0	0	0	1
7771	0	1	0	0	0	1．14\％	－	0	4356	0		1	\＄348433	0	0	0	1
7772 7773	\bigcirc	1	\bigcirc	0	\bigcirc	${ }^{1.14 \%}$	\bigcirc	1	4356 4356	0	\bigcirc	${ }_{0}^{1}$	$\$ 266088$ $\$ 176914$	\bigcirc	0	0	1
7774	0	0	0	${ }_{0}$	0	${ }^{1.14 \%}$		1	4356	1	${ }_{0}$	0	\＄120110	\bigcirc	0	\bigcirc	1
7775	0	0	0	0	0	1．14\％	0	1	6098	1	－	－	\＄135674	0	0	0	1
7776	，	1	0	0	0	${ }^{1.14 \%}$	0	1	${ }_{6}^{6970}$	1	－	0	\＄129689	\bigcirc	－	－	1
7777 7778	${ }_{0}^{1}$	${ }_{1}$	0	0	\bigcirc	${ }_{\text {1．114\％}}^{1.11 \%}$	\bigcirc	1	${ }_{5663}^{5663}$	${ }_{0}^{1}$	0	0	$\$ 16363$ $\$ 937666$	\bigcirc	\bigcirc	0	1
7779	0	0	0	1	0	1．12\％	－	1	6970	0	0	1	\＄372 820	0	0	0	1
7780	－	1	0	0	0	1．14\％	0	0	${ }_{7}^{4356}$	0	0	1	$\begin{array}{r}\text { S346 } 258 \\ \$ 117552 \\ \hline\end{array}$	\bigcirc	0	\bigcirc	1
7781 7782	0	${ }_{0}^{1}$	0	0	\bigcirc	${ }^{1.111 \%}$	0	1	7405 4792	1	0	${ }_{1}$	S117052 $\$ 318803$	\bigcirc	\bigcirc	\bigcirc	1
7788 7783	${ }_{0}$	0	0	0		${ }_{1.11 \%}^{1.1 \%}$	0	1	${ }_{4792}$	${ }_{0}^{0}$	0	1		\bigcirc	0	${ }_{0}$	1
7784	0	1	0	0	0	1．11\％	0	1	4356	1		0	\＄169 386	0		0	1
7785 7786 188	\bigcirc	1	0	0	\bigcirc	1．11\％	0	1	4356 4356	\bigcirc	0	\bigcirc	$\$ 946863$ $\$ 461701$	\bigcirc	\bigcirc	0	
7786 7787	0	1	0	0	0	${ }_{1}^{1.12 \%}$	0	1	4356 4792	\bigcirc	0	0	$\$ 461701$ $\$ 993737$	\bigcirc	0	0	1
7788	1			0	0	1．12\％		1	5227	0		0	S635 561	0	0	0	1
7789 7790	\bigcirc	0	0	0	0	－	0	1	4792 5227	\bigcirc	0	1	5340380 $\$ 93738$	\bigcirc	0	0	1
7791	0		0	0		1．12\％		1	7841	0	1	0	\＄370489	0	0	0	1
7792 7793	0	0	1	0	0	${ }_{\text {1 }}^{1.12 \%}$	0	1	8091 8276	\bigcirc	1	0	（ 5117178	0	\bigcirc	\bigcirc	1
7793 7794	\bigcirc	0	0	0	1	1．12\％		1	8276 7841	\bigcirc	${ }_{0}^{1}$	0	$\$ 1082765$ $\$ 393216$	\bigcirc	\bigcirc	\bigcirc	1
77795	${ }_{0}$	1	${ }_{0}$	${ }_{0}$	${ }_{0}$	${ }^{1.14 \% \%}$	0	1	7841 4792	${ }_{0}$	0	${ }_{0}$	（ 5393216	0	${ }_{0}$	0	1
7796	0		0	0	0	1．14\％	0	1	5185	0	0	0	\＄461701	0	0	0	1
7797 7798	0	1	0	0	0	${ }^{1.144 \%}$	0	0	4792 4792	0	\bigcirc	1	525022 $\$ 343888$	0	0	\bigcirc	1
7798 7799 7800	\bigcirc	1	0	0	\bigcirc	（	0	1	4792 4356 4356	${ }_{1}$	\bigcirc	1	S343488 \＄17297 $\$ 343601$	\bigcirc	\bigcirc	0	1 1 1

observation	PROPERTY DURESS $=1$	LTV＿90\％	LTV 81\％－90\％	LTV 70\％－78\％	ltv below 70\％	total tax burden	PARCEL IN SCEIP $=1$	conventional LOAN $=1$	Lotstiz	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	SOLD DURING 2004＿2007	SOLD 2008－2012	PRICE ADJUST．TO 2012	$\begin{gathered} \text { ZIP CODE } \\ \text { Z95403 } \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95404 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
7801	－	0	0	0	0	${ }_{\text {1．11\％}}$	${ }_{0}$	1	5250	0	${ }_{0}$	0	\＄501458	0	0		
7802	0	1	0	0	0	1．14\％	0	0	6970	0	0	1	\＄345704	0	0	0	
7803	0	0	0	0	1	1．14\％	－	1	5788	0	0	0	5514283	0	0	0	1
7804	0	0	0	0	0	1．15\％	0	1	5227	1	0	0	\＄60371	0	0	0	1
7805	0	0	0	0	0	1．10\％	0	1	4356	1	0	0	\＄64256	0	0	0	1
7806	0	1	0	0	0	1．10\％	0	0	5227	0	0	1	5280145	0	0	0	1
7807	0	1	0	－	0	${ }^{1.111 \%}$	0	1	4356 4356	1	0	0	577108 $\$ 11239$	0	0	0	1
7808	0	1	0	0	0	${ }^{1.111 \%}$	0	0	4356	1	0	0	\＄112397	0	0	0	1
7809	1	1			0	1．11\％	0	1	4356	1	0	0	\＄109 189	0	0	0	1
7810	0	0	0	0	0	1．11\％	0	1	5227	1	0	0	\＄167880	0	0	0	1
7811	0	0	1	0		1．12\％	0	1	4356	0	0	0	\＄366157	0	0	0	1
7812	0	1	0	0	O	1．12\％		1	4792	0	0	1	\＄380429	0	0	0	1
7813	0	1	0	0	0	${ }^{1.12 \%}$	0	1	4356	0	1	0	\＄530284	0	0	0	1
7814	0	1		0	0	1．12\％	0	1	${ }_{4}^{4356}$	0	0	1	\＄285 166	\bigcirc	\bigcirc	0	1
7815	0	0	0		0	1．14\％	0	1	4356	0	0	0	S343247 $\$ 461701$	0	0	0	1
7816	0	1	0	0	0	${ }^{1.14 \%}$	0	1	4897	0	0	0	${ }_{5461701}$	0	0	0	1
7817	0	1	－	0	0	1．14\％	0	0	4792	0	0	1	\＄343488	0	0	0	1
7818	0	1	0	0	0	1．14\％	0	0	4792	0	0	1	\＄332408	0	0	0	1
7819	0	0	－	0	1	1．14\％	0	1	${ }_{4} 356$	1	0	0	\＄119162	0	0	0	1
7820	0	0	0		0	${ }^{1.14 \%}$	0	1	4356	1	0	0		\bigcirc	0	\bigcirc	1
7821	0	1	0	0	0	${ }^{1.15 \%}$	0	1	${ }_{4}^{4356}$	1	0	0	\＄126031	0	0	0	1
7822	0	0	0	0	0	1．16\％	0	1	4356		0	1	\＄271 108	0	0	0	1
7823 7824	\bigcirc	${ }_{1}$	\bigcirc	0	${ }_{0}^{1}$	${ }_{\text {1．1．12\％}}$	0	${ }_{0}^{1}$	5663 6970	\bigcirc	${ }_{0}^{1}$	${ }_{1}^{1}$	\＄928 113 $\$ 29191$	\bigcirc	0	0	1
7825	0	1	0	。		1．15\％	0	1	5663	0	。	1	\＄145500	0	。	0	1
7826	0	1	0	0		1．11\％		1	6098	1	0	0	\＄103201	0	。	0	1
7827	0	0	0	0	0	1．11\％	0	1	4356	1	0	0	\＄120 710	0	0	0	1
7828	0	0	0	1	0	1．11\％	0	1	4356	0	1	0	\＄1126918	0	0	0	1
7829	0	0	－	0	1	1．11\％	0	1	4356	－	0	1	\＄403 840	0	0	0	1
7830	0	1	0	0	0	1．11\％	0	0	4500	0	0	1	\＄275000	0	0	0	1
7831	0	0		0	0	1．14\％	0	1	4792	0	0	0	5434768	0	0	0	1
7832	0	0	0		0	${ }^{1.14 \%}$	0	1	4792	0	0	1	\＄254846	0	0	0	1
7833	0	0	0	0	0	1．14\％	0	1	4792	0	0	1	\＄220985	\bigcirc	\bigcirc	0	1
7834	0	1	0	0	0	1．14\％	0	1	4356	0	0	0	\＄224364	0	0	0	1
7835 7836	\bigcirc	${ }_{1}^{1}$	\bigcirc	${ }_{0}^{1}$	${ }_{0}^{1}$	${ }_{1.14 \%}^{1.14 \%}$	\bigcirc	1	4356 4356	0 1	${ }_{0}^{1}$	\bigcirc	\＄942177 $\$ 92194$	\bigcirc	\bigcirc	\bigcirc	1
7837	0	0	0	0	1	1．14\％	0	1	7405	1	0	0	\＄145 295	0	0	0	1
7838	－	0	－	－	0	1．15\％	0	1	4356	0	0	1	\＄290186	0	0	0	1
7839		1	0	0	0	1．15\％	0	0	4356	1	0	0	\＄107022	0	0	0	1
7840	\bigcirc	1	0	0	0	1．09\％	0	0	576	1	0	0	\＄41906	0	0	0	1
7841 7842	\bigcirc	${ }_{1}$	\bigcirc	1	${ }_{0}^{1}$	${ }^{1.111 \%}$	\bigcirc	${ }_{0}^{1}$	5900 5663	\bigcirc	0	0 1	\＄448876 $\$ 386282$	\bigcirc	\bigcirc	\bigcirc	1
7843	－	0	0	1	0	1．14\％	0	1	8276	0	0	1	\＄483725	0	0	0	1
7844	0	0	－	0	1	1．12\％	0	1	11326	0	1	，	\＄1083963	0	0	0	1
7845	－	0	，	0	1	1．12\％	0	1	11326	0	1	0	\＄107825	0	0	0	1
7846	0	0	1	0	0	1．11\％	0	1	6098	1	0	0	\＄71845	0	0	0	1
7847	0	0	0	0	0	1．12\％	0	1	6534	1	0	0	\＄233 376	0	0	0	1
7848 7849	\bigcirc	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	\bigcirc	${ }_{\text {l }}^{1.12 \%}$	${ }_{1}$	${ }_{0}^{1}$	6534 7405	\bigcirc	\bigcirc	${ }_{1}^{0}$	\＄301315 5489748	\bigcirc	\bigcirc	\bigcirc	1
7850		0	0	1	1	1．12\％		1	11326	1	0	0	\＄282310	0	。	0	1
7851	0	0	1	0	0	1．12\％	0	1	10019	0	1	0	\＄1468688	0	0	0	1
${ }_{785} 7$	0	0	0	0	1	1．12\％	0	1	10019	1	0	0	\＄207980	0	0	0	1
7853	0	1	0	－	0	1．12\％	0	1	6324	0	0	0	\＄665 619	0	0	0	1
7854	0	0	0	1	1	1．12\％	0	1	7841	0	1	0	\＄1265608	0	0	0	1
7855 7856	0	0	0	0	1	${ }^{1.12 \%}$	0	1	11326 6534	0	1	0	\＄967768	0	0	0	1
7856 7857	0	1	0	0	\bigcirc	${ }_{\text {1．12\％}}^{1.12 \%}$	0	${ }_{0}^{1}$	6534 7841	\bigcirc	0	${ }_{1}^{0}$	$\underset{\substack{\text { \＄518142 } \\ \$ 54245}}{ }$	\bigcirc	0	0	1
7858	0	0	0	0	1	1．14\％	。	1	8276	0	0	1	\＄694137	0	0	0	1
7859	0	0	1	0	0	1．14\％	0	0	8276	0	0	1	\＄368507	0	0	0	1
7860	0	0	0	1	0	1．14\％	0	1	7405	0	0	0	\＄380 120	0	0	0	
7861 7862	\bigcirc	1	\bigcirc	\bigcirc	0	${ }^{1.14 \%}$	\bigcirc	1	6510 6534	\bigcirc	0	1	\＄421724	\bigcirc	\bigcirc	0	1
7862 7863	0	1	\bigcirc	${ }_{0}^{0}$	0	（1．14\％	0	${ }_{0}^{1}$	6534 6534	\bigcirc	0	1	\＄467 050 $\$ 440238$	。	\bigcirc	0	1
7864	0	0	0	0	0	1．14\％	0	1	6970		0	0	\＄156450		0	0	1
7865	0	0	0	0	0	1．14\％	0	1	8712	1	0	0	\＄232623	0	0	0	1
7866	0	1	0	0	0	1．15\％	0	1	15246	0	1	0	\＄392438	0	0	0	1
${ }_{7867}$	0	1	0	0	0	1．12\％	0	1	6970	0	0	1	\＄708183	0	0	0	1
7868 7869	0	${ }_{0}^{1}$	$\stackrel{0}{0}$	0	0	${ }^{1.12 \%}$	\bigcirc	1	6970 7841	${ }_{0}^{1}$	0	${ }_{1}^{0}$	\＄152 865 $\$ 429501$	\bigcirc	\bigcirc	\bigcirc	1
7870	0	1	0	0	0	1．12\％	0	0	6098	0	0	1	5467082	0	0	0	
7871	1	1	0	0	0	1．14\％	0	1	6534	0	1	0	\＄112036	0	0	0	1
7872 7873	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1	－	\bigcirc	1	6534 6534	\bigcirc	${ }_{1}$	${ }_{0}^{0}$		\bigcirc	\bigcirc	\bigcirc	1
7874	0	0		0	1	1．12\％	0	1	6970	0	0	0	\＄346744	0	。	0	1
7875	0	1	0	0	0	1．12\％	0	1	6098	0	0	0	\＄466 332	－	0	0	1
${ }_{7}^{7876}$		0	1	0	0	${ }^{1.12 \%}$	－	1	6534 6970	0	1	${ }_{1}$	S714324 $\mathbf{4} 79296$	\bigcirc	\bigcirc	0	1
7877 7878	0	\bigcirc	${ }_{0}$	0	\bigcirc	${ }^{1.1 .12 \%}$	0	1	6970 10890	\bigcirc	\bigcirc	0	\＄479926 $\$ 575719$	${ }_{0}^{0}$	0	\bigcirc	1
7879	0	－	0	0	1	1．14\％	0	1	9583	0	0		\＄468560		0	0	1
7880	0	0	0	0	1	1．12\％	0	1	7140	0	0	0	S666901 S34616	\bigcirc	0	\bigcirc	，
7881	0	0	0	0	0	1．14\％	0	1	${ }_{6} 698$	0	0	1	S346416 $\$ 47996$	0	0	0	
7882	0	0	0	0	1	${ }^{1.12 \%}$	0	1	6534 8876	1	－	，	S177904	0	0	－	1
7883 7884	0	0	0	${ }_{0}^{1}$	\bigcirc	${ }_{\text {1．12\％}}^{1.12 \%}$	\bigcirc	1	8276 6970	${ }_{0}^{1}$	0	0	${ }_{\substack{\text { S214932 } \\ \text { S43210 }}}^{\text {S }}$	\bigcirc	0	0	${ }_{1}^{1}$
7885			0	0	0	1．12\％	O	1	9300	0	0		\＄641251	0		0	1
7886	－	0	0	0	0	${ }^{1.12 \%}$	0	1	${ }^{6} \mathbf{6} 988$	0	1	0	${ }_{\text {S }} \mathbf{\$ 1 0 1 3 7 7 8}$	\bigcirc	0	0	
7887 7888	\bigcirc	${ }_{1}$	0	0	${ }_{0}^{1}$	${ }_{\text {1．1．12\％}}^{1.12 \%}$	0	${ }_{0}^{1}$	143755 14375	\bigcirc	\bigcirc	0	$\$ 622928$ $\$ 391601$	\bigcirc	\bigcirc	\bigcirc	1
7888 7889	0	1	${ }_{0}$	0	${ }_{0}$	${ }_{\text {1．14\％}}^{1.14 \%}$	0	1	14375 7841	0	0	1	（ $\begin{array}{r}\text { S392601 } \\ \$ 1271016\end{array}$	\bigcirc	\bigcirc	0	1
7890	－	1	0	0	0	1．14\％	－	1	7405	0	0		5477847	0		0	1
7891 7892	0	1	0	0	0	${ }^{1.14 \%}$	0	1	8276 8148 18	\bigcirc	1	1	$\begin{array}{r}\text { S966548 } \\ \$ 41542 \\ \hline\end{array}$	0	0	0	
7892 7893	\bigcirc	${ }_{0}^{1}$	0	0	\bigcirc	${ }_{\text {1．14\％}}^{1.14 \%}$	0	${ }_{1}^{1}$	9148 5663	${ }_{1}^{0}$	0	1	S415 542 $\$ 156292$	0	0	0	1
7894	0	0	0	1	0	1．50\％	1	1	6534	0	0		\＄439273	0	0	0	1
7895	0	1	0	0	0	${ }_{1}^{1.111 \%}$	0	1	${ }_{6970} 6970$	1	0		¢148885	0		－	1
7896 7897	0	0	0	0	${ }_{0}^{1}$	${ }^{1.12 \%}$	0	1	6970 6534	1	0	\bigcirc	\＄1999999 $\$ 207027$	\bigcirc	\bigcirc	\bigcirc	1
7898		0	0	0	0	${ }_{1.12 \%}$		1	6970	1	0	－	${ }_{\text {\％}}$	$\stackrel{0}{0}$	0	0	1
7899	0	0	0	1	0	${ }^{1.12 \%}$	0	1	6970	1	，	0	\＄144717	\bigcirc	0	0	1
7900 7901	0	0	0 1	\bigcirc	0	${ }_{\text {l }}^{1.12 \%}$	0	1	6098 6324	\bigcirc	\bigcirc	1	$\$ 444809$ $\$ 630350$	\bigcirc	\bigcirc	0	1
7901 7902	${ }_{0}$	${ }_{1}$	${ }_{0}^{1}$	${ }_{0}$	${ }_{0}$	${ }_{1.12 \%}^{1.12 \%}$	\bigcirc	1	6324 7405	\bigcirc	0	0	\＄630350 $\$ 356942$	\bigcirc	\bigcirc	0	1
7903	0	0	0	0	1	1．12\％		1	7841	0	0	1	\＄551915		0	0	1
7904	0	0	0	0	1	${ }^{1.12 \%}$	0	1	${ }_{6}^{6534}$	\bigcirc	1	\bigcirc		\bigcirc	0	\bigcirc	1
7905 7906	0	0	${ }_{0}^{1}$	\bigcirc	0 1	${ }_{\text {1．12\％}}^{1.12 \%}$	0	1	6534 7405	\bigcirc	0	\bigcirc	5372773 $\$ 488719$	\bigcirc	0	0	1
79007	0	${ }_{0}$	0	${ }_{0}$	${ }_{0}$	${ }_{1.12 \%}^{1.12 \%}$	0	1	7405 1399	\bigcirc	0	0	$\underset{\$ 5487147}{ }$	0	0	0	1
7908		0	0	0	1	${ }^{1.12 \%}$		1	${ }_{7}^{1395}$	0	0	1	${ }_{\text {S }}$ \＄67516	0		0	1
7909	\bigcirc	0	\bigcirc	0	1	1．12\％	\bigcirc	1	10454 8712	\bigcirc	0	1	\＄591128	\bigcirc	\bigcirc	0	1
${ }_{7911}$	0	1	0	0	0	${ }^{1.14 \%}$	0	1	8712 876	0	${ }_{0}^{1}$	0	$\$ 795426$ $\$ 305248$	0	0	\bigcirc	1
7912	0	1	0	0	0	1．14\％	0	1	6098	0	1		\＄320310	0	0	0	1
7913	0		0	1	0	1．14\％	0	1	7405	0	1	－	\＄935795	0		0	1
7914 7915	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	${ }^{1.14 \%}$	\bigcirc	1	8712 6098	\bigcirc	1	0		\bigcirc	0	\bigcirc	1
7916	0	0	0	1	1	${ }_{1}^{1.14 \%}$		1	6098 7405	${ }_{0}^{0}$	${ }_{0}$	${ }_{1}$	S444888 S40976	0	\bigcirc	\bigcirc	1
7917	0	－	，		，	1．75\％	1	1	6098	0	1	\bigcirc	\＄1254389		0	0	1
7918	0		，		－	1．11\％	－	1	${ }^{9} 148$	1	O	0	\＄70656	\bigcirc	－	－	1
7919 7920	\bigcirc	\bigcirc	${ }_{1}^{1}$	0	\bigcirc	${ }^{1.1 .14 \%}$	\bigcirc	${ }_{0}^{1}$	4356 6534	${ }_{1}^{1}$	0	1	S311388 S160947	\bigcirc	\bigcirc	0	1
7921	0	0	${ }_{0}$	0	1	1．12\％		1	${ }_{6534}$	${ }_{0}$		0	\＄937355		0	0	1
7922	0	0	0	0	0	${ }^{1.12 \%}$	0	1	6970 6534	${ }_{1}$	1	\bigcirc	\＄154629	\bigcirc	\bigcirc	\bigcirc	1
7923 7924	\bigcirc	1	0	0	\bigcirc	${ }_{\text {1．111\％}}^{1.11}$	0	1	6534 6534	${ }_{0}^{1}$	0	0	\＄106163	${ }_{0}$	\bigcirc	\bigcirc	1
7925	0	${ }_{0}$	0	${ }_{0}$	${ }_{0}$	${ }_{1.12 \%}^{1.17 \%}$	0	1	${ }_{5633}^{6534}$	${ }_{0}^{\circ}$	0	1	\＄349000 $\$ 840$ 177	0	\bigcirc	\bigcirc	1
7926	0		0	0	1	${ }^{1.12 \%}$		1	${ }_{5663}$	0		0	${ }_{\text {¢826 }}$		0	0	1
7927 7928 98	\bigcirc	\bigcirc	0	0	\bigcirc	1．12\％	0	1	8276 7841	0	O	1	$\$ 567717$ $\$ 303220$	\bigcirc	\bigcirc	\bigcirc	
7928 7929	\bigcirc	\bigcirc	0	${ }_{1}^{0}$	\bigcirc	${ }_{\text {l }}^{1.14 \%}$	\bigcirc	1	7841 6000	0	0	1	5303240 558359	\bigcirc	\bigcirc	\bigcirc	1
7930	0		0	0		1．14\％	0	1	${ }_{6970}$	1	0	0	${ }_{\text {S150 }}$	\bigcirc	${ }_{0}$	\bigcirc	1

observation	PROPERTY DURESS $=1$	LTV＿90\％	LTV 81\％－90\％	LTV 70\％－78\％	ltv below 70\％	total tax burden	PARCEL in SCEIP $=1$	conventional LOAN $=1$	Lotstiz	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	SOLD DURING 2004＿2007	SOLD 2008－2012	PRICE ADJUST．TO 2012	$\begin{gathered} \text { ZIP CODE } \\ \text { Z95403 } \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95404 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
7931	－	0	0	0	1	${ }^{\text {1．11\％}}$	${ }_{0}$	1	7405	1	${ }_{0}$	0	${ }_{\text {S185 }} 195$	0	0		
7932	0	0	0	0	0	1．12\％	0	1	8276	1	0	0	\＄146625	0	0	0	
7933	0	0	0	0	1	1．12\％	0	1	9583	0	0	0	5538651	0	0	0	1
7934	0	0	0	0	1	1．12\％	0	1	6970	0	1	0	5839096	0	0	0	1
7935	0	0	1	0	0	1．12\％	0	1	7841	0	0	0	\＄419 525	0	0	0	1
7936	0	0	0	1	1	1．14\％	0	1	7405	0	1	0	\＄1046632	0	0	0	1
7937	0	1	0	－	0	${ }^{1.14 \%}$	0	O	9148 6534	${ }^{0}$	0	1	\＄443210	0	0	0	1
7938	0	0	0	0	0	${ }^{1.11 \%}$	0	1	6534	1	0	0	\＄75128	0	0	0	1
7939	0	0			0	1．14\％	0	1	7841	0	0	0	5525826	0	0	0	1
7940	0	1	0	0	0	1．14\％	0	0	7405	0	0	1	\＄304000	0	0	0	1
7941	0	0	0	0	0	1．15\％	0	1	6534	0	0	1	\＄389000	0	0	0	1
7942	0	1	0	0	0	1．12\％		0	8276	0	0	1	\＄357000	0	0	0	1
7943	0	1	0	0	0	${ }^{1.12 \%}$	0	0	6098	0	0	1	5365076	0	0	0	1
7944	0	1	0	0	0	${ }^{1.111 \%}$	0	1	7405	0	0	1	\＄348970	0	0	0	1
7945	0	0			0	1．11\％	0	1	6534	1	0	0	${ }_{\text {S }} \mathbf{5 1 3 1 0 2 7}$	0	0	0	1
7946	0	0	0	0	1	1．11\％	0	1	6534	1	0	0	\＄131651	0	0	0	1
7947	0	0	－	1	0	1．12\％	0	1	9148	1	0	0	5203263	0	0	0	1
7948	0	0	1	0		1．12\％	0	1	6970	1	0	0	\＄204769	0	0	0	1
7949	0	0	0	1	0	${ }^{1.12 \%}$	0	1	6534	1	0	0	\＄144717	0	0	0	1
7950	0	1	0	0	0	${ }^{1.12 \%}$	0	0	7405	0	0	1	${ }_{\$ 316293}$	\bigcirc	0	0	1
7951	0	0	0	0	0	1．13\％	0	1	7405	0	0	1	${ }_{\$ 3755}^{621}$	\bigcirc	0	\bigcirc	1
7952	0	0	0	0	1	1．14\％	0	1	7405	0	1	0	\＄809 463	0	0	0	1
7953 7954	\bigcirc	${ }_{1}^{1}$	\bigcirc	0	\bigcirc	${ }_{\text {1．14\％}}^{1.14 \%}$	\bigcirc	${ }_{0}^{1}$	6098 6534	\bigcirc	${ }_{0}^{1}$	1	$\underset{\substack{\text { S1003 } \\ 5477670}}{512}$	\bigcirc	0	0	1
7955	0	1	。	。	。	1．14\％	0	0	${ }_{7405}$	0	0	1	\＄382062	0	0	0	1
7956	0	0	0	0		1．15\％		1	6098	0	0	1	\＄375813	0	。	0	1
7957	0	0	0	0	0	1．12\％	0	1	6970	1	0	0	\＄213803	0	0	0	1
7958	0	0	0	0	1	1．12\％	0	1	6534	0	0	1	\＄315 289	0	0	0	1
7959	0	0	0	－	0	1．14\％	0	1	9148	－	1	0	\＄1108444	0	0	0	1
7960	0	0	0	0	1	1．14\％	0	1	5663	0	1	0	577929	0	0	0	1
7961	0	0		0	0	1．14\％	0	1	7405	0	0	1	\＄454 174	0	0	0	1
7962	0	\bigcirc	0	－	，	${ }^{1.12 \%}$	0	1	4792 7250	0	0	0	\＄5191313	0	0	0	1
7963	0	0	0	－	0	1．12\％	0	1	7250	0	0	0	\＄461701	\bigcirc	\bigcirc	0	1
7964	0	0	。	0	1	1．14\％	0	1	6970	0	0	1	5424132	0	0	0	1
7965 7966	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	\bigcirc	${ }_{1.14 \%}^{1.14 \%}$	\bigcirc	1	6098 4356	${ }_{0}^{1}$	\bigcirc	\bigcirc	575799 529679	\bigcirc	\bigcirc	\bigcirc	1
7967	0	1	0	0	0	1．14\％	0	1	8276	0	0	0	\＄270 720	0	0	0	1
7968	－	1	－	0	0	${ }^{1.12 \%}$	0	0	91488	0	0	1	\＄436030 $\$ 371480$	\bigcirc	0	\bigcirc	1
7969	0	1	0	0	0	1．12\％	0	1	6534	0	1	0	\＄731480	0	0	0	1
7970	\bigcirc	0	0	0	1	1．14\％	0	1	5663	0	1	0	\＄971237	0	0	0	1
7971 7972	\bigcirc	${ }_{0}^{1}$	\bigcirc	\bigcirc	\bigcirc	${ }_{\text {1．14\％}}^{1.14 \%}$	\bigcirc	1	7405 6098	${ }_{1}^{0}$	\bigcirc	\bigcirc	S231781 $\mathbf{S 1 0 8 9 5 7}$	\bigcirc	\bigcirc	\bigcirc	1
7973	－		1		0	1．14\％	O	1	6534	0	0	1	\＄443210	0	0	0	1
7974	0	0	0	0	1	1．12\％	0	1	6098	0	0	0	\＄301315	0	0	0	1
7975	－	0	0	0	1	1．12\％	0	1	6700	0	0	－	\＄532880	0	0	0	1
7976	0	0	1	0	0	1．12\％	0	1	8000	0	1	0	\＄725241	0	0	0	1
7977	0	0	0	1	0	${ }^{1.114 \%}$	0	1	6700 6534	0	0	0	\＄527109	\bigcirc	0	0	1
7978 7979	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	${ }_{1}^{1.12 \%}$	\bigcirc	1	6534 6098	${ }_{0}^{1}$	0	\bigcirc	¢	\bigcirc	\bigcirc	\bigcirc	1
7980	。		0	1	0	1．12\％		1	7405	。	0	0	\＄570 714	0	。	。	1
7981	0	1	0	0	0	1．12\％	0	1	7405	0	1	0	\＄904602	0	0	0	1
7982		0	0	0	1	${ }^{1.14 \%}$	0	1	7405	0	0	0	\＄292044	0	0	0	1
7983		0			0	1．14\％	0	1	7841	1	0	0	\＄131307	0	0	0	1
7984	0	0	0	0	0	1．12\％	0	1	6534	1	0	0	\＄203263	0	0	0	1
7985 7986	0	1	0	－	0	${ }^{1.111 \%}$	0	1	10454 10454	1	0	\bigcirc	\＄142990 $\$ 138885$	0	0	0	1
7986 7987	0	0	。	0	\bigcirc	${ }^{1.111 \%}$	\bigcirc	1	10454 6098	1	0	\bigcirc	$\$ 138385$ $\$ 149641$	\bigcirc	\bigcirc	0	1
7988	0	0	0	1	0	1．12\％	0	1	6970	\bigcirc	0		\＄386701	0	。	0	1
7989	0	0	1	0	0	1．12\％	0	1	6970	0	0	1	\＄516213	0	0	0	1
7990	0	1	0	0	0	1．11\％	0	0	8276	0	0	1	\＄330000	0	0	0	
7991 7992	\bigcirc	${ }_{1}$	\bigcirc	\bigcirc	1	－	\bigcirc	1	7405 7405	\bigcirc	0	0	S459924 $\mathbf{5 7 1 5 8 8}$	\bigcirc	\bigcirc	\bigcirc	1
7992 7993	0	0	\bigcirc	${ }_{0}^{0}$	0	${ }_{\text {l }}^{1.12 \%}$	0	1	7405 9148 9	\bigcirc	1	\bigcirc	（ 5715888	。	\bigcirc	0	1
7994	0	1	0	0	0	1．14\％	0	1	7405		0	0	\＄293898	－	0	0	1
7995	0	0	0	0	0	1．10\％	0	1	5227	0	0	0	\＄207259	0	0	0	1
7996	0	0	0	0	1	1．11\％	0	1	4792	1	0	0	\＄58135	0	0	0	1
7997	0	－	1	0	0	1．11\％	0	1	6098	1	0	0	\＄163363	0	0	0	1
7998 7999	0	1	$\stackrel{0}{0}$	0	0	${ }_{\text {l }}^{1.12 \%}$	\bigcirc	1	4336 5227	\bigcirc	0	1	${ }_{\substack{\text { S }}}^{\$ 321314}$	\bigcirc	\bigcirc	0	1
8000	0	1	0	0	0	1．12\％	0	0	6534	0	0	1	\＄393199	0	0	0	
8001	0	1	0	0	0	1．13\％	0	0	6098	0	0	1	5363433	0	0	0	1
8002 8003	\bigcirc	\bigcirc	${ }_{1}$	\bigcirc	\bigcirc	${ }^{1.14 \%}$	\bigcirc	${ }_{0}^{1}$	63380 4792	\bigcirc	\bigcirc	1 1	$\begin{array}{r}\text { S276129 } \\ \$ 2898 \\ \hline 182\end{array}$	\bigcirc	\bigcirc	\bigcirc	1
8004	0	1	0	0	0	1．14\％	0	1	4356	0	1	\bigcirc	¢971237	0	。	0	1
8005	0	－	0	1	0	1．14\％	0	1	4860	0	1	0	\＄1010612	－	0	0	1
8006 8007	0	0	1	0	0	${ }^{1.144 \%}$	\bigcirc	1	4356 6970	0	0	0	（527428	\bigcirc	0	0	
8007 8008	0	\bigcirc	1	0	\bigcirc	${ }_{1.12 \%}^{1.14 \%}$	\bigcirc	1	6970 6970	\bigcirc	${ }_{1}^{0}$	$\stackrel{1}{0}$		\bigcirc	0	\bigcirc	1
8009	0		0	0	0	1．12\％		1	6076	0	0	，	\＄545064	0	0	0	1
8010	0	1	0	0	0	1．11\％	0	1	7405	1	0	0	\＄114769	\bigcirc	0	\bigcirc	1
8011 8012	－	1	0	0	0	1．14\％\％		1	${ }_{6}^{6098}$	0	1	\bigcirc	\＄1025311	0	0	\bigcirc	1
${ }_{8}^{8013}$	0	1	${ }_{0}$	0	${ }_{0}$	${ }_{1.12 \%}^{1.14 \%}$	${ }_{0}$	1	6534 4356	\bigcirc	1	1	S569275 $\$ 39565$	\bigcirc	0	${ }_{0}$	1
8014	0	0	0	1	0	1．14\％	0	0	4792	0	－	1	\＄311000	0	0	0	1
8015 8016	\bigcirc	0	0	0	1	1．12\％	0	1	6098 4792	0	。	0	$\begin{array}{r}\text { S286170 } \\ \$ 241052 \\ \hline\end{array}$	\bigcirc	0	\bigcirc	1
8016 8017	\bigcirc	${ }_{1}^{0}$	${ }_{0}^{1}$	0	\bigcirc	${ }_{\text {1．12\％}}^{1.12 \%}$	\bigcirc	1	4792 4356	\bigcirc	0	\bigcirc	\＄241052 $\$ 658176$	\bigcirc	0	0	1
8018	0	0	0	0	1	1．12\％	0	1	4356	0	1	0	\＄847086	－	0	0	
8019	1	，	0	0	0	1．14\％	0	1	4356	0	1	0	\＄951414	0	0	0	1
8020	0	1	0	0	0	1．14\％	0	1	4600	0	0	0	\＄532 239	0	0		1
8021 8022	0	1	0	1	0	${ }^{1.14 \%}$	0	1	4600 4356	0	0	1	$\$ 493763$ $\$ 312000$	0	0	0	
8022 8023	\bigcirc	1	0	0	\bigcirc	${ }_{\text {1．11\％}}^{1.14 \%}$	\bigcirc	${ }_{1}$	4356 4356	0	0	${ }_{0}^{1}$	$\$ 312000$ $\$ 123038$	\bigcirc	0	\bigcirc	1
8024	0	1	0	0	0	1．11\％	0		6098	0	0	1	\＄310 247	0	0	0	1
8025 8026	0	0	0	0	1	${ }^{1.111 \%}$	0	1	${ }_{6}^{6098}$	1	1	0	$\begin{array}{r}\text { S103090 } \\ \$ 65974 \\ \hline\end{array}$	0		－	1
8026 8027	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	1	6098 6098	\bigcirc	${ }_{0}^{1}$	\bigcirc	\＄665 974 $\$ 32926$	\bigcirc	\bigcirc	\bigcirc	1
8027 8028	${ }_{0}$	1	${ }_{0}$	${ }_{0}$	${ }_{0}$	${ }_{1.14 \%}^{1.12 \%}$	0	1	6098 4792	${ }_{0}$	${ }_{0}^{\circ}$	0		$\stackrel{0}{0}$	0	0	1
8029	0	1	0	0	0	1．14\％	0	1	4356	0	，	1	\＄292638	－	0	0	
8030 8031	0	0	0	0	${ }_{0}^{1}$	1．110\％	0	1	3920 4792	1	0	\bigcirc		\bigcirc	\bigcirc	0	1
8031 8032	0	0	0	${ }_{0}^{1}$	${ }_{1}^{1}$	${ }_{\text {l }}^{1.112 \%}$	\bigcirc	1	4792 4356	${ }_{0}^{1}$	0	0	S107 158 $\$ 25000$	0	\bigcirc	\bigcirc	1
8033	0	0	0	0	0	1．14\％		1	5227	0		1	\＄255000		0	0	1
8034	0		0	1	0	1．14\％	0	1	4356 563	0	－	1	\＄32126		\bigcirc	\bigcirc	1
8035 8036	0	1	\bigcirc	\bigcirc	\bigcirc	${ }_{\text {1．12\％}}^{1.14 \%}$	0	0	5663 6534	${ }_{0}^{1}$	0	\bigcirc	$\$ 161858$ $\$ 362703$ 98	0	0	0	1
8036 8037	0	1	0	${ }_{0}$	1	${ }_{1.12 \%}^{1.12 \%}$	0	1	6534 5663	\bigcirc	0	0	$\begin{array}{r}\text { \＄3627 } \\ \$ 91838 \\ \hline\end{array}$	0	0	0	1
8038	0	1	0	0	${ }_{0}$	${ }_{1.14 \%}^{1.12 \%}$	0	${ }_{0}$	${ }^{5} 970$	0	${ }_{0}$	1	\＄355676	0	0	0	1
8039 8040	\bigcirc	0	0	1	0	1．15\％	0	1	7841 1307	1	0	\bigcirc	570880 $\$ 76744$	\bigcirc	\bigcirc	\bigcirc	1
8040 8041	\bigcirc	${ }_{0}^{1}$	\bigcirc	${ }_{0}$	0	${ }^{1.111 \%}$	0	${ }_{1}$	1307 4356	1	0	\bigcirc	S76744 $\$ 102950$	0	0	\bigcirc	1
8042	0	－	－	－	1	1．11\％	0		4356		1		\＄612946		0	0	
8043	0	0	1	0	0	1．11\％	0	1	4356	0		1	\＄343488	0		0	1
8044 8045		0	\bigcirc			－ 1.11%		1	4356 4880		0			\bigcirc	\bigcirc	0	
8045 8046	0	1	\bigcirc	0	\bigcirc	${ }^{1.111 \%}$	\bigcirc	1	4880 4792	\bigcirc	0	0	S451441 $\$ 717443$	\bigcirc	0	\bigcirc	1
8047	0		0	0	0	1．14\％		1	4792	0	0		5218801	0	0	0	
8048 809	0	1	0			1．14\％	－		4792	1		0	\＄105941	0	0	－	1
8049 8050	\bigcirc	${ }_{0}^{1}$	0	0	${ }_{1}^{0}$	${ }_{\text {1．14\％}}^{1.11 \%}$	\bigcirc	${ }_{1}^{0}$	5400 7000	\bigcirc	0	1	S263069 $\$ 448876$	\bigcirc	\bigcirc	0	1
${ }_{8}^{8051}$	0		0	0	${ }_{0}$	1．15\％		1	5663	0		1	${ }^{\text {che }}$	0	0	0	1
8052 8053	0	0	－	1	0	${ }^{1.15 \%}$	\bigcirc	1	6534 8712	\bigcirc	0	1	\＄359248 $\$ 598887$	0	\bigcirc	\bigcirc	1
8053 8054	\bigcirc	1	0	1	0	－ 1.14%	1	1	8712 13068	\bigcirc	0	1	S548 687 $\$ 54693$	${ }_{0}$	\bigcirc	\bigcirc	1
8054 8055	\bigcirc	${ }_{0}^{1}$	\bigcirc	\bigcirc	\bigcirc	${ }^{2.23 \%}$	1	1	13068 10890	1	\bigcirc	\bigcirc	S546933 $\$ 172915$	\bigcirc	\bigcirc	\bigcirc	1
${ }^{8056}$	0	1	0	0	0	1．12\％	0	1	11326	0		0	5468560	0		0	1
8057 8058	\bigcirc	1	\bigcirc	$\stackrel{0}{0}$	\bigcirc	${ }_{\text {l }}^{1.12 \%}$	0	1	10019 8276	${ }_{1}^{0}$	\bigcirc	\bigcirc	\＄177 080 $\$ 161346$	\bigcirc	0	\bigcirc	1
8059 8060	\bigcirc			1		－		1	6970 6970	1			\＄195999 $\$ 478998$			\bigcirc	1

 PROPERTY LTV_90\% LTV 81\%-90\% LTV 70\%-78\% LTV BELOW total tax
 PARCEL IN
SCEIP $=1$$\quad$ CONVENTIONAL DURESS $=1$
0 \quad LTV_90\% LTV 81\%

70\%

SIZE sold sold during sold 2008-2012 PRICE ADJUST. To ZIP CoD
ZIP CODE 95404
PRIOR_2000 SOLD
SOLD 2008-2012

 295403
0
0
0
0
0 zІ , 000 ZIP CODE
94928
1
1

observation	PROPERTY DURESS $=1$	LTV＿90\％	LTV 81\％．90\％	LTV 70\％－78\％	$\begin{gathered} \text { LTV BELOW } \\ 70 \% \end{gathered}$	total tax burden	parcel in SCEIP $=1$	CONVENTIONAL LOAN＝ 1	Lotsize	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	$\begin{gathered} \text { SOLD DURING } \\ 2004 _2007 \end{gathered}$	Soto 2008－2012	PRICE ADJUST. TO 2012	ZIP CODE Z95403	ZIP CODE 95404	ZIP CODE 95472	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
8191	－	0	0	1	\％	1．11\％	Sctirs	Lonv＝1	5663	${ }_{1}$	${ }^{2009}$	0	${ }_{5116317}$	25403	5504		${ }^{4} 8$
8192	0	0	－	0	0	1．11\％	0	1	8712	1	0	。	\＄184442	。	。	。	1
8193	0	1	0	0	0	1．12\％	0	1	4792	0	0	0	\＄338889		0	0	1
8194	0	0	0		0	1．12\％	0	1	4750	0	0	1	5409693	0	0	0	1
8195	0	0	1	0	0	1．14\％	0	1	4356	0	1	0	574083	0	0	0	1
8196	0	0	0		1	1．11\％	0	1	4356	0	1	0	\＄834364	0	0	0	1
8197	0	1	0	0	0	1．14\％	0	1	4356	0		0	5701846	0	0	0	1
8198	0	0	0	0	1	1．14\％	0	1	4356	1	0	0	\＄160 352	0	0	0	1
8199	1	1	0			1．14\％	0	0	5663		0	0	\＄150565	0	0	0	1
8200	0	1	0	0		1．14\％	0	1	6970	0	0	0	5474526	0	0	0	1
8201	0	1	0	0	0	1．11\％	0	0	5663	0	0	1	\＄219000	0	0	0	1
8202	0	0	0	0	0	1．14\％	0	1	5663	0	0	1	5304343	0	0	0	1
8203	0	1	0	0	0	1．12\％	0	1	4356	0	0	0	5343247	0	0	0	1
8204	0	0	1	0	0	1．12\％	0	1	4725	0	0	1	\＄392 134	0	0	0	1
8205	0	1	0		－	1．12\％	0	1	4356	0	1	0	${ }^{5763216}$	0	0	0	1
8206	0	1	0	0	0	1．12\％	0	1	4356	0	0	0	5455288	0	0	0	1
8207	0	0	0	0	1	1．12\％	0	1	5663	0	0	1	\＄260000	0	0	0	1
8208	0	1	0	0	0	1．14\％	0	0	4356	0	0	1	\＄246006	0	0	0	1
8209	0	0	0	1	0	1．14\％	0	1	4356	0	1	0	571743		0	0	1
8210 8211	0	0	0	－	1	${ }^{1.14 \%}$	0	1	4356 7405	1	0	0	S103505 $\$ 175032$	－	0	0	1
8211	0	1	0		0	1．11\％	0	1	7405	1	0	0	${ }_{\text {S175032 }}$	0	0	0	1
8212 8213	0	0	0	0	1	${ }^{1.12 \%}$	0	1	7841	0	1		\＄1031236	0	0	0	1
8213 8214	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	${ }_{\text {l }}^{1.11 \%}$	\bigcirc	1	4792 4792	${ }_{1}^{0}$	${ }_{0}^{1}$	\bigcirc		\bigcirc	\bigcirc	\bigcirc	1
8215	0	1	0	0	0	1．11\％	0	1	5227	0	0	0	5398973	0	0	0	1
8216	0	0	1	0	0	1．11\％	0	1	4815	0	0	0	5455288	0	0	0	1
8217	0	1	0	0	－	1．11\％	0	1	5227	0	0	0	${ }_{5264230}$	0	0	0	1
8218	0	0	1	0	0	1．11\％	0	1	6098	0	0	0	537217	0	0	0	1
8219 8220	0	1	0	0	0	${ }^{1.111 \%}$	0	0	5663 563	1	0	0	$\$ 106069$ $\$ 34289$	0	0	0	1
8220 8221	${ }_{0}$	${ }_{0}^{1}$	${ }_{0}$	${ }_{0}$	${ }_{1}$	${ }_{\text {1．111\％}}^{1.11}$	0	1	5663 6534	${ }_{0}$	\bigcirc	${ }_{1}$	\＄344280 $\$ 332962$	${ }_{0}$	0	0	1
8222	0	1	0	。	${ }_{0}$	1．11\％	0	1	4792	0	1	${ }_{0}$	¢853114	0	0	0	1
8223	0	1	0	0	0	1．11\％	0	1	5510	0	0	0	\＄468113	0	0	。	1
8224	0	0	0	0	1	1．11\％	0	1	5227	0	0	1	\＄26688	0	0	0	1
8225 8226	0	0	1	0	0	${ }^{1.144 \%}$	0	1	5000	0	0	0	${ }_{\text {\％}} 5434768$	0	0	0	1
8226 8227	0	0	0	1	0	1．14\％	0	1	4356	0	0	1	\＄251026	0	0	0	1
8227 8228	0	${ }_{0}^{1}$	\bigcirc	\bigcirc	${ }_{1}^{0}$	${ }^{1.1 .14 \%}$	\bigcirc	${ }_{1}^{1}$	4792 4792	1	\bigcirc	${ }_{0}$	\＄149436 $\mathbf{\$ 1 1 4 3 9 2}$	${ }_{0}$	\bigcirc	0	1
8229	0	0	0	1	0	1．11\％	0	1	6534	1	0	0	\＄94372		0	0	1
8230	1	1	0	0	0	${ }^{1.111 \%}$	0	1	5663	0	1	0	S796885 $\$ 883224$	0	0	0	1
8231	0	0	0	0	1	${ }^{1.12 \%}$	0	1	9148	0	1	0	\＄803224	0	0	0	1
8232 823	0	0	0	1		${ }^{1.12 \%}$	0	1	9148	0	0	0	\＄855689	0	0	0	1
8233 8234	${ }_{0}^{0}$	\bigcirc	${ }_{0}^{1}$	1	${ }_{0}$	－${ }_{\text {1．1．12\％}}^{1.12 \%}$	\bigcirc	1	10019 8712	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	${ }_{\text {S }}^{51961478}$	0	0	\bigcirc	1
8235	0	0	0	1	0	1．12\％	0	1	14810	1	0	0	\＄134100	0	0	0	1
8236	0	0	0	1	0	${ }^{1.12 \%}$	－	1	8712	0	0		\＄456345 $\$ 55493$	0	0	0	1
8237	\bigcirc	0	0	0	1	${ }^{1.12 \%}$	0	1	8276 8712	0	0	0	\＄554993	0	0	0	1
8238 823	\bigcirc	0	0	1	0	1．12\％	0	1	8712	0	0	0	\＄336709	0	0	0	1
8239 8240	\bigcirc	${ }_{0}$	${ }_{0}^{1}$	0	${ }_{1}^{0}$	${ }^{1.1 .14 \%}$	\bigcirc	1	9148 13504	${ }_{1}$	${ }_{0}^{1}$	0	$\$ 1009794$ 583848	0	\bigcirc	0	1
8241	0	1	0	0	0	1．12\％	0	1	9583	0	1	0	\＄1228109	0	0	0	1
8242	0	0	0	1	0	1．14\％	0	1	7405	0	0	，	\＄500274	0	0	\bigcirc	1
8243	0		0	0	1	${ }_{1}^{1.12 \%}$	0	1	10019	0	0	0	\＄514693	0	0	0	1
8244 824		0	0	0	1	1．14\％	0	1	8712	0	0	1	5437670		0	0	1
8245 8246	\bigcirc	${ }_{1}^{0}$	\bigcirc	0	1	${ }_{\text {1．12\％}}^{1.12 \%}$	\bigcirc	1	8400 8276	\bigcirc	\bigcirc	${ }_{1}^{1}$	\＄573920 S429 501	0	\bigcirc	0	1
8247	0	0	0	1	0	1．12\％	0	1	8276	0	0	1	\＄632097	0	0	0	1
8248	0	0	0	1	0	1．12\％	－	1	8276	0	0	0	\＄338400	0	0	0	1
8249 829	0	1	1	0	0	${ }^{1.12 \%}$		1	8712	0	0		${ }_{\text {S }}^{5457663}$	0	0	0	1
8250	\bigcirc	1	0	0	0	1．14\％	\bigcirc	1	8276	0	1	0	5889005	0	0	0	1
8251	0	0	0	0	0	1．14\％	，	1	7841	0	0	1	\＄340392	0	0	0	1
8252	0	0	0	0	1	1．40\％	1	1	10019	1	0	0	\＄159416	0	0	0	1
8253 8254 825	0	1	0	0	0	1．11\％	0	1	8276 8712	1	0	\bigcirc	\＄145983 $\$ 141364$	\bigcirc	0	0	1
8254 8255	0	\bigcirc	0	${ }_{1}^{0}$	1	${ }_{\text {1．12\％}}^{1.12 \%}$	。	1	8712 8276	1	0	0	\＄141364 $\$ 296679$	\bigcirc	\bigcirc	0	1
8256	0	0	0	0	0	1．12\％		1	8276	1		0	\＄237893		0	0	
8257	0	0	0	0	1	1．12\％	0	1	7405	0	0	0	\＄369922	0	0	0	1
8258	0	0	0	0	1	1．14\％	0	1	8712	0	0	0	\＄673591	0	0	0	1
8259 8250 820	0	0	0	0	1	${ }^{1.14 \%}$	0	1	8276 8276	0	0	0	S773591 $\$ 366998$	0	0	0	1
8260 8261	0	${ }_{0}^{1}$	0	0	1 1	${ }_{\text {l }}^{1.14 \%}$	\bigcirc	1 1	8276 8276	${ }_{1}^{0}$	0	${ }_{0}^{1}$	${ }_{\substack{\text { S366 } \\ \$ 11098 \\ \hline}}$	0	0	\bigcirc	1
8262	0	0	0	0	1	1．12\％	0	1	8276	1	。	。	\＄147873	0	${ }_{0}$	${ }_{0}$	1
8263	0	0	0	1	0	1．12\％	0	1	9148	1	0	0	\＄151617	0	0	0	1
8264	0	0	0	0	1	1．12\％	0		7841	0	0	0	\＄628426	0		0	1
8265 8266	0	0	0	0	1	1．12\％	0	1	8276 8276	0	1	0	$\underset{\substack{\text { \＄1 } \\ \$ 3855760}}{ }$	0	0	0	1
8266 8267	0	\bigcirc	\bigcirc	\bigcirc	1	${ }_{\text {1．12\％}}^{1.12 \%}$	0	1	8276 8712	0	0	${ }_{0}^{1}$	S385 576 S959 190	\bigcirc	\bigcirc	－	1
8268	0	0	0	0	1	1．12\％	0	1	7950	0	0	0	\＄602776		0	0	1
8269	0	0	0	0	0	1．12\％	0	1	8276	0	0	1	\＄491631	0	0	0	1
8270	0	0	1	0	0	1．11\％	0	1	8712	1	0	0	\＄78258	0	0		1
8271 8272	0	${ }_{0}^{1}$	${ }_{1}^{1}$	0	0	${ }_{\text {1．11\％}}^{1.14 \%}$	0	1	9583 7841	1	0	0	\＄156 957 $\$ 152301$	0	\bigcirc	0	1
8273	0	0	0	0	1	1．15\％	0	1	6970	1	0	0	\＄67973	0	0	0	1
8274 8275	0	0	0	0	1	${ }^{1.111 \%}$	0	1	8276	1	0	0	\＄135394	0	0	0	1
8275 8276	0	0	0	0	1	1．12\％	0	1	7841	0	0	1	5456882	0	0		1
8276 8277	\bigcirc	${ }_{0}^{1}$	\bigcirc	\bigcirc	0 1	－1．12\％	0	0 1	8276 9583 58	\bigcirc	0 1	${ }_{0}^{1}$	（ 5 \＄509775	\bigcirc	\bigcirc	\bigcirc	1
8278	0	1	0	0	0	1．12\％	0	1	8276	1	0	0	\＄193853	0		0	1
8279	0	1	0	0	0	1．12\％	0	1	8712	0	0	0	\＄389392 $\$ 15479$	0	0	0	1
8280 8881	0	0	0	1	0	${ }^{1.12 \%}$	\bigcirc	1	8712	1	\bigcirc	0	\＄1547979	0	0	0	1
8281 8282	\bigcirc	${ }_{0}$	\bigcirc	1	1	${ }_{\text {1．11\％}}^{1.14 \%}$	${ }_{0}$	1	7405 6098	\bigcirc	\bigcirc	1	S426745 $\$ 328000$	\bigcirc	0	\bigcirc	1
8283	0	1	0	0	0	1．10\％	0	0	10454	0	0	1	\＄371519	0		0	1
8284	0	0	1	0	0	${ }^{1.111 \%}$	0	1	8712 8276	0	1	0	5857812 $\$ 58592$		0		1
8285 8286 828	\bigcirc	\bigcirc	${ }_{0}^{1}$	\bigcirc	\bigcirc	－	0	1	8276 10890	\bigcirc	\bigcirc	1	$\$ 585392$ $\$ 567717$	\bigcirc	\bigcirc	0	1
8287	。	1	0	。	0	1．14\％	。	1	8712	0	。	1	\＄487532	O		。	1
8288	0	0	1	0	0	1．14\％	0	1	8424	0	0	0	\＄557889	0	0		1
8289 8290	\bigcirc	\bigcirc	1	\bigcirc	0	1．12\％	\bigcirc	1	6534 6534 6	\bigcirc	0	1	$\$ 374576$ $\$ 551668$	0	\bigcirc	\bigcirc	
8291	0	1	0	${ }_{0}$	1	1．1．4\％	${ }_{0}$	${ }_{0}^{1}$	6534 8276	\bigcirc	\bigcirc	1	\＄251668	\bigcirc	\bigcirc	0	1
8292	0	0	0	0	0	1．12\％	0	1	9148	0	0	0	\＄273501	O	0	0	1
8293	0	1	0	0	0	1．14\％	0	1	10300	0	0	1	\＄336375	0		0	1
8294 8295	\bigcirc	${ }_{0}^{1}$	\bigcirc	0	0	${ }^{1.09 \%}$	\bigcirc	0 1	6098 9148 18	${ }_{0}^{1}$	\bigcirc	\bigcirc	\＄150565 $\$ 225754$	\bigcirc	\bigcirc	0	1
8296	0	1	0	0	0	${ }_{1.12 \%}$	0	1	7405	0	0	1	\＄404805	0	－	0	1
8297	0	1	0	0	0	${ }^{1.114 \%}$	0	0	6098 800	\bigcirc	0	1	5432130 542053	\bigcirc	0	\bigcirc	
8298 8299	\bigcirc	0 1	\bigcirc	1	0	${ }^{1.1 .14 \%}$	\bigcirc	1	8500 6098	\bigcirc	\bigcirc	1	S420 053 $\$ 357500$	\bigcirc	\bigcirc	0	1
8300		1	0	0		1．14\％	0	0	6534	0	0	1	\＄299167	0		0	1
8301 8302	\bigcirc	${ }_{0}^{1}$	\bigcirc	0	0	－ 1.14%	\bigcirc	0	7405 5663	0	\bigcirc	${ }_{0}^{1}$	ST267034 S114804	0	\bigcirc	\bigcirc	
${ }_{8303}$	0	0	\bigcirc	1	\bigcirc	${ }^{1.1 .14 \%}$	${ }_{0}$	1	5663 6000	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	${ }_{5}^{51148887}$	\bigcirc	0	\bigcirc	1
8304	0	1	－	0	－	1．08\％	0	，	6534		－	1	\＄491631	－	0	0	1
8305	0		1	0	－	1．14\％	－	1	7405	0	0	1	\＄537868	\bigcirc	O	O	1
8306 8307	0	\bigcirc	\bigcirc	0	0	${ }^{1.1 .14 \%}$	0	1	6534 8750 87	${ }_{0}^{1}$	0	\bigcirc	（ $\begin{gathered}\text { S158619 } \\ \text { S1154629 }\end{gathered}$	\bigcirc	\bigcirc	\bigcirc	1
8308	0		0	0	1	1．14\％		1	8712		${ }_{0}$		${ }_{5496328}$		0	0	1
8309 830	0	0	0	0	0	${ }_{\text {1．14\％}}^{1.14 \%}$	－	1	8276 91148	0	\bigcirc	1	S4551 183 $\$ 11327$	\bigcirc	\bigcirc	0	1
8310 8311	0	0	0	0 1	\bigcirc	1．14\％	\bigcirc	1	9148 6098	1	\bigcirc	\bigcirc		0	0	0	1
8312	0		0	${ }_{0}$		${ }_{1.14 \%}$	0	1	6098	0	0	1	\＄330 ${ }^{\text {S }}$	0	0	0	1
8313	0	0	0	1	0	1．12\％	0	1	7405	1	0	0	S207 027	0	0	0	1
8314 8315	0	0	0	0	1	1．11\％	0	1	8276 8276	0	\bigcirc	0	$\begin{array}{r}5398889 \\ 57043 \\ \hline\end{array}$	0	0	0	
8315 8316	0	0	0	0	1	${ }_{\text {1．12\％}}^{1.11 \%}$	\bigcirc	1	8276 8276	1	\bigcirc	0	570433 5422794	0	0	0	1
8317	0			0	1	1．14\％	0	1	7405	0		0	\＄296679	0	0	0	
${ }^{8318}$	0	0	0	0	1	${ }^{1.12 \%}$		1	${ }^{8276}$	0	0	0	${ }_{5389} 558$	0		0	1
8319 8320			\bigcirc	0	0	${ }^{1.12 \%}$	\bigcirc	${ }_{1}^{1}$	10890 11326	0	0	0	$\underset{\$ 310366}{ }$	0	0		${ }_{1}^{1}$

observation	PROPERTY DURESS $=1$	LTV＿9\％	LTv 81\％－90\％	LTV 70\％－78\％	$\begin{gathered} \text { LTV BELOW } \\ 70 \% \end{gathered}$	total tax burden	parcel in SCEIP $=1$	CONVENTIONAL LOAN＝ 1	Lotsize	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	SOLD DURING 2004＿2007	Soto 2008－2012	PRICE ADJUST. TO 2012	ZIP CODE Z95403	ZIP CODE 95404	ZIP CODE 95472	ZIP CODE 94928
8321	Sess	1	0	0	\％	1．11\％	Scaror	Lonv＝1	8712	${ }_{1}$	${ }^{2004}$	0	\＄152966	25403	5504		${ }^{4} 2$
8322	0	1		0	。	1．12\％	0	1	7841	0	。	。	\＄250 323	0	0	0	1
8323	0	0	0	1	0	1．12\％	0	1	8276	0	1	0	\＄895731		0	0	1
8324	0	0	0	0	1	1．12\％	0	1	9583	0	0	0	5414076	0	0	0	1
8325	0	1	0		0	1．14\％	0	1	7841	0	0	1	536498	0	0	0	1
8326	0	1	0	0		1．14\％	0	0	8276	1	0	0	\＄139665	0	0	0	1
8327	0	0	0	0	1	1．12\％	0	1	6970	0	1	0	\＄756434	0	0	0	1
8328	0	0	0	1	0	1．12\％	0	1	8712	0	0	1	\＄361478	0	0	0	1
8329	0	0	0	0		1．14\％	0	1	5663	0	1	0	\＄678451	0	0	0	1
8330	0	0	0	0	1	1．12\％	0	1	6098	0	1	0	\＄1089970	0	0	0	1
${ }_{8}^{8331}$	0	0	0	0	0	${ }^{1.12 \%}$	0	1	6800	0	0	0	${ }_{\$ 519413}$	0	0	0	1
8332	0	0	0	1	0	1．12\％	0	1	6970	0	1	0	\＄914 182	0	0	0	1
8333	0	1	0		0	1．14\％	0	0	7841	0	0	1	\＄296211	0	0	0	1
8334	0	1	0	0	0	1．14\％	0	1	6098	1	0	0	\＄124787	0	0	0	1
8335	0	1	0		－	1．14\％	0	0	5663	1	0	0	\＄150565	0	0	0	1
8336	0	1	0	0	0	1．11\％	0	1	6970	1	0	0	\＄67973	0	0	0	1
8337	0	0	0	1	0	1．14\％	0	1	11326	0	0	0	\＄417972	0	0	0	1
8338	0	0	0	0	1	1．14\％	0	1	6534	1	0	0	\＄176914	0	0	0	1
8339	0	1	0	0	0	1．12\％	0	0	6098	0	0	1	5386551		0	0	1
8340 8341	0	1	0	0	－	${ }^{1.12 \%}$	0	1	7405 6900	0	\bigcirc	1	5413395 $\$ 47855$	0	0	0	1
8341	0	1	0			1．14\％	0	1	6970		0	1	5478755	0	0	0	1
8342	0	1	0	0	0	1．14\％	0	0	6098	0	0	1	S348970 $\$ 545798$	0	0	0	1
8343 8344 8	0	0	0	1	0	1．12\％	\bigcirc	1	5663 5663	0	1	0	5647988 S706525	0	\bigcirc	：	1
8344 8345	\bigcirc	${ }_{1}^{0}$	0	1	1	${ }_{0}^{1.14 \%}$	\bigcirc	${ }_{0}^{1}$	5663 6534	${ }_{1}^{0}$	${ }_{0}^{1}$	0	S706525 $\$ 113472$	\bigcirc	\bigcirc	0	1
8346	0	1		0	0	1．12\％	0	1	8276	0	1	0	\＄945872	0	0	0	1
8347 8348 8	0	1	0	0	0	${ }^{1.144 \%}$	0	1	9148 6534 6	0	0	1	5420228 $\$ 984362$	0	0	0	1
8348	0	0	0	0	0	1．14\％	0	1	6534	0	1	0	5984362 $\$ 878115$	0	0	0	1
$\begin{array}{r}8349 \\ 835 \\ \hline\end{array}$	0	1	0	0	0	1．14\％\％	\bigcirc	0	6534 6970	0	0	1	S277 115 $\$ 323247$	0	0	0	1
8350 8351	${ }_{0}$	${ }_{1}$	${ }_{0}$	\bigcirc	${ }_{0}^{1}$	－${ }_{1}^{1.112 \%}$	${ }_{0}$	1	6970 6534	${ }_{0}$	${ }_{1}$	0	${ }_{\substack{\text { S3432 } \\ \text { S92 } \\ \text { 277 }}}$	${ }_{0}$	0	0	${ }_{1}^{1}$
8352	0	0	。	1	1	1．14\％	0	1	6534	0	${ }_{0}$	1	\＄318390	0	0	0	1
8353	0	0	0	0	1	1．11\％	0	1	6098	0	1	0	\＄855473	0	－	。	1
8354 8355 8	0	1	0	0	0	${ }^{1.111 \%}$	0	1	6098	0	0	1	\＄415546	0	0	0	1
8355 8355 8	0	1	0	0	0	${ }^{1.111 \%}$	0	1	${ }_{6}^{6970}$	${ }^{1}$	1	0	${ }_{\text {S }} \$ 8587398$	0	0	0	1
8356 8357	0	0	1	0	－	${ }^{1.14 \%}$	0	1	6098 6098	1	\bigcirc	0	S133014 $\$ 8871$	0	\bigcirc	\bigcirc	1
8357 8358	0	0	${ }_{0}$	0	${ }_{1}^{0}$	${ }^{1.111 \%}$	\bigcirc	1	6098 11761	1	\bigcirc	\bigcirc	\＄84371	${ }_{0}$	\bigcirc	0	1
8359	0	1	0	0	0	1．11\％	0	1	6098	1	0	0	\＄109996		0	0	1
8360	0	0	1	0	0	1．11\％	0	1	7405	1	0	0	\＄108985	0	0	0	1
8361	0	1	0	0	0	1．11\％	0	1	6098	1	0	0	\＄1776161	0	0	0	1
8362 863	0	0	0	0		1．12\％	0	1	6098	0	0	0	\＄375938	0	0	0	1
8363 8364	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	${ }^{1.1 .12 \%}$	\bigcirc	${ }_{0}^{1}$	6930 6300	\bigcirc	0	0	S480938 S407 352	${ }_{0}$	\bigcirc	0	1
8365	0	0	0	1	0	1．12\％	0	1	9148	0	0	0	\＄337799	0	0	0	1
8366	0	1	0	0	0	1．12\％	－	1	7841	0	1	0	\＄701846	0	0	0	1
8367	\bigcirc	0	1	0	0	1．14\％	0	1	10890	0	0	0	S391489 $\$ 974987$	0	0	\bigcirc	1
8368 8369		1	0	0		1．14\％	\bigcirc	1	1019	0	1	0	\＄974987	0	0	0	1
8369 8370	0	${ }_{0}^{1}$	0	${ }_{1}$	0	${ }^{1.1 .14 \%}$	\bigcirc	${ }_{1}^{1}$	8712 9583	${ }_{1}$	${ }_{0}$	${ }_{0}^{1}$	5323544 560371	0	\bigcirc	0	1
8371	0	1	0	0	0	1．15\％	0	0	6098	1	0	0	\＄65 290	0	0	0	1
8372	0	0	1	0	0	1．11\％	0	1	6970	1	0	0	\＄56793	0	0	\bigcirc	1
8373	0	1	0	0	0	1．11\％	0	0	${ }^{6} 998$	0	0	1	\＄332408	0	0	0	1
8374 8375	0	0	0	0		1．12\％	0	1	6098	0	1	，	\＄678 451	0	0	0	1
8375 8376	0	1	\bigcirc	\bigcirc	0	${ }_{\text {1．12\％}}^{1.12 \%}$	\bigcirc	${ }_{0}^{1}$	7405 7405	\bigcirc	\bigcirc	${ }_{1}^{0}$	$\$ 408760$ $\$ 23044$	0	\bigcirc	0	1
8377	0	0	0	0	0	1．12\％	0	1	7841	0	0	0	\＄51943	0	0	0	1
8378	0	1	0	0	－	1．12\％		1	9583	0	1	－	\＄695608	0	0	0	1
8379	0	1	0	0	0	1．14\％	0	1	10019	0	1	0	\＄965270	\bigcirc	0	\bigcirc	1
8380 8381	0	0	0	1	0	1．14\％	\bigcirc	1	9148 8600	0	0		\＄335620	0	0	\bigcirc	1
8381 8382	\bigcirc	1	${ }_{0}^{1}$	${ }_{0}$	\bigcirc	${ }^{1.14 \%}$	0	1	8600 6534	\bigcirc	\bigcirc	${ }_{1}^{0}$	\＄455288 $\$ 28974$	\bigcirc	\bigcirc	\bigcirc	1
${ }_{8383}^{8382}$	0	1	0	0	0	1．14\％	0		${ }_{11761}$	0	0	1	\＄234110	0	0	0	1
8384	0	1	0	0	0	${ }^{1.15 \%}$	\bigcirc	1	5663	1	0	0	S105 757 $\$ 118530$	\bigcirc	0	0	1
8385	0	0	0	0	1	${ }^{0.66 \%}$	0	1	6098	1	－	0	5118530 $\$ 85200$	－	0	0	1
8386 8387	\bigcirc	0	0	0	0	1．11\％	0	1	7405 6534	1	0	\bigcirc	$\$ 85240$ S12642 S	0	0	0	1
8387 8388	\bigcirc	${ }_{1}^{0}$	0	\bigcirc	0	${ }_{\text {linl }}^{1.11 \%}$	0	1	6534 6700	${ }_{0}^{1}$	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	1
${ }_{8389}$	0	${ }_{0}$	0	0	1	${ }_{1.11 \%}^{1.11 \%}$	0	1	7405	0		0	\＄345431	0	0	0	1
8390	0	0	0	0	0	1．14\％	0	1	7405	－	1	0	\＄957880	0	0	0	1
8391 8392	0	0	0	0	0	${ }^{1.14 \%}$	\bigcirc	1	6970	0	1	1	\＄4095 633 $\$ 5078$	－	0	0	1
8392 8393	\bigcirc	1	0	0	0	1．14\％	0	1	6970 6534	0	1	0	\＄650 378	0	0	0	1
8393 8394	\bigcirc	${ }_{0}^{1}$	0	\bigcirc	\bigcirc	－${ }_{\text {1．1．15\％}}$	\bigcirc	1	6534 6534	1	\bigcirc	${ }_{1}$	$\begin{array}{r}\text { S } \\ \$ 2795000 \\ \hline\end{array}$	\bigcirc	\bigcirc	\bigcirc	1
8395	0	1	0	0	0	${ }_{1.11 \%}$	0	1	6970	0	1	0	\＄756434	0			1
8396	0	0	0	0	1	${ }^{1.14 \% \%}$	0	1	6534	1	0	0		\bigcirc	0	\bigcirc	1
8397	0	1	0	0	0	${ }^{1.15 \%}$	0	1	6098 6534	1	0	0	5139273 $\$ 90518$	\bigcirc	0	\bigcirc	1
8398 8399	0	0	1	0	0	1．11\％	\bigcirc	1	6534 8276	1	\bigcirc	0		0	0	0	1
8399 8400	\bigcirc	${ }_{0}^{1}$	${ }_{0}$	${ }_{0}$	\bigcirc	${ }_{\text {1．11\％}}^{1.11 \%}$	1	1	8276 6098	1	\bigcirc	1	${ }_{\text {S }}^{51239793}$	\bigcirc	${ }_{0}$	${ }_{0}$	1
8401	0	0	0	0	1	1．11\％	0	1	5663	0	1	${ }^{1}$	\＄830312	。			1
8402	0	0	0	0	1	${ }^{1.11 \%}$		1	5663	0	0	0	5379974 $\$ 373641$	0	\bigcirc	\bigcirc	1
8403 8404	\bigcirc	0	\bigcirc	0	1	${ }_{\text {1．111\％}}^{1.11}$	\bigcirc	1	6098 6970	0	\bigcirc	0	$\$ 377341$ $\$ 525826$	0	\bigcirc	\bigcirc	1
8404 8405	0	\bigcirc	0	0	1	${ }^{1.111 \%}$	\bigcirc	1	6970 6970	0	0	0	$\begin{array}{r}\$ 525826 \\ \$ 37823 \\ \hline\end{array}$	0	\bigcirc	\bigcirc	1
8405 8406	${ }_{0}$	${ }_{0}$	1	${ }_{0}^{\circ}$	${ }_{0}$	${ }_{1.14 \%}^{1.14 \%}$	${ }_{0}$	1	6959	${ }_{0}$	${ }_{0}$	${ }_{0}$	53788888 5388	${ }_{0}$	${ }_{0}$	${ }_{0}$	1
8407	0	0	0	0	1	1．14\％	0	1	6534	0	0	0	\＄287674	0	0	0	1
8408	0	1	0	0	0	1．14\％	0	1	6098 6908	0	0	0	S319274 $\$ 115057$		0	0	1
8409 8410	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	${ }^{1.11 \%}$	\bigcirc	${ }_{0}^{1}$	6098 7841 781	1	\bigcirc	\bigcirc	S115057 S105 57	\bigcirc	0	\bigcirc	1
8411	0	0	1	0	0	1．11\％	0	1	7841	1	0	。	\＄106835	0			1
8412	0	1	0	0	0	1．11\％	0	1	5663	0	1	0	\＄570 315	0	0		1
8413 8414 848	\bigcirc	1	0	0	0	1．11\％				\bigcirc	0			0	0	0	
8414 8415		1	\bigcirc	0	\bigcirc	${ }_{\text {1．114\％}}^{1.11 \%}$	\bigcirc	1	${ }_{5663}^{6970}$	\bigcirc	${ }_{0}^{1}$	\bigcirc	$\$ 988363$ $\$ 345431$	\bigcirc	\bigcirc	\bigcirc	1
8416	0	1	0	0	0	1．14\％	0	0	6098	0	0	1	\＄279 176	0	0		1
8417 8418	\bigcirc	1	0	0	0	${ }^{1.12 \%}$	0	0	${ }^{11326}$	0	0	1	\＄691497	0	0		1
8418 8419	0	0	\bigcirc	${ }_{0}^{1}$	0	${ }_{1}^{1.14 \%}$	0	1	7841 9 9	\bigcirc	${ }_{0}^{1}$	${ }_{1}^{1}$	5809463 $\$ 375813$	${ }_{0}$	${ }_{0}$	\bigcirc	1
8420	1	1	0	0	0	1．14\％	0	1	7841	0	1	0	\＄157405	0		0	1
8421	－	1	0	0	0	${ }^{1.12 \%}$	0	1	7841	0	0	0	\＄414076			0	1
8422 8423	\bigcirc	\bigcirc	\bigcirc	0	1	${ }_{1}^{1.12 \%}$	\bigcirc	1	7841 9883	\bigcirc	\bigcirc	0 1	$\$ 518147$ $\$ 395000$	\bigcirc	\bigcirc	0	1
8423 8424	0	${ }_{0}$	\bigcirc	1	${ }_{0}$	${ }^{1.1 .12 \%}$	\bigcirc	1	9583 9000	\bigcirc	${ }_{0}$	${ }_{0}^{1}$	\＄395000 $\$ 654076$	\bigcirc	0	0	1
8425		1	0	0	0	1．14\％	0	1	8712	1	。	0	\＄188207	0	0	0	1
8426 8427 8	0	0	0	0	1	${ }^{1.112 \%}$	\bigcirc	1	9148	1	0	\bigcirc		0	0	\bigcirc	
8427 8428	0	${ }_{1}$	：	\bigcirc	${ }_{0}^{1}$	${ }_{\text {1．12\％}}^{1.12 \%}$	\bigcirc	1	16988 8712	1	0	\bigcirc	¢ 5167253	0	\bigcirc	0	1
8429	0	1	0	0	0	1．12\％	0	1	9148	1	0	0	5237140	0	0	0	1
8430 8331	0	0	0	0	0	1．12\％	0	1	11326	0	0	0	\＄315222	0	0		1
8431 8432	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{1}$	1．12\％	\bigcirc	1	99533	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	（ $\begin{gathered}\text { S495 } 537 \\ \$ 1115470\end{gathered}$	\bigcirc	\bigcirc	\bigcirc	1
8433	0	1	0	0		1．14\％			8276		0	1	\＄470911		0	0	1
8434	0	0	，	1	0	1．16\％	1	1	12632		，	1	\＄576 174	0	0	0	1
8435	0	0	1	0	0	1．14\％		1	${ }^{13504}$	0	1	0	\＄1293733	\bigcirc	O	O	1
8436 8437	$\stackrel{0}{0}$	1	0	\bigcirc	\bigcirc	1．1．12\％	0	1	9583 10454	0	1	\bigcirc	\＄959 190 S510	\bigcirc	0	0	1
8438	0	0	0	1		1．12\％		1	8712	1	0		\＄93910		0	0	1
8439 8490	0	1	0	0	0	1．12\％	\bigcirc	1	8712	1	0	\bigcirc	\＄155892	\bigcirc	0	\bigcirc	
8440 8441	0	1	0	0	0	1．14\％	－	1	8276 8712	1	0	0	S2122 297 $\$ 87202$	\bigcirc	0	0	1
8442	0	0	0	0	0	1．12\％	0	1	8712	0	0	1	\＄440238		0	0	1
8443 8444	\bigcirc	1	\bigcirc	0	\bigcirc	${ }^{1.12 \%}$	\bigcirc	1	8500 8712	0	0	0	S597 646 $\$ 89604$	\bigcirc	0	\bigcirc	1
－8444	\bigcirc	${ }_{0}^{\circ}$	0	1	0	${ }^{1.1 .12 \%}$	0	1	8712 8712	0	${ }_{0}^{1}$	0	5896804 $\$ 44303$	\bigcirc	\bigcirc	\bigcirc	1
8446	0	1		1	0	1．14\％	0	0	9148	0	0	1	5493072 $\$ 30678$	0	0	0	
8447 8448	－	0	0	1	－	${ }^{1.14 \%}$	0	1	${ }^{9} 148$	0	0	0	${ }_{\$ 506878}$		0	0	1
8449	0	1	0	0		${ }^{1.12 \%}$	0	1	${ }_{12127}$	0	1	0	\＄8565630	0	0	0	1
8450	0	0	0	0	1	1．14\％	0	1	8300	0	${ }_{0}$	0	\＄638686	0	0	0	1

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline observation \& PROPERTY DURESS \(=1\) \& LTV＿9\％ \& LTV 81\％－90\％ \& LTV 70\％．78\％ \& \[
\begin{gathered}
\text { LTV BELOW } \\
70 \%
\end{gathered}
\] \& total tax burden \& PARCEL IN SCEIP \(=1\) \& CONVENTIONAL LOAN \(=1\) \& Lotstiz \& \[
\begin{gathered}
\text { SOLD } \\
\text { PRIOR_2000 }
\end{gathered}
\] \& SOLD DURING
2004＿2007 \& Sold 2008－2012 \& \[
\begin{aligned}
\& \text { PRICE ADJUST. TO } \\
\& 2012
\end{aligned}
\] \& \[
\begin{gathered}
\text { ZIP CODE } \\
\text { Z95403 }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { ZIP CODE } \\
\& 95404
\end{aligned}
\] \& \[
\begin{gathered}
\text { ZIP CODE } \\
95472
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { ZIP CODE } \\
\& 94928
\end{aligned}
\] \\
\hline 8451 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．12\％ \& O \& 1 \& 8712 \& 1 \& － \& 0 \& \＄172 918 \& 0 \& 0 \& 0 \& \\
\hline 8452 \& 0 \& \& \& 0 \& \& 1．12\％ \& 0 \& 1 \& 10454 \& 0 \& 0 \& 0 \& 547277 \& 0 \& 0 \& 0 \& 1 \\
\hline 8453 \& 0 \& 0 \& 0 \& 0 \& \& 1．09\％ \& 0 \& 1 \& 7405 \& 0 \& 0 \& 1 \& 531293 \& 0 \& 0 \& 0 \& 1 \\
\hline 8454 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．11\％ \& 0 \& 1 \& 9583 \& 0 \& 0 \& 1 \& \＄322318 \& 0 \& 0 \& 0 \& 1 \\
\hline 8455 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．11\％ \& 0 \& 1 \& 10019 \& 1 \& 0 \& 0 \& \＄76022 \& 0 \& 0 \& 0 \& 1 \\
\hline 8456 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．12\％ \& 0 \& 1 \& 8276 \& 0 \& 0 \& 1 \& \＄362871 \& 0 \& 0 \& 0 \& 1 \\
\hline 8457 \& 0 \& 1 \& \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 8712 \& 0 \& 1 \& 0 \& \＄1284358 \& 0 \& 0 \& 0 \& 1 \\
\hline 8458 \& 0 \& 0 \& \& 0 \& 1 \& 1．12\％ \& 0 \& 1 \& 9148 \& 0 \& 1 \& 0 \& \＄1013778 \& 0 \& 0 \& 0 \& 1 \\
\hline 8459 \& 0 \& 0 \& 1 \& 0 \& 0 \& 1．14\％ \& \(\bigcirc\) \& 1 \& 8712 \& 0 \& 0 \& 0 \& \＄511057 \& 0 \& 0 \& 0 \& 1 \\
\hline 8460 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 1 \& 11326 \& 0 \& 1 \& 0 \& \＄1208204 \& 0 \& \& 0 \& 1 \\
\hline 8461 \& 0 \& 0 \& 0 \& 0 \& － \& 1．14\％ \& 0 \& 1 \& 11326 \& 1 \& 0 \& 0 \& \＄146125 \& 0 \& \& 0 \& 1 \\
\hline 8462 \& 0 \& 1 \& \(\bigcirc\) \& 0 \& 0 \& \({ }^{1.14 \%}\) \& 0 \& 1 \& \({ }^{91488}\) \& 1 \& 0 \& 0 \& 578706 \& 0 \& 0 \& 0 \& 1 \\
\hline 8463 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 1 \& \({ }^{12632}\) \& 0 \& 1 \& 0 \& \＄1303 108 \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \\
\hline 8464 \& 0 \& 0 \& 0 \& 0 \& 0 \& \({ }^{1.14 \%}\) \& 0 \& 1 \& 6098 \& 0 \& 1 \& 0 \& S912400
\(\$ 117681\) \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \\
\hline 8465
8466 \& 0 \& 0 \& 0 \& 0 \& 0 \& \({ }^{1.17 \%}\) \& 0 \& 1 \& 6098
9583 \& \(\bigcirc\) \& 1 \& 0 \& \＄1117681 \& 0 \& 0 \& \(\bigcirc\) \& 1 \\
\hline 8466 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．12\％ \& 0 \& 1 \& 9583 \& 0 \& \& \& 5424973 \& \& \& \& 1 \\
\hline 8467
8468 \& 0 \& 0 \& 0 \& 0 \& 0 \& \({ }^{1.122 \%}\) \& 0 \& 1 \& 9583 \& 0 \& 0 \& 0 \& S523904
\(\$ 559236\) \& 0 \& 0 \& 0 \& 1 \\
\hline 84689
8469 \& 0 \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }_{1}^{1.12 \%}\) \& \(\bigcirc\) \& 1 \& 10454
8276 \& 0 \& 0 \& \(\bigcirc\) \& S549 236
\(\$ 483604\) \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \\
\hline 8470 \& 0 \& 0 \& 1 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 7405 \& 0 \& 0 \& 1 \& \＄423739 \& 。 \& 0 \& 。 \& 1 \\
\hline 8471 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 7841 \& 0 \& 0 \& 0 \& \＄638 686 \& 0 \& 0 \& 0 \& 1 \\
\hline 8472 \& 0 \& \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 15246 \& 0 \& 1 \& 0 \& \＄904602 \& 0 \& 0 \& 0 \& 1 \\
\hline 8473 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．14\％ \& 0 \& 1 \& 9583 \& 0 \& 0 \& 0 \& \＄495 118 \& 0 \& 0 \& 0 \& 1 \\
\hline 8474 \& 0 \& 0 \& 0 \& 1 \& 0 \& \({ }^{1.14 \%}\) \& \(\bigcirc\) \& 1 \& 8712
7881 \& 0 \& 0 \& 0 \& \begin{tabular}{l}
5483604 \\
\(\$ 192724\) \\
\hline
\end{tabular} \& 0 \& 0 \& 0 \& 1 \\
\hline 8475 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．14\％ \& 0 \& 1 \& 7841 \& \& \(\bigcirc\) \& 0 \& S192724
\(\$ 375000\) \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \\
\hline 8476
8477 \& \(\bigcirc\) \& 1 \& \({ }_{0}\) \& 0 \& \({ }_{0}\) \& \({ }_{\text {l }}^{1.12 \%}\) \& \({ }_{0}\) \& 1 \& 9583
8712 \& \({ }_{1}\) \& \(\bigcirc\) \& \({ }_{0}^{1}\) \& \(\$ 375000\)
\(\$ 13642\) \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \\
\hline 8478 \& 0 \& \& 0 \& 0 \& 1 \& 1．12\％ \& 0 \& 1 \& 12632 \& \& 0 \& 1 \& \＄538453 \& 0 \& 0 \& － \& 1 \\
\hline 8479 \& 0 \& 0 \& 1 \& 0 \& 0 \& 1．12\％ \& 0 \& 0 \& 6970 \& 0 \& 0 \& 1 \& \＄415510 \& 0 \& 0 \& 0 \& 1 \\
\hline 8480 \& 0 \& 0 \& 0 \& 1 \& 0 \& \({ }^{1.14 \%}\) \& 0 \& 1 \& 6098 \& 0 \& 0 \& 0 \& \＄426032 \& 0 \& 0 \& 0 \& 1 \\
\hline － 8481 \& 0 \& 0 \& 0 \& 0 \& 0 \& \({ }^{1.15 \%}\) \& \(\bigcirc\) \& 0 \& \begin{tabular}{l}
7405 \\
8276 \\
\hline
\end{tabular} \& \({ }_{1}\) \& \(\bigcirc\) \& 1 \& \({ }_{\substack{ \\5323322 \\ 562103}}\) \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \\
\hline 8482
8483 \& \(\bigcirc\) \& \({ }_{0}\) \& 0 \& 1 \& \({ }_{0}\) \& \({ }_{\text {l }}^{1.111 \%}\) \& \({ }_{0}\) \& 1 \& 8276
7841 \& 1 \& 0 \& \({ }_{0}\) \& \＄62 103
\(\$ 77588\) \& \(\bigcirc\) \& \(\bigcirc\) \& 0 \& 1 \\
\hline 8484 \& 0 \& \& 0 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& 8276 \& 1 \& 0 \& 0 \& \＄105325 \& 0 \& 0 \& 0 \& 1 \\
\hline 8485 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& 8276 \& 1 \& 0 \& 0 \& \＄170892 \& 0 \& \& 0 \& 1 \\
\hline 8486
8887 \& \(\bigcirc\) \& 0 \& 0 \& 0 \& 0 \& \({ }^{1.12 \%}\) \& 0 \& 1 \& 8276
7841 \& 0 \& 0 \& 1 \& \＄363000 \& 0 \& 0 \& 0 \& 1 \\
\hline 8487
8488 \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }^{1.12 \%}\) 1．12\％ \& 0 \& 1 \& 7841
9148 \& 1 \& 0 \& \(\bigcirc\) \& \＄143 506
\(\$ 19385\) \& \(\stackrel{0}{0}\) \& 0 \& 0 \& 1 \\
\hline 8489 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 7841 \& 0 \& 0 \& 0 \& \＄273501 \& 0 \& 0 \& 0 \& 1 \\
\hline 8490 \& 0 \& \& 1 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 8276 \& 0 \& 0 \& 0 \& 547847 \& 0 \& 0 \& 0 \& 1 \\
\hline 8491 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 7841 \& 0 \& 1 \& 0 \& \＄1046611 \& 0 \& 0 \& 0 \& 1 \\
\hline 8492 \& 0 \& 0 \& 0 \& 1 \& 0 \& \({ }^{1.12 \%}\) \& 0 \& 1 \& 8276
850 \& 0 \& 1 \& 0 \& \＄935799 \& 0 \& 0 \& 0 \& 1 \\
\hline 8493
8494 \& 0 \& 0 \& 0 \& 0 \& 1 \& \({ }_{\text {1．1．14\％}}^{1.14}\) \& 0 \& 1 \& 8500
8276 \& \({ }_{1}^{0}\) \& \(\bigcirc\) \& \(\bigcirc\) \& \＄557 889
\(\$ 191971\) \& \(\bigcirc\) \& 0 \& 0 \& 1 \\
\hline 8495 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& \({ }_{9} 148\) \& 1 \& 0 \& 0 \& \＄163940 \& 。 \& 。 \& 。 \& 1 \\
\hline 8496 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 10454 \& 0 \& 0 \& 1 \& \＄363486 \& 0 \& 0 \& 0 \& 1 \\
\hline 8497
8498 \& 0 \& 0 \& 0 \& 1 \& 0 \& \({ }^{1.12 \%}\) \& 0 \& 1 \& 10890 \& \(\bigcirc\) \& 0 \& 1 \& \({ }_{5643803}\) \& 0 \& 0 \& 0 \& 1 \\
\hline 8498
8499 \& \(\bigcirc\) \& \({ }_{1}\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }_{\substack{1.12 \% \\ 1.14 \%}}^{1.1}\) \& 0 \& 1 \& \({ }_{9}^{10890}\) \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \& S376539
\(\$ 34200\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \\
\hline 8500 \& \& 0 \& 0 \& 1 \& 0 \& 1．14\％ \& 0 \& 1 \& 9583 \& 0 \& 。 \& 1 \& \＄544306 \& 0 \& 。 \& 0 \& 1 \\
\hline 8501 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．14\％ \& 0 \& 1 \& 9148 \& 0 \& 0 \& 1 \& \＄408671 \& 0 \& 0 \& 0 \& 1 \\
\hline 8502 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 9688 \& 0 \& 0 \& 0 \& \＄641 251 \& 0 \& 0 \& 0 \& 1 \\
\hline 8503 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．12\％ \& 0 \& 1 \& 11761 \& 1 \& 0 \& 0 \& 579153 \& \& 0 \& 0 \& 1 \\
\hline 8504
8505
8505 \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \& 1．12\％ \& \(\bigcirc\) \& \({ }_{0}^{1}\) \& \({ }_{\substack{8712 \\ 9148}}\) \& 1 \& \(\bigcirc\) \& \({ }_{1}\) \& \＄147873
\(\$ 474599\) \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \& 1 \\
\hline \({ }_{8} 806\) \& 0 \& \({ }_{0}\) \& 1 \& \({ }_{0}\) \& \({ }_{0}\) \& \({ }^{1.114 \%}\) \& 0 \& \(\bigcirc\) \& 113504
13 \& \({ }_{0}\) \& 1 \& \({ }_{0}^{1}\) \& \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \\
\hline 8507 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 1 \& 9148 \& 0 \& 0 \& 1 \& \＄463 324 \& 0 \& 0 \& 0 \& 1 \\
\hline 8508 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 1 \& 9583 \& 0 \& 0 \& 0 \& \＄273501 \& \& 0 \& 0 \& 1 \\
\hline 8509
8510 \& 0 \& 0 \& 1 \& 0 \& 0 \& \({ }^{1.511 \%}\) \& 1 \& 1 \& 9583 \& 0 \& 1 \& 0 \& \＄9980522 \& 0 \& － \& 0 \& 1 \\
\hline 8510
8511
8 \& \(\bigcirc\) \& \({ }_{1}\) \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }^{1.1 .12 \%}\) \& \(\bigcirc\) \& 1 \& 6098
6544 \& \(\bigcirc\) \& 0 \& \({ }_{0}\) \& S605
\(\$ 39592\)
S592 \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \& 1 \\
\hline 8512 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．11\％ \& 0 \& 1 \& 9583 \& 1 \& 0 \& 0 \& \＄154228 \& 0 \& 0 \& 0 \& 1 \\
\hline 8513 \& 0 \& \& 0 \& 0 \& 1 \& \({ }^{1.12 \%}\) \& 0 \& 1 \& 9583 \& 1 \& 0 \& \({ }^{0}\) \& \begin{tabular}{l}
\＄136922 \\
\(\$ 55095\) \\
\hline
\end{tabular} \& － \& － \& 0 \& 1 \\
\hline 8514
8515 \& 0 \& \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& \({ }^{6970}\) \& \& ， \& 1 \& \＄550 159 \& \& 0 \& 0 \& 1 \\
\hline 8515
8516 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& 0 \& 1 \& \({ }^{1.1 .14 \%}\) \& 0 \& 1 \& 11326
11761 \& 0 \& \({ }_{1}^{0}\) \& \({ }_{0}^{1}\) \& \({ }_{\substack{\text { S348424 } \\ \$ 1173103}}^{\text {S }}\) \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \& 1 \\
\hline 8517 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．11\％ \& 0 \& 1 \& 9583 \& 1 \& 0 \& 0 \& \＄152634 \& 0 \& 0 \& 0 \& 1 \\
\hline 8518 \& 0 \& \& 0 \& 1 \& 0 \& \({ }^{1.12 \%}\) \& 0 \& 1 \& 8712 \& 1 \& 0 \& 0 \& \& 0 \& － \& \(\bigcirc\) \& 1 \\
\hline 8519 \& 0 \& \& 0 \& 1 \& 0 \& \({ }^{1.14 \%}\) \& 0 \& 1 \& 7841
6854 \& 0 \& 0 \& 0 \& \＄532239 \& 0 \& 0 \& \(\bigcirc\) \& 1 \\
\hline 8520
8521 \& 0 \& 1 \& 0 \& 0 \& 0 \& \({ }^{1.12 \%}\) \& 0 \& 1 \& 6534
8276 \& 1 \& 0 \& 0 \& \＄1117681 \& \& 0 \& 0 \& 1 \\
\hline 8521
8522 \& \({ }_{0}^{1}\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }_{1}^{0}\) \& \({ }_{1}^{1.12 \%}\) \& 0 \& 1 \& 8276
6534 \& \({ }_{0}^{1}\) \& \(\bigcirc\) \& \({ }_{0}^{0}\) \& \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }_{1}^{1}\) \\
\hline 8523 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 7841 \& 0 \& 1 \& 0 \& \＄850 014 \& 0 \& 0 \& 0 \& 1 \\
\hline 8524
8525
85 \& 0 \& 0 \& 0 \& 0 \& 0 \& \({ }^{1.122 \%}\) \& 0 \& 1 \& 6970
6534 \& 0 \& 0 \& 0 \& S359592
\(\mathbf{S 4 0 9 6 9 3}\) \& 0 \& 0 \& 0 \& 1 \\
\hline 8525
8526 \& \(\bigcirc\) \& \({ }_{0}^{1}\) \& \({ }_{1}^{0}\) \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }_{\text {l }}^{\text {1．14\％}}\) \& 0 \& 1 \& 6534
7405 \& \(\bigcirc\) \& \({ }_{1}\) \& \({ }_{0}^{1}\) \& 5409693
\(\$ 88699\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \\
\hline 8527 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．14\％ \& 0 \& 1 \& 6534 \& 1 \& 0 \& 。 \& \＄125033 \& 0 \& \& － \& 1 \\
\hline 8528 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．09\％ \& 0 \& 1 \& 8276 \& 0 \& \& 0 \& \＄886755 \& 0 \& 0 \& \& 1 \\
\hline 8529 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．11\％ \& 0 \& 1 \& 10019 \& 1 \& 0 \& 0 \& \＄71551 \& 0 \& 0 \& 0 \& 1 \\
\hline 8530
8531 \& 0 \& \(\bigcirc\) \& \({ }_{1}^{0}\) \& \({ }_{0}^{1}\) \& \({ }_{0}^{1}\) \& \({ }_{\text {1．14\％}}^{1.11 \%}\) \& 0 \& 1 \& 9583
8550 \& \({ }_{0}^{1}\) \& 0 \& 0 \& S146316
S588551 \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \\
\hline 8532 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1．12\％ \& 0 \& 1 \& 10454 \& 1 \& 0 \& 0 \& \＄152865 \& 0 \& 0 \& 0 \& 1 \\
\hline 8533 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．06\％ \& 0 \& 1 \& 9583 \& 1 \& 0 \& 0 \& \＄1496414 \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \\
\hline 8534
8535
8 \& \(\bigcirc\) \& \(\bigcirc\) \& 0 \& 0 \& 1 \& \({ }^{1.111 \%}\) \& 0 \& 1 \& 10019 \& 1 \& 0 \& 0 \& \begin{tabular}{l}
S148085 \\
\(\$ 28554\) \\
\hline
\end{tabular} \& 0 \& 0 \& \& 1 \\
\hline 8535
8536 \& \({ }_{0}\) \& \({ }_{0}\) \& 0 \& \(\bigcirc\) \& 1 \& \({ }^{1.1 .12 \%}\) \& \(\bigcirc\) \& 1 \& 8712
9148 \& \(\bigcirc\) \& 0 \& 0 \& \({ }_{\substack{\text { S285554 } \\ \$ 35000}}\) \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \\
\hline 8536
8537 \& － \& \({ }_{0}\) \& \({ }_{0}\) \& 1 \& 1 \& \({ }_{1}^{1.12 \%}\) \& 0 \& 1 \& \({ }_{10} 91454\) \& \({ }_{1}\) \& \(\bigcirc\) \& \({ }_{0}^{1}\) \& S335000
\(\$ 19999\) \& \({ }_{0}\) \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \\
\hline 8538 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．12\％ \& 0 \& 1 \& 13504 \& \(\bigcirc\) \& － \& 0 \& \＄449061 \& 0 \& 0 \& \(\bigcirc\) \& 1 \\
\hline 8539
8540 \& 0 \& 0 \& 0 \& 0 \& 0 \& \({ }^{1.12 \%}\) \& 0 \& 1 \& 9148 \& 0 \& 1 \& 0 \& \＄1237762 \& 0 \& 0 \& 0 \& 1 \\
\hline 8540
8541 \& 0 \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }^{1.1 .12 \%}\) \& \(\bigcirc\) \& 1 \& \({ }_{8712}^{11761}\) \& \({ }_{1}^{0}\) \& \(\bigcirc\) \& \({ }_{0}^{1}\) \& \begin{tabular}{l}
S331355 \\
\(\$ 13843\) \\
\hline
\end{tabular} \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \\
\hline 8542 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．12\％ \& － \& 1 \& 7841 \& 0 \& 0 \& 0 \& \＄354 144 \& 0 \& 0 \& 0 \& 1 \\
\hline 8543 \& 0 \& 0 \& 0 \& 0 \& 1 \& \({ }^{1.12 \%}\) \& 0 \& 1 \& 8150
7801 \& 0 \& 0 \& 0 \& \＄545064 \& 0 \& 0 \& \(\bigcirc\) \& \\
\hline 8544
8545 \& 0 \& 0 \& 1 \& 0 \& 0 \& －\({ }_{\text {1．12\％}}\) \& 0 \& 1 \& 7841
10454 \& \(\bigcirc\) \& 1 \& 0 \& \begin{tabular}{|c}
\(\$ 756434\) \\
\(\$ 372297\)
\end{tabular} \& 0 \& \(\bigcirc\) \& 0 \& 1 \\
\hline － 85456 \& \({ }_{0}\) \& 1 \& \({ }_{0}\) \& \({ }_{0}\) \& \(\bigcirc\) \& \({ }_{1}^{1.12 \%}\) \& \({ }_{0}\) \& 1 \& \({ }_{9}^{10454}\) \& \({ }_{0}\) \& 0 \& \({ }_{0}\) \& \({ }_{\text {\％}}\) \& \({ }_{0}\) \& \({ }_{0}^{\circ}\) \& \(\bigcirc\) \& 1 \\
\hline 8547 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 6970 \& 0 \& 1 \& 0 \& \＄756434 \& 0 \& 0 \& 0 \& 1 \\
\hline 8548
854
859 \& 0 \& 0 \& \(\bigcirc\) \& 0 \& 1 \& 1．11\％ \& \(\bigcirc\) \& 1 \& 6098
6098 \& 0 \& 0 \& 0 \& \begin{tabular}{l}
\(\$ 306252\) \\
\(\$ 114804\) \\
\hline
\end{tabular} \& 0 \& \(\bigcirc\) \& 0 \& \\
\hline 8549
8550 \& 0 \& \({ }_{0}^{1}\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }^{1.11 \%}\) \& \(\bigcirc\) \& 1 \& 6098
6098 \& 1 \& 0 \& 0 \& \＄114804
\(\$ 149641\) \& 0 \& \(\bigcirc\) \& 0 \& 1 \\
\hline 8551 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．12\％ \& O \& 1 \& 6534 \& 0 \& 1 \& 0 \& \＄1080733 \& 0 \& 0 \& 0 \& 1 \\
\hline 8552
8553
858 \& 1 \& 1 \& 0 \& 0 \& 0 \& 1．12\％ \& － \& 1 \& \({ }^{14375}\) \& 0 \& 1 \& ， \& \＄1 190609 \& 0 \& 0 \& 0 \& 1 \\
\hline 8553
8554 \& 0 \& \({ }_{1}\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }^{1.14 \%}\) \& \(\bigcirc\) \& \({ }_{0}^{1}\) \& 6098
9583 \& \(\bigcirc\) \& \({ }_{0}^{1}\) \& 0 \& \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \\
\hline 8555 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．14\％ \& \& 1 \& －9583 \& \({ }_{0}\) \& 1 \& 1 \& \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \\
\hline 8 8556 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．11\％ \& 0 \& 1 \& 8276 \& 1 \& 0 \& 0 \& \＄137266 \& 0 \& 0 \& 0 \& 1 \\
\hline 8557
8558 \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }_{1}\) \& \({ }_{\text {1．112\％}}^{1.11}\) \& \(\bigcirc\) \& 1 \& 9148
8276 \& \({ }_{0}^{1}\) \& \({ }_{1}\) \& 0 \& \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \\
\hline 8559 \& 0 \& 1 \& \& \& 0 \& 1．12\％ \& 0 \& 1 \& 8712 \& 0 \& 1 \& 0 \& \＄1076611 \& 0 \& 0 \& 0 \& 1 \\
\hline 8560
8561 \& \(\bigcirc\) \& 1 \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& － \(1.12 \%\) \& \(\bigcirc\) \& 1 \& 9148
7500 \& \(\bigcirc\) \& \(\bigcirc\) \& 0 \& \(\$ 447909\)
\(\$ 577126\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \\
\hline \({ }_{8562}\) \& 0 \& 0 \& 0 \& 1 \& 1 \& \({ }^{1.12 \%}\) \& 0 \& 1 \& 9583 \& \({ }_{0}^{\circ}\) \& 0 \& 1 \& － \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \\
\hline 8563 \& 0 \& 1 \& 0 \& 0 \& 0 \& \({ }^{1.14 \%}\) \& － \& 1 \& 9800 \& 0 \& 0 \& 0 \& \({ }_{5622014}\) \& 0 \& \(\bigcirc\) \& 0 \& 1 \\
\hline 8564
8565 \& 0 \& \& \& 0 \& 0 \& \({ }^{1.111 \%}\) \& \(\bigcirc\) \& 1 \& 8712 \& 1 \& 0 \& 1 \& \＄5130403 \& 0 \& 0 \& 0 \& 1 \\
\hline 8565
8566 \& 0 \& \({ }_{1}\) \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \& \({ }^{1.1 .11 \%}\) \& 0 \& \({ }_{0}^{1}\) \& 7405
8712 \& 0 \& 0 \& 1 \& 5331355
\(\$ 365996\) \& 0 \& 0 \& \(\bigcirc\) \& 1 \\
\hline 8567 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．11\％ \& \& 1 \& 7841 \& 1 \& \& \({ }_{0}\) \& \＄139665 \& 0 \& 0 \& 。 \& 1 \\
\hline 8568
859 \& 0 \& 0 \& 0 \& 1 \& 0 \& \({ }^{1.12 \%}\) \& 0 \& 1 \& \({ }_{9}^{9583}\) \& 0 \& 1 \& 1 \& S503590

58479085 \& 0 \& 0 \& \bigcirc \& 1

\hline 8569
8570 \& \bigcirc \& ${ }_{0}^{1}$ \& 0 \& ${ }_{1}$ \& \bigcirc \& ${ }_{\text {1．1．14\％}}^{1.14}$ \& 0 \& 1 \& 8276
6970 \& ${ }_{1}$ \& ${ }_{0}^{1}$ \& \bigcirc \& 5847086
$\$ 60371$ \& \bigcirc \& \bigcirc \& \bigcirc \& 1

\hline 8571 \& － \& 1 \& 0 \& ${ }_{0}$ \& 。 \& 1．70\％ \& \& 1 \& 8712 \& 0 \& \& 1 \& S429501 \& 0 \& － \& 0 \& 1

\hline 8572 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 9583 \& \& \& 0 \& 5448876 \& 0 \& 0 \& 0 \& 1

\hline 8573
8574
8 \& 0 \& 0 \& 1 \& 0 \& 0 \& 1．12\％ \& \bigcirc \& 1 \& 10454
8276 \& 1 \& 1 \& 0 \& \＄199499 \& 0 \& \bigcirc \& \bigcirc \&

\hline 8574
8575 \& 0 \& 1 \& 0 \& 0 \& 0 \& ${ }_{\text {1．12\％}}^{1.12 \%}$ \& \bigcirc \& 1 \& 8276
10454 \& \bigcirc \& 1 \& 0 \& \& 0 \& \bigcirc \& 0 \& 1

\hline 8576 \& 0 \& ， \& \& － \& 0 \& ${ }^{1.14 \%}$ \& 0 \& 1 \& 7841 \& 1 \& 0 \& 0 \& \＄191971 \& 0 \& 0 \& 0 \& 1

\hline 8577
8578 \& \& 1 \& 0 \& 0 \& \& 1．14\％ \& － \& 1 \& 6098 \& 1 \& 0 \& 1 \& 5310269 \& 0 \& 0 \& 0 \& 1

\hline 8578
857 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& 6098 \& 1 \& 0 \& 0 \& \＄55899 \& 0 \& 0 \& 0 \& 1

\hline \& \& \& \& \& \& ${ }^{1.511 \%}$ \& \& 1 \& 9585
9148 \& 0 \& 1 \& ${ }_{0}^{\circ}$ \& \＄763 216
$\$ 118548$ \& 0 \& 0 \& 0 \&

\hline
\end{tabular}

observation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％－90\％	LTV 70\％．78\％	$\begin{gathered} \text { LTV BELOW } \\ 70 \% \end{gathered}$	total tax burden	PARCEL IN SCEIP＝ 1	CONVENTIONAL LOAN $=1$	Lotstiz	$\begin{aligned} & \text { SOLD } \\ & \text { PRIOR_2000 } \end{aligned}$	SOLD DURING 2004＿2007	Sold 2008－2012	$\begin{aligned} & \text { PRICE ADJUST. TO } \\ & 2012 \end{aligned}$	ZIP CODE 295403	$\begin{aligned} & \text { ZIP CODE } \\ & 95404 \end{aligned}$	$\begin{aligned} & \text { ZIP CODE } \\ & 95472 \end{aligned}$	$\begin{aligned} & \text { ZIP CODE } \\ & 94928 \end{aligned}$
8581	0	0	0	1		1．11\％	O	1	6534	－	－	0	598899	0	0	0	
8582	0			0		1．12\％	0	1	7841	1	0	0	\＄188207	0	0	0	1
8583	0	0	0	0	1	1．12\％	0	1	9583	0	0	0	S287408	0	0	0	1
8584	0	1	0	0	0	1．14\％	0	1	6098	0	1	0	\＄973 112	0	0	0	1
8585	0	0	0	1	1	1．14\％	0	1	6500	0	1	0	\＄876551		0	0	1
8586	0	1	0	O	0	1．14\％	0	0	11000	0	0	1	\＄348970	0	0	0	1
8587	0	0	0	1	0	1．14\％	0	1	9148	0	0	1	533283	0	0	0	1
8588	0		1	0	0	1．14\％	0	1	6098	1	0	0	5117204	0	0	0	1
8589	0	0	0	0	0	1．15\％	\bigcirc	1	${ }^{6970}$	1	\bigcirc	0	\＄1041988	0	0	\bigcirc	1
8590	0	0	1	0	0	1．10\％	0	1	6970		0	0	\＄112924		－	－	1
$\begin{array}{r}8591 \\ 8592 \\ \hline\end{array}$	：	0 1	\bigcirc	\bigcirc	${ }_{0}^{1}$	－ $1.1 .12 \%$	\bigcirc	1	7200 6970	\bigcirc	：	\bigcirc	$\$ 523261$ S268866	\bigcirc	\bigcirc	\bigcirc	1
${ }_{8593}$	－	1	。	0	0	${ }_{1} 1.12 \%$	0	1	6970	0	0	－	S4298886	0	0	0	1
8594	－	0	0	0	1	1．12\％	0	1	7841	0	1	0	\＄1091817	0	0	0	1
8595	0	0	0	0	1	1．14\％	0	1	6970	0	0	1	\＄385593	0	0	0	1
8596	0	0	0	0	0	1．14\％	0	1	7405	0	0	0	5431789	0	0	0	1
8597	0	1	0	0	0	1．14\％	0	0	6970	1	0	0	5165622	0		0	1
8598	0	1	0	0		${ }^{1.11 \%}$	0	1	6970	1	\bigcirc	0	\＄139273	0	0	0	1
8599	0	1	0	0	0	${ }^{1.12 \%}$	0	1	7405	0	0	0	$\$ 362703$ $\$ 307000$	0	0	\bigcirc	1
8600	0	0	0	0	0	1．11\％	0	1	6534	0	0	1	${ }_{5307000}$	0	0	\bigcirc	1
8601	0	0	0	0	0	1．11\％	\bigcirc	1	6098	0	0	1	533208	0	0	0	1
8602	0	1	0	0	0	1．11\％	0	0	6970	1	0	0	S110437	0		0	1
8603 8604	：	1	\bigcirc	\bigcirc	\bigcirc	${ }_{\text {l }}^{1.111 \%}$	\bigcirc	0	15246 14375	\bigcirc	：	1	S322126 S45062	\bigcirc	0	\bigcirc	1
8605	0	1	0	0	0	1．14\％	O	${ }_{0}$	${ }_{6098}^{14}$	0	。	1	\＄316 120	0	0	。	1
8606	0	1	0	0	0	1．12\％	0	1	6970	0	0	0	\＄257277	0	0	0	1
8607	0	0	0	0	0	1．11\％	0	1	6534	1	0	0	\＄99608	0	0	0	1
8608	0	1	0	0		1．12\％	0	1	6534	0	1	0	5694048	0	0	0	1
8609	0	0	0	0	0	1．14\％	0	1	6534		0	0	\＄385732	0		0	1
8610	0	0	0	0	0	1．14\％	0	1	${ }_{6}^{6534}$	0	0	1	5295282	0	0	0	1
8611 8612	\bigcirc	${ }_{1}$	${ }_{0}$	\bigcirc	\bigcirc	${ }^{1.1 .14 \%}$	\bigcirc	1	8276 6534	${ }_{1}$	\bigcirc	${ }_{0}$	S223437 S116 398	\bigcirc	\bigcirc	0	1
86613	。	${ }_{0}$	1	0	0	${ }_{1.11 \%}^{1.14 \%}$	0	1	${ }_{6} 6534$	1	0	－	\＄145672	0	0	。	1
8614	0	1		0	0	1．14\％	0	1	6560	0	1	0	\＄843739	0	0	0	1
8615	0	0	0	0	0	1．14\％	0	1	6534 6534 6	0	0	1	$\underset{\$}{\$ 362871}$	0	\bigcirc	\bigcirc	1
86616	\bigcirc	0	\bigcirc	\bigcirc	0	${ }^{1.14 \%}$	0	1	6534 6534	\bigcirc	\bigcirc	1	S227 429 $\$ 321784$	\bigcirc	0	0	1
8617 8618	\bigcirc	${ }_{1}$	\bigcirc	\bigcirc	\bigcirc	${ }^{1.149 \%}$	${ }_{1}$	1	6534 6534	\bigcirc	${ }_{1}^{0}$	${ }_{0}^{1}$	${ }_{\substack{\text { S321784 } \\ \$ 59275}}^{5188}$	$\stackrel{0}{0}$	0	\bigcirc	1
8619	0	0	0	0	1	1．11\％	\bigcirc	1	6098	1	0	0	\＄85489	0	0	0	1
8620	0	1	0	0	0	1．11\％	0	1	6970	1	0	0	\＄108731	－	0	0	1
8621	0	0	0	0	1	1．11\％	0	1	6534	1	0	0	\＄88813		0	0	1
8622 8623	0	1	0	0	0	1．11\％	0	1	7405 7095	1	0	${ }^{0}$	$\$ 61489$ $\$ 23094$	0	\bigcirc	\bigcirc	1
8623 8624 8624	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	${ }^{1.11 \%}$	\bigcirc	1	7405 6970	${ }_{1}$	\bigcirc	1	S230944 S104198	\bigcirc	\bigcirc	\bigcirc	1
8624 8625	\bigcirc	1	\bigcirc	\bigcirc	${ }_{0}$	${ }^{1.11 \%}$	\bigcirc	1	6970 6098	1	${ }_{0}$	${ }_{0}$	\＄104 198 $\$ 170892$	${ }_{0}$	${ }_{0}$	0	1
8626	0	1	0	0	0	1．12\％	0	1	7841		。	0	\＄378823	0	0	。	1
8627	0	1	0	0	0	1．12\％	0	1	6534	0	0	0	\＄461701	0	0	0	1
8628 8629	\bigcirc	1	\bigcirc	\bigcirc	${ }_{1}$	${ }_{\text {1．12\％}}^{1.12 \%}$	\bigcirc	1	6534 6534	\bigcirc	${ }_{0}^{1}$	\bigcirc	S679396 S519413	\bigcirc	\bigcirc	\bigcirc	1
8630	0	0	1	0	0	1．12\％	0	1	7841	0	－	0	\＄287408	0	。	0	1
8631	0	0	0	0	1	1．12\％	0	1	8712	0	1	0	\＄600468	－	0	0	1
8632	0	0	0	0	1	1．12\％	0	1	8712	0	1	0	\＄1048111	0	0	0	1
8633	0	0	1	0	0	1．14\％	0	1	6098	0	0	0	\＄392640		0	0	1
8634	0	1	0	0	0	${ }^{1.14 \%}$	0	0	${ }_{6}^{6098}$	0	0	1	${ }_{5} 5397070$	0	0	0	1
${ }_{8636}^{8635}$	0	1	－	${ }_{0}$	\bigcirc	${ }_{\text {1．14\％}}^{1.14 \%}$	0	1	8276 6098	1	\bigcirc	\bigcirc	S218801 $\$ 161858$	0	0	0	1
8637	0	0	0	1	0	1．14\％	0	1	7405	1	0	0	593032	0	－	0	1
8638	0	0	0	1	1	1．15\％	0	1	6534	1	0	0	\＄106069		0	0	1
8639 869	\bigcirc	0	0	0	1	${ }^{1.111 \%}$	0	1	6534	1	0	0	S58 135 S15859 S	0	0	0	1
8640 8641	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	\bigcirc	\bigcirc	li．11\％	\bigcirc	1	8276 9583	1	0	${ }_{0}^{0}$	S158094 S158846	\bigcirc	\bigcirc	\bigcirc	1
8642	－	0	0	0	0	1．11\％	0	1	6970	0	0	0	\＄218337	0	0	0	1
8643	\bigcirc	1	0	0	0	${ }^{1.12 \%}$	0	1	${ }_{6}^{6998}$	0	1	${ }^{0}$	5843739 $\mathbf{S 4 2 1 3 9}$	0	－	0	1
8644 8645	0	1	0	0	0	1．12\％	0	1	6534	0	0	1	5421398		0	0	1
8645 8646	\bigcirc	${ }_{0}$	\bigcirc	${ }_{1}^{0}$	${ }_{0}^{1}$	${ }^{1.12 \%}$	\bigcirc	1	6098 12632	0	${ }_{0}^{1}$	${ }_{1}$	5921856 $\$ 371189$	\bigcirc	\bigcirc	\bigcirc	1
8647	1	1	0	0	0	1．14\％	0	1	10454	0	0	0	\＄354 144	0	0	0	1
8648	0	1	0	0	0	${ }^{1.14 \%}$	0	1	${ }_{7}^{7841}$	0	1	0	S597349 $\$ 224920$	0	－	\bigcirc	1
8649 8650	\bigcirc	${ }_{1}$	${ }_{0}$	${ }_{0}$	${ }_{0}^{1}$	${ }_{\text {l }}^{1.14 \%}$	0	${ }_{0}^{1}$	6534 6098	0	\bigcirc	1	S229200 S314609	${ }_{0}$	\bigcirc	0	1
8651	0	0	1	0	0	1．14\％	0	1	6534	1	0	\bigcirc	\＄165 622	0	0		1
8652	0	0	0	0	1	1．15\％	0	1	6970	1	0	0	\＄61265	0	0	0	1
8653	0	0	0	0	1	1．14\％	0	1	6534	0	1	0	\＄914466	0	0	0	1
8654 8655 896	0	1	0	0	0	${ }^{1.14 \%}$	0	0	6534 10454	0	0	1	S223 627 $\$ 107317$	0	0	0	1
8655 8656	${ }_{0}$	${ }_{1}$	${ }_{0}$	${ }_{0}$	${ }_{0}^{1}$	${ }_{\text {l }}^{1.111 \%}$	${ }_{0}$	${ }_{0}^{1}$	10454 6534	${ }_{0}^{1}$	0	${ }_{1}$	S107 317 $\$ 306019$	0	\bigcirc	\bigcirc	1
8657	0	1	0	0	0	1．11\％	0	1	6534	0	1	\bigcirc	\＄886863	。	。		1
8658	0	0	0	0	1	1．12\％	0	1	6000	0	0	0	5464907	0	0	0	1
8659 8660	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	1．12\％	0	1	5663 6098	\bigcirc	0	\bigcirc	S277210 S65974	0	\bigcirc	\bigcirc	1
8660 8661	0	\bigcirc	0	\bigcirc	0	－${ }_{\text {1．14\％}}^{1.14 \%}$	\bigcirc	1	6098 6098	\bigcirc	1	${ }_{1}^{0}$	5665974 $\$ 374576$	\bigcirc	\bigcirc	\bigcirc	1
8662	0	1	0	0	0	1．14\％	0	0	8276	0	0	1	\＄294000	0	0	0	1
8663	0	0	0	0	0	1．15\％	0	1	8276 6534	1	0	0	\＄104988	0	\bigcirc	\bigcirc	1
8664 8665	\bigcirc	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	\bigcirc	${ }^{1.111 \%}$	0	1	6534 6970	${ }_{1}^{1}$	\bigcirc	${ }_{0}$	${ }_{\text {S12 }}^{532902}$	0	\bigcirc	\bigcirc	1
${ }_{8666}^{864}$	0	1	0	${ }_{0}$	0	${ }^{1.11 \%}$		${ }_{0}$	${ }_{5663}$	${ }_{0}$		1	\＄300651	0	0	－	1
8667	0	0	0	0	0	1．11\％	0	1	${ }^{6} 098$	0	\bigcirc	0	$\$ 250323$ $\$ 88229$	0	\bigcirc	0	1
8668 8669	\bigcirc	${ }_{1}$	0	1	0	${ }_{\text {l }}^{1.14 \%}$	${ }_{0}$	1	6970 6534	0	0	1	$\$ 382269$ $\$ 33251$	0	\bigcirc	\bigcirc	1
8669 8670	\bigcirc	${ }_{0}$	0	${ }_{0}$	1	${ }^{1.14 \% \%}$	0	1	6534 6098	\bigcirc	0	1	$\begin{array}{r}\text { S33231 } \\ \$ 304343 \\ \hline\end{array}$	0	\bigcirc	\bigcirc	1
8671	0	1	0	0	0	1．14\％	0	1	6534	0	0	1	\＄275417	0	0	0	1
8672 8673	0	1	0	0	0	1．14\％	0	1	$\begin{array}{r}6970 \\ 6534 \\ \hline\end{array}$	0	0	1	\＄251026	0	0		
8673 8674	：	1	0	\bigcirc	\bigcirc	${ }_{\text {1．11\％}}^{1.15 \%}$	${ }_{1}$	1	6534 5663	${ }_{0}^{1}$	0	0	$\$ 140779$ $\$ 227609$	0	0	\bigcirc	1
8675 8675	0	0	0	0	1	${ }^{1.111 \%}$	0	1	6534 6534 654	0	\bigcirc	1	S272954 $\mathbf{S 1 3 5 0}$	0	\bigcirc	0	1
8676 8677	\bigcirc	1	0	0	0	${ }^{1.14 \%}$	\bigcirc	1	6534 6534	1	\bigcirc	\bigcirc	S135509 $\$ 107317$	0	\bigcirc	\bigcirc	1
8678	0	0	0	0	0	1．15\％	0	1	6534	${ }_{0}$		1	\＄273117	0	－	。	1
8679	0	0	0	0	1	${ }^{1.14 \%}$	－	1	${ }_{6}^{6970}$	1		0	\＄101679 $\$ 5157$	0	\bigcirc	\bigcirc	1
8680	0	1	0	0	0	${ }^{1.111 \%}$	0	0	8712 6098	1	0	0	${ }_{\text {S }}^{554575}$	0	\bigcirc	0	1
8681 8682	0	${ }_{0}^{1}$	\bigcirc	${ }_{0}$	${ }_{1}$	${ }^{1.111 \%}$	${ }_{0}$	1	6098 6098	1	${ }_{0}$	${ }_{0}$	5119699 59717	0	0	0	1
8683		0	1		1	${ }_{1.11 \%}$		1	6098	1	0	0	\＄102950	0	0	0	1
8684 8685	0	1	0	0		1．11\％	0	0	6098 6098	1	0	0	S152071 $\$ 109680$	0		0	
8685 8686	\bigcirc	${ }_{1}$	0	\bigcirc	1	${ }^{1.11 \%}$	0	1	6098 6534	1	0	0	\＄109680	0	0	\bigcirc	1
8687	0	0	0	0	0	${ }^{1.111 \%}$	0	1	6098 6594	\bigcirc	1	${ }_{0}^{1}$		0	\bigcirc	0	1
8688 8689	0	${ }_{1}$	\bigcirc	${ }_{0}$	${ }_{0}^{1}$	1．11\％	0	1	6534 6970	0	1	0	$\$ 709645$ $\$ 951414$	0	\bigcirc	0	1
8690	0	0	0	0	1	1．12\％	0	1	6534	0	0	0	\＄339978	0	0	0	1
8691	\bigcirc	0	0	0	1	1．14\％\％	0	1	7841 6970	0	1	0	5712894 $\$ 33289$	\bigcirc	\bigcirc	0	1
8692	0	0	1	0	0	1．14\％	0	1	6970 6642	0	0	0	533283 548876	0	\bigcirc	\bigcirc	
8693 8694	0	${ }_{1}$	\bigcirc	${ }_{0}$	\bigcirc	${ }_{\text {1．14\％}}^{1.14 \%}$	0	1	6642 6534	0	\bigcirc	0	5448876 $\$ 343128$	\bigcirc	\bigcirc	\bigcirc	1
8695	0	1	0	0	0	1．14\％	0	1	6970	0	0	0	\＄362703	0	0	0	1
8696 8697	0	0	0	0	1	${ }^{1.14 \%}$	0	1	6098 6534	0	1	0	5969888 S23094	0	0	0	
8697 8698	0	1	${ }_{0}^{0}$	${ }_{0}^{0}$	\bigcirc	${ }^{1.14 \%}$	${ }_{0}^{0}$	${ }_{0}^{1}$	6534 6300	${ }_{0}^{0}$	0	1		$\stackrel{0}{0}$	\bigcirc	\bigcirc	1
8699	0	0	0	0	，	1．14\％	0	1	6534	1		0	\＄156588	0	0	0	1
8700 8701	－	0	0	0	1	${ }^{1.59 \%}$	1	1	7841 6534	0	1	0	\＄5792645	0	0	0	1
8701 8702	\bigcirc	1	\bigcirc	\bigcirc	${ }_{0}$	${ }_{1.11 \%}^{1.11 \%}$	${ }_{0}$	1	6534 5663	${ }_{1}^{0}$	0	${ }_{0}^{1}$	S22000 S102 950	0	0	\bigcirc	1
8703	0	0	0	0		1．11\％		1	5663	0		1	\＄338232	0	0	－	1
8704	0	1		－		1．11\％	0	1	${ }_{6}^{6262}$	0	\bigcirc	0	S461701 $\$ 27387$	0	\bigcirc	\bigcirc	1
8705 8706	0	1	0	0		${ }^{1.111 \%}$	\bigcirc	1	6534 6970	\bigcirc	0	1	S273807	0	0	\bigcirc	1
8706 8707	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	${ }^{1.111 \%}$		${ }_{0}^{1}$	6970 5633	\bigcirc		1	S702626 $\$ 289913$	\bigcirc	\bigcirc	\bigcirc	1
8708		0	0	1	0	1．14\％	0	1	6970	1	0	0	\＄110 628	0	0	0	1
						${ }_{\text {1．15\％}}^{1.15 \%}$	0	1	6098 6098	1	0	${ }_{0}^{0}$	\＄100 461 $\$ 102326$			0	1

osservation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％－90\％	LTV 70\％．78\％	Ltv below 70\％	totaltax burden	parcelin SCEIP $=1$	conventional	Lot SIIE	sold PRIOR 2000	SOLD DURING	SOLD 2008－2012	PRICE ADJUST．TO	ZIP CODE 295403	ZIP CODE 95404	ZIP CODE 95472	ZIP CODE
8711	S	0	0	0	${ }_{1}$	1．15\％	Scap－1	${ }_{1}$	6098	Phor－200	${ }^{2009}$	1	${ }_{5288000}^{2012}$	29503	9504	9547	${ }^{94928}$
8712	0		0		0	1．15\％	0		5663	1		0	\＄55 899	0	0	0	1
8713	0	0			1	1．15\％	0	1	6098	1	0		\＄55004	0	0	0	1
8714	0	0	0		0	1．11\％	0	1	7841	1	0	0	\＄53 216	0	0	0	1
8715	0	1	0	0	0	1．11\％	0	1	6098	1		0	597322	0	0	0	1
8716	0	1	0	0	0	1．11\％	0		6098	1	0	0	\＄127980	0	0	0	1
8717	0	1	－	0	0	${ }^{1.111 \%}$	0	1	6534		0	－	\＄122706	0	0	0	1
8718	0	0	0		0	1．11\％	0	1	6534	0	0	0	\＄185425	0	0	0	1
8719	0	0	0		0	1．11\％	0	1	6098		1	0	5871864	0	0	0	1
8720	0	0	0	0	1	${ }^{1.111 \%}$	0	1	7841	0	1	0	\＄929246	0	0	\bigcirc	1
8721	0	0	0	0	1	1．11\％	0	1	6534	0	1	0	5639927	0	0	0	1
8722	0	0	0	0	1	1．11\％	0	1	6534	0	0	0	5325268	0	0	0	1
8723	0	1		0	0	${ }^{1.111 \%}$	0	0	${ }^{6400}$	0	0	，	\＄386288	0	0	0	1
8724	0	1	0	－	0	1．11\％	0	1	${ }_{6} 6970$	0	1	0	$\$ 100687$ $\$ 37620$	\bigcirc	\bigcirc	\bigcirc	1
8725	1	0	1	0	0	1．14\％	0	1	6534 6534	0	0	0	\＄376520	0	0	0	1
8726	0	0	0	0	0	1．116\％	0	1	${ }_{6} 534$	0	0	0	\＄352 688	0	0	0	1
8727	0	1	0	0	0	1．10\％	0	0	5663	0	0	1	\＄199000	0	0	0	1
8728	0	1	0	0	0	1．11\％	0	0	6534	1	0	0	\＄106375	0	0	0	1
8729	0	0		1	0	${ }^{1.111 \%}$	0	1	6098	0	0	，	\＄245889	0	0	0	1
8730	0	0	0	1	\bigcirc	1．11\％	0	1	6098	1	0		$\underset{\$ 97417}{\$ 5688}$	\bigcirc	\bigcirc	\bigcirc	1
8731 8732	0	1	0	0	0	${ }^{1.111 \%}$	\bigcirc	0	7841	${ }_{1}$	0	${ }^{1}$	S266088 $\$ 110779$	\bigcirc	\bigcirc	\bigcirc	1
8732 8733	\bigcirc	${ }_{1}$	${ }_{0}$	0	${ }_{0}^{1}$	${ }_{\text {1．111\％}}^{1.11}$	0	${ }_{0}^{1}$	6098 5663	${ }_{0}^{1}$	0	${ }_{1}$	S140 779 $\$ 33095$	0	0	0	1
8734	0	${ }_{0}$	0	1	。	1．11\％	0	1	7090	0	0	0	\＄454006	0	－	0	1
8735	0	0	1	0	0	1．11\％	0	1	8158	0	0	0	\＄447593	0	0	0	1
8736	0	1	0		0	1．11\％	0	0	${ }_{5641} 8$	1	0	0	\＄116633	0	0	0	1
8737 8738 8	0	0	0	1	0	${ }^{1.111 \%}$	0	1	5663 563	0	0	1	S343488 S13992	\bigcirc	0	0	1
8738 8739	0	1	0	0	\bigcirc	1．15\％		1	5663	1	0	0	\＄130992	0	0	\bigcirc	1
8739 8740	\bigcirc	${ }_{0}^{1}$	\bigcirc	0	\bigcirc	${ }^{1.1 .15 \%}$	\bigcirc	1	5663 6534	1	0	${ }_{0}^{0}$	\＄103 086 $\$ 51427$	\bigcirc	\bigcirc	\bigcirc	1
8741	0	0	0	0	0	1．06\％	0	1	6098	0	1	0	\＄763216	0	0	－	1
8742	0	1	0		0	1．11\％	0	0	6098	0	0	1	5228000	0	0	0	1
8743	0	1	0	0	0	1．11\％	0	1	6098	0	0	0	\＄185425	0	0	0	1
$\begin{array}{r}8744 \\ 8745 \\ \hline 8\end{array}$	0	1	0	0	0	1．11\％	0	0	7410	0	0	1	\＄241989	0	0	0	1
8745 8746	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	${ }_{\text {1．1．14\％}}^{1.14}$	\bigcirc	${ }_{0}^{1}$	6534 6534	\bigcirc	${ }_{0}^{1}$	${ }_{1}^{1}$	S768740 $\$ 246006$	\bigcirc	\bigcirc	\bigcirc	1
8747	0	0	0	0	1	1．11\％	0	1	9583	1	0	0	\＄82730	0	0	0	1
8748	0	1	0		0	1．12\％	0	1	9583	0	0	0	\＄528510	0	0	0	1
8749 8 8	0	0	0	0	0	${ }^{1.12 \%}$	0	1	9148	0	0	1	${ }_{\text {¢ }} \mathbf{5 2 6 3 6 3 4}$	0	0	0	1
8750 8751	\bigcirc	0	0	－	1	1．12\％	0	1	7841	0	0	0	\＄264230	0	0	0	1
8751 8752	\bigcirc	1	\bigcirc	0	${ }_{0}$	${ }^{1.1 .14 \%}$	\bigcirc	${ }_{0}^{1}$	8712 9148	\bigcirc	${ }_{0}^{1}$	${ }_{1}^{0}$	\＄833699 $\$ 375813$	\bigcirc	\bigcirc	0	1
8753	0	1	0	0	0	1．14\％	0	1	9583	0	0	1	\＄450662	0	0	0	1
8754	0	0	1	－	0	${ }^{1.14 \%}$	0	1	10019	1	0	0	\＄139075	0	0	0	1
8755	－	1	0	0	0	1．12\％	0	1	9583	0	1	0	\＄1219288	0	\bigcirc	\bigcirc	1
8756 8757	0	0	0	0	0	1．12\％	0	1	9148	0	0	1	5437670	0	0	0	1
8757 8758	0	${ }_{0}^{1}$	\bigcirc	\bigcirc	${ }_{1}^{0}$	${ }_{1}^{1.12 \%}$	\bigcirc	1	7841 6534	\bigcirc	${ }_{1}$	\bigcirc	S352307 $\$ 937888$	\bigcirc	\bigcirc	\bigcirc	${ }_{1}^{1}$
8759	0	0	－	O	1	1．08\％	0	1	9350	0	0	0	\＄475888	0	0	0	1
8760	0	1	0	0	1	${ }^{1.11 \%}$	0	1	${ }_{6} 6534$	1	0	0	\＄123038	\bigcirc	0	0	1
8761		－	0	－	1	${ }^{1.111 \%}$	0	1	${ }_{6}^{634}$	0	0	1	\＄302261	0	0	0	1
8762 8763	0	0	0	0	1	1．12\％	0	1	7841	0	1	0	\＄914182	0	0	0	1
8763 8764	\bigcirc	${ }_{0}^{1}$	0	${ }_{0}^{0}$	\bigcirc	${ }^{1.111 \%}$	\bigcirc	1	6534 8276	1	0	\bigcirc	575990 $\$ 90238$	\bigcirc	\bigcirc	0	1
8765	0	0	0			1．11\％	0	1	10890	1	0	0	\＄111997	0	0	0	1
8766	0	0	0	1		${ }^{1.11 \%}$	0	1	5663	0	0	1	\＄281 149	0	0	0	1
8767 8768		－	0	1	0	1．14\％	0	1	9150	0	0	0	\＄4988939	0	0	0	1
8768 8769	0	0	0		1	1．14\％	0	1	7405	0	1	0	\＄1014226	0	0	0	1
8769 8770	\bigcirc	\bigcirc	\bigcirc	${ }_{1}^{0}$	\bigcirc	${ }_{\text {linem }}^{1.14 \%}$	\bigcirc	1	7841 6534	\bigcirc	\bigcirc	${ }_{0}^{1}$	S276129 $\$ 231781$	\bigcirc	\bigcirc	\bigcirc	${ }_{1}^{1}$
8771	0	0	1		0	1．14\％	0	0	6098	1	0	0	\＄109 189	0	0	0	1
8772	0	0	0	0	0	1．11\％	0	1	6534	0	0	1	\＄333516	0	0	0	1
8773	0		0	0	0	${ }^{1.14 \%}$	0	1	${ }_{6}^{6534}$	0	0	1	${ }_{\text {S }} \mathbf{5 2 6 8 0 9 6}$	0	0	0	1
8774 8775	0	0	0	0	0	${ }^{1.14 \%}$	0	1	${ }_{6}^{6534}$	0	0		\＄211238	0	0	－	1
8775 8776	\bigcirc	\bigcirc	${ }_{0}^{1}$	\bigcirc	\bigcirc	（1．12\％	\bigcirc	1	6534 6970	${ }_{0}^{1}$	${ }_{1}^{0}$	\bigcirc	\＄153933 $\$ 92303$	\bigcirc	\bigcirc	\bigcirc	1
8777	0	1	0	0	0	1．07\％	0	1	6534	0	0	1	\＄284664	0	0	0	1
8778	0	1	0	0	－	${ }^{1.111 \%}$	0	0	${ }^{6534}$	1	0	${ }_{0}$	$\begin{array}{r}\text { S62 } 1199 \\ \$ 25504 \\ \hline\end{array}$	0	0	0	1
8779	0	0	0	0	－	${ }^{1.111 \%}$	0	1	${ }_{6} 6534$	\bigcirc	0	1	5255043 $\$ 859049$	\bigcirc	\bigcirc	\bigcirc	1
8780 8781	0	0	1	0		1．14\％	0	1	6534	0	1	0	5859044	0	0	O	1
8781 8782	\bigcirc	1	\bigcirc	$\stackrel{0}{0}$	0	${ }_{\text {l }}^{1.14 \%}$	\bigcirc	1	6534 6534	\bigcirc	\bigcirc	\bigcirc	\＄408760 $\$ 20930$	\bigcirc	\bigcirc	\bigcirc	1
8783	0	0	0	0	1	1．14\％	0	1	6534	0	0	1	\＄288087	0	0	0	1
8784	0	1	0	0	，	1．14\％\％	0	1	${ }_{6} 6334$	1	0	0	S102 592 $\$ 345151$	\bigcirc	\bigcirc	0	1
8785 8786	\bigcirc	${ }_{0}^{1}$	\bigcirc	0	0	${ }_{\text {1．1．12\％}}^{1.12 \%}$	0	1	6098 6534	0	0	0	S345431 $\$ 124368$	0	\bigcirc	0	1
8786 8787	${ }_{0}$	${ }_{0}$	${ }_{0}$	${ }_{0}^{0}$	0	${ }^{1.111 \%}$	0	1	6534 9883	1	－	\bigcirc	S124368 $\$ 98899$	$\stackrel{0}{0}$	\bigcirc	－	1
8788	－	0	0	0	0	1．11\％	0	1	6534	1	0	0	\＄163 363	0	0	0	1
8789 8790	0	1	0	0	0	${ }^{1.12 \%}$	0	1	6600 8712	0	\bigcirc	${ }_{1}$	${ }_{\text {¢ }} \$ 538651$	\bigcirc	\bigcirc	0	
8790 8791	0	1	\bigcirc	\bigcirc	0	${ }_{\text {1．12\％}}^{1.12 \%}$	\bigcirc	${ }_{1}$	8712 6534	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	S279 643 $\$ 847086$	\bigcirc	\bigcirc	\bigcirc	1
8792	0	0	0	0	1	1．14\％		1	6970	0	1	0	5695608	0	0	0	1
8793 8794	0	1	0	0	0	${ }_{\text {1．112\％}}$	0	1	6534 6534	0	0	1	S388049 $\$ 122036$	\bigcirc	\bigcirc	0	1
8794 8795	\bigcirc	1	\bigcirc	$\stackrel{0}{0}$	\bigcirc	${ }_{\text {1．11\％}}^{1.11 \%}$	0	1	6534 7005	1	\bigcirc	${ }_{0}^{0}$	\＄124036 $\$ 14002$	\bigcirc	\bigcirc	0	1
8796		1	0			1．11\％	0	1	6098	0	0	1	\＄293627	。	－	0	1
8797	0	1	0	0	0	1．11\％	0	1	5663	1	0	\bigcirc	${ }_{\text {S166375 }}$	0	\bigcirc	0	1
8798 8799	0	1	0	0	0	${ }^{1.12 \%}$	－	1	7405	0	1	0	\＄740838	0	0	0	1
8799 880	\bigcirc	1	\bigcirc	\bigcirc	0	${ }_{\text {linl }}^{1.12 \%}$	\bigcirc	1	6510 6098	\bigcirc	\bigcirc	\bigcirc	\＄462 342 $\$ 213238$	\bigcirc	\bigcirc	0	1
8801	0	1	0	0	0	1．15\％		，	6098	0	0	1	\＄285000	0	0	0	1
8802	0	1	0	0	0	1．11\％	0	1	6098 5683	\bigcirc	1	0	\＄741618	0	\bigcirc	0	1
8803 8804	0	1	\bigcirc	0	0	${ }_{\text {1．1．14\％}}^{1.14}$	0	1	5663 6970	0 1	1	\bigcirc	S655 057 $\$ 149060$	\bigcirc	\bigcirc	\bigcirc	1
－ 88804	0	1	${ }_{0}$	0	0	${ }_{1.11 \%}^{1.17 \%}$	0	1	${ }_{6}^{6937}$	1	1	${ }_{0}$	\＄5159605	${ }_{0}^{\circ}$	${ }_{0}$	${ }_{0}$	1
${ }_{8806}^{8805}$	0	1	0	0	0	${ }^{1.14 \%}$		1	6554 650	1	${ }_{0}$	0	\＄104306	0	0		1
8807 8808	\bigcirc		0		\bigcirc	1．14\％	0	1	6534 6534	0	\bigcirc	1	${ }_{\substack{ \\\$ 36345657}}$	0		0	
8808 8809	0	1	\bigcirc	0	\bigcirc	1．7．73\％	1	1	6534 5663	\bigcirc	0	1	\＄316757 $\$ 29191$	0	\bigcirc	\bigcirc	1
8810	0	0	0	0	0	1．09\％		1	${ }_{6}^{6534}$	0	1	0	\＄583312	0	0	0	1
8811	0	0	0	0	0	${ }^{1.111 \%}$	0	1	${ }_{5}^{5663}$	0	1	0	S647258 $\$ 372970$	0	0	－	1
8812 8813	\bigcirc	1	\bigcirc	${ }_{0}$	\bigcirc	${ }^{1.11 \%} 1$	\bigcirc	${ }_{0}^{1}$	6600 6534	\bigcirc	\bigcirc	${ }_{1}$	\＄394370 $\$ 23957$	\bigcirc	\bigcirc	\bigcirc	1
8814	0	${ }_{0}$	0	${ }_{0}$	${ }_{0}$	${ }_{1.14 \%}^{1.14 \%}$	${ }_{0}$	${ }_{1}$	6534 8712	\bigcirc	\bigcirc	1	S233957 $\$ 377576$	\bigcirc	\bigcirc	0	1
8815	0	1	0	0	0	1．15\％	0	0	${ }_{6} 634$	0	0	1	\＄290186	0	0	0	1
8816 8817	0	1	\bigcirc	\bigcirc	0	${ }^{1.111 \%}$	\bigcirc	1	6534 6970	1	0	\bigcirc	${ }_{591095}^{5917}$	${ }_{0}$	\bigcirc	\bigcirc	1
${ }_{8818}$	0	1	。	0	0	${ }_{1.11 \%}^{1.11 \%}$	0	${ }_{0}$	${ }_{6}^{6934}$	1	${ }_{0}$	${ }_{0}^{0}$	－	${ }_{0}$	\bigcirc	${ }_{0}$	1
8819	0	1	0	0		1．11\％	－	0	6534	1	0	0	\＄14754	0	0	0	1
8820 8821	0	0	0	1	0	${ }^{1.111 \%}$	0	1	6534 6534	0	0	0	\＄357521 $\$ 35996$	0	0	0	1
8821 8822	0	0 1	${ }_{0}$	0	${ }_{0}^{1}$	${ }_{\text {1．1．14\％}}^{1.14 \%}$	0	1	6534 6534	\bigcirc	0	${ }_{1}^{0}$	$\$ 356946$ $\$ 215000$	\bigcirc	\bigcirc	${ }_{0}$	1
8823	0		1			1．11\％		1	6970	－		${ }_{0}$	\＄257277		0	0	1
8824	0	1	0	0	0	1．12\％	0	0	8276	0	0	1	5376729		0		1
8825 8826	0	1	0			1．14\％			6534 6098	0			${ }_{\text {¢ }} \mathbf{\$ 3 1 4 6 7 9}$	\bigcirc	\bigcirc	0	
8826 8827	0	0	0	0	\bigcirc	${ }^{1.111 \%}$	0	${ }_{1}^{1}$	6098 5663	0	0	1	\＄236226 $\$ 140779$	0	0	0	1
8828	0	1	0		0	1．17\％		0	5663	0		1	\＄260000		0		1
8829 8830	\bigcirc	\bigcirc	\bigcirc	${ }_{0}$	${ }_{1}$	${ }^{1.1 .12 \%}$	0	1	6970 6534	0	0	${ }_{0}^{1}$	S229361 $\$ 137178$	0	0	0	1
8831	0	1	0		0	1．12\％		1	11326	1	0	0	\＄187217	0	0	0	1
8832 883	0	1	，	0	1	${ }_{\text {122\％}}^{1.12 \%}$	0	1	5663 6850	\bigcirc	－	\bigcirc	5453666 $\$ 55789$	0	\bigcirc	0	
8833 8834	0	0	0	\bigcirc	1	${ }^{1.1 .12 \%}$	\bigcirc	1	6850 8000	0	0	0	$\$ 557889$ $\$ 54306$	0	\bigcirc	\bigcirc	1
8835	0	0		0		1．14\％	0	1	6970	1		0	\＄71551	0	0	0	
8836 8837	\bigcirc	0	0	0	${ }_{0}^{1}$	${ }_{\text {1．12\％}}^{1.12 \%}$	\bigcirc	1	9583 9883	\bigcirc	${ }_{1}$	\bigcirc	S342 108 $\$ 85573$	\bigcirc	\bigcirc	\bigcirc	1
8837 8888	\bigcirc	\bigcirc	\bigcirc	1	\bigcirc	${ }^{1.12 \%}$	0	1	9583 10019	\bigcirc	${ }_{0}^{1}$	\bigcirc	$\$ 855473$ $\$ 490535$	\bigcirc	\bigcirc	\bigcirc	${ }_{1}^{1}$
	\bigcirc		\bigcirc		${ }_{0}^{1}$	${ }_{\text {1．12\％}}^{1.12 \%}$		1	6534 6970	－	1	0	S1200814 5472089	${ }_{0}$	\bigcirc	${ }_{0}$	

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline observation \& PROPERTY DURESS \(=1\) \& trv＿9\％ \& LTV 81\％－90\％ \& LTv 70\％．78\％ \& \[
\begin{gathered}
\text { LTV BELOW } \\
70 \%
\end{gathered}
\] \& total tax burden \& parcel in SCEIP \(=1\) \& \begin{tabular}{l}
conventional \\
LOAN \(=1\)
\end{tabular} \& Lor size \& \[
\begin{gathered}
\text { SOLD } \\
\text { PRIOR_2000 }
\end{gathered}
\] \& SOLD DURING 2004＿2007 \& Sold 2008－2012 \& \[
\begin{aligned}
\& \text { PRICE ADUST. TO } \\
\& 2012
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { ZIP CODE } \\
\& \text { Z95403 }
\end{aligned}
\] \& \[
\begin{gathered}
\text { ZIP CODE } \\
95404
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { ZIP CODE } \\
\& 95472
\end{aligned}
\] \& \[
\begin{gathered}
\text { ZIP CODE } \\
94928
\end{gathered}
\] \\
\hline 8841 \& 0 \& 0 \& 0 \& 0 \& ， \& 1．11\％ \& \& \& 8712 \& 1 \& 0 \& 0 \& S127283 \& \& \& \& \\
\hline 8842 \& 0 \& 0 \& 0 \& 0 \& \& 1．11\％ \& 0 \& 1 \& 7405 \& 1 \& 0 \& 0 \& \＄158952 \& 0 \& 0 \& 0 \& 1 \\
\hline 8843 \& 0 \& 0 \& 0 \& 1 \& \& 1．12\％ \& 0 \& 1 \& 6970 \& 1 \& 0 \& 0 \& 5207027 \& 0 \& 0 \& 0 \& 1 \\
\hline 8844 \& 0 \& \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 6300 \& 0 \& 0 \& 1 \& \＄526748 \& 0 \& － \& 0 \& 1 \\
\hline 8845 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．12\％ \& 0 \& 1 \& 6534 \& 0 \& 0 \& 0 \& \＄343 128 \& 0 \& 0 \& \& 1 \\
\hline 8846 \& 0 \& 1 \& 0 \& 0 \& \& 1．12\％ \& 0 \& 0 \& \({ }^{6970}\) \& 0 \& \(\bigcirc\) \& 1 \& 5453183
\(\$ 57726\) \& 0 \& 0 \& 0 \& 1 \\
\hline 8847 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 6500 \& 0 \& 0 \& 0 \& \＄577 126 \& 0 \& 0 \& 0 \& 1 \\
\hline 8848 \& 0 \& \& 0 \& 0 \& \& 1．14\％ \& 0 \& 1 \& \({ }_{6} 634\) \& 1 \& 0 \& 0 \& \＄199499 \& 0 \& 0 \& 0 \& 1 \\
\hline 8849 \& \(\bigcirc\) \& 0 \& 0 \& 1 \& 1 \& 1．09\％ \& 0 \& 1 \& 12197 \& 0 \& 1 \& 0 \& \＄1 130567 \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \& 1 \\
\hline 8850 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．12\％ \& 0 \& 1 \& 10454 \& 0 \& 0 \& 0 \& 5282772 \& 0 \& \& \& 1 \\
\hline 8851
8852 \& \(\bigcirc\) \& \({ }_{0}^{1}\) \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }_{1}^{1}\) \& \({ }_{\substack{1.12 \% \% \\ 1.14 \%}}^{1.1}\) \& \(\bigcirc\) \& 1 \& \({ }_{9}^{10019}\) \& \(\bigcirc\) \& \({ }_{0}^{1}\) \& \(\bigcirc\) \& \& \(\bigcirc\) \& 0 \& 0 \& 1 \\
\hline 8853 \& － \& 1 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 1 \& 9583 \& 0 \& 。 \& 。 \& \＄292044 \& 0 \& 。 \& － \& 1 \\
\hline 8854 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& 10019 \& 1 \& 0 \& 0 \& \＄185 332 \& 0 \& 0 \& 0 \& 1 \\
\hline 8855 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& 7841 \& 1 \& 0 \& 0 \& \＄677079 \& 0 \& 0 \& 0 \& 1 \\
\hline 8856 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 6970 \& 0 \& 0 \& 0 \& \＄538 651 \& 0 \& 0 \& 0 \& 1 \\
\hline 8857 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．09\％ \& 0 \& 1 \& \({ }_{6} 634\) \& 0 \& 0 \& 0 \& \＄160949 \& 0 \& 0 \& 0 \& 1 \\
\hline 8858
885
888 \& 0 \& 0 \& 0 \& 0 \& 0 \& \({ }^{1.111 \%}\) \& 0 \& 1 \& 8712 \& 1 \& 0 \& 0 \& 588283
\(\$ 98393\) \& 0 \& 0 \& 0 \& 1 \\
\hline 8859 \& 0 \& － \& 0 \& 0 \& 1 \& \({ }^{1.12 \%}\) \& 0 \& 1 \& \({ }^{10} 019\) \& \(\bigcirc\) \& 1 \& 0 \& \(\begin{array}{r}5933343 \\ \hline 33155\end{array}\) \& 0 \& 0 \& \(\bigcirc\) \& 1 \\
\hline 8860
8861 \& 0 \& 0 \& 0 \& 1 \& 0 \& \({ }^{1.14 \%}\) \& 0 \& 1 \& 9583
7805 \& 0 \& 0 \& 1 \& \＄331355 \& 0 \& 0 \& 0 \& 1 \\
\hline 8861
8862 \& \(\bigcirc\) \& 1 \& \({ }_{0}\) \& \({ }_{0}\) \& \(\bigcirc\) \& \({ }_{1}^{1.14 \%}\) \& \(\bigcirc\) \& 1 \& 7405
6970 \& \({ }_{0}\) \& \({ }_{0}^{1}\) \& \({ }_{0}\) \& S1012 287
S511718 \& \({ }_{0}\) \& \({ }_{0}\) \& 0 \& 1 \\
\hline 8863 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 1 \& 6098 \& 0 \& 0 \& 0 \& 5403003 \& 0 \& 0 \& 0 \& 1 \\
\hline 8884 \& 0 \& 0 \& 0 \& 0 \& \& 1．08\％ \& 0 \& 1 \& \({ }_{6}^{6098}\) \& 0 \& 0 \& 1 \& S350433

S155 \& 0 \& 0 \& 0 \& 1

\hline ${ }_{8}^{8865}$ \& 0 \& \& 0 \& 0 \& 0 \& ${ }^{1.111 \%}$ \& 0 \& 1 \& ${ }_{5}^{6534}$ \& 1 \& 0 \& 0 \& \＄155082 \& 0 \& 0 \& 0 \& 1

\hline 8866
8867 \& \bigcirc \& ${ }_{0}$ \& ${ }_{0}$ \& ${ }_{1}$ \& ${ }_{0}^{1}$ \& ${ }_{\text {l }}^{1.111 \%}$ \& \bigcirc \& 1 \& 5663
6970 \& 1 \& \bigcirc \& ${ }_{1}$ \& \＄136340 \& 0 \& 0 \& 0 \& 1

\hline 8868 \& 0 \& 1 \& ， \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 6534 \& 0 \& 1 \& \bigcirc \& \＄855 473 \& 。 \& 0 \& 0 \& 1

\hline 8869 \& 0 \& 0 \& 1 \& 0 \& 0 \& 1．14\％ \& 0 \& 1 \& 10200 \& 0 \& 0 \& 0 \& \＄581615 \& 0 \& 0 \& 0 \& 1

\hline 8870
8871 \& 0 \& 0 \& \bigcirc \& 0 \& 0 \& ${ }^{1.14 \%}$ \& \bigcirc \& 1 \& 7841
6534 \& 0 \& 1 \& 0 \& S788377
$\$ 813538$ \& 0 \& 0 \& 0 \& 1

\hline 8871 \& ${ }^{1}$ \& 0 \& 0 \& 0 \& 0 \& ${ }^{1.14 \%}$ \& 0 \& 1 \& ${ }_{6}^{6534}$ \& 0 \& 1 \& 0 \& $\begin{array}{r}5813538 \\ \\ \hline 49748\end{array}$ \& 0 \& 0 \& 0 \& 1

\hline 8872
8873 \& \bigcirc \& 1 \& 0 \& \bigcirc \& ${ }_{0}$ \& ${ }_{\text {l }}^{1.14 \% \%}$ \& \bigcirc \& ${ }_{1}$ \& 5663
6650 \& 0 \& \bigcirc \& 1 \& S497484
5409693 \& 0 \& 0 \& 0 \& 1

\hline 8874 \& 0 \& \& 1 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& 9583 \& 1 \& 。 \& 0 \& \＄127859 \& 。 \& 。 \& 。 \& 1

\hline 8875 \& 0 \& 0 \& 1 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 12197 \& 1 \& 0 \& 0 \& \＄137601 \& 0 \& 0 \& 0 \& 1

\hline －8876 \& \bigcirc \& 0 \& 0 \& 0 \& 0 \& ${ }^{1.12 \%}$ \& 0 \& 1 \& ${ }^{9583}$ \& 0 \& 0 \& 1 \& $\begin{array}{r}\$ 386701 \\ \$ 49392 \\ \hline\end{array}$ \& 0 \& 0 \& 0 \& 1

\hline 8877
8878 \& \bigcirc \& ${ }_{0}^{1}$ \& 0 \& \bigcirc \& 0 \& 1．12\％ \& \bigcirc \& 1 \& 10019
10019 \& \bigcirc \& ${ }_{1}$ \& ${ }_{0}^{1}$ \& \＄493972
S1071 496 \& \bigcirc \& \bigcirc \& 0 \& 1

\hline 8879 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 0 \& 8712 \& 0 \& \bigcirc \& 1 \& \＄602834 \& 0 \& 0 \& 0 \& 1

\hline 8880 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 0 \& 9583 \& 0 \& 0 \& 1 \& \＄351437 \& 0 \& 0 \& 0 \&

\hline 8881 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．14\％ \& 0 \& 1 \& 9583 \& 0 \& 0 \& 1 \& \＄345000 \& 0 \& 0 \& \& 1

\hline ${ }^{8882}$ \& 0 \& 0 \& 1 \& 0 \& 0 \& ${ }^{1.12 \%}$ \& 0 \& 1 \& 10019 \& 0 \& 1 \& 0 \& ${ }_{5830312}$ \& 0 \& 0 \& 0 \& 1

\hline －8883 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．14\％\％ \& 0 \& 1 \& 10454 \& 0 \& 0 \& 0 \& 5486068
$\$ 904118$ \& 0 \& 0 \& 0 \& 1

\hline 8884
8885 \& \bigcirc \& ${ }_{1}$ \& ${ }_{0}^{1}$ \& ${ }_{0}$ \& ${ }_{0}$ \& ${ }_{\text {l }}^{1.1 .14 \%}$ \& \bigcirc \& 1 \& 6970
6000 \& \bigcirc \& ${ }_{0}^{1}$ \& ${ }_{0}$ \& $\begin{array}{r}\text { S900 } 118 \\ \$ 48221 \\ \hline\end{array}$ \& 0 \& \bigcirc \& ${ }_{0}$ \& 1

\hline 8886 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& \bigcirc \& 7405 \& 1 \& 。 \& 0 \& \＄135509 \& 0 \& 。 \& 0 \& 1

\hline 8887 \& 1 \& 1 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 11326 \& 0 \& 1 \& 0 \& \＄826 619 \& 0 \& \& 0 \& 1

\hline 8888
8889 \& \bigcirc \& 1 \& \bigcirc \& \bigcirc \& \bigcirc \& ${ }_{\substack{1.11 \% \\ 1.12 \%}}^{1.1}$ \& \bigcirc \& ${ }_{0}$ \& 5663
6970 \& ${ }_{0}^{1}$ \& 0 \& ${ }_{1}^{0}$ \& $\$ 128359$
$\$ 304249$ \& 0 \& 0 \& \bigcirc \& 1

\hline 8890 \& 0 \& \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 10035 \& 。 \& － \& 0 \& \＄500 176 \& 0 \& 。 \& 0 \& 1

\hline 8891 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 1 \& 7841 \& 0 \& 0 \& 0 \& \＄513001 \& 0 \& 0 \& 0 \& 1

\hline 8892
8893 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．10\％ \& 0 \& 1 \& 6970 \& 1 \& 0 \& 0 \& \＄131684 \& 0 \& 0 \& 0 \& 1

\hline 8893
8894 \& \bigcirc \& 0 \& \bigcirc \& 1 \& ${ }_{0}^{0}$ \& ${ }_{1}^{1.12 \%}$ \& \bigcirc \& 1 \& 6534
6250 \& 1 \& \bigcirc \& 0 \& 512979
$\$ 510436$ \& $\stackrel{0}{0}$ \& \bigcirc \& \bigcirc \& 1

\hline 8895 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 7841 \& 0 \& 1 \& 0 \& \＄960 651 \& 0 \& 0 \& 0 \& 1

\hline 8896 \& 0 \& \& \& 0 \& 0 \& ${ }^{1.12 \%}$ \& 0 \& ${ }^{1}$ \& 7405 \& 0 \& 0 \& 1 \& \＄488720 \& 0 \& 0 \& 0 \& 1

\hline 8897 \& 0 \& 0 \& － \& 1 \& 0 \& 1．14\％ \& 0 \& 1 \& 9583 \& 0 \& 1 \& 0 \& \＄779990 \& 0 \& 0 \& 0 \& 1

\hline 8898
8899 \& 0 \& 0 \& 1 \& 0 \& \bigcirc \& ${ }^{1.111 \%}$ \& 0 \& 1 \& ${ }^{9} 1488$ \& 1 \& 0 \& 0 \& \＄127694 \& 0 \& 0 \& 0 \& 1

\hline 8899
8900 \& \bigcirc \& ${ }_{0}^{1}$ \& ${ }_{0}$ \& ${ }_{0}^{0}$ \& ${ }_{1}$ \& ${ }_{\text {l }}^{1.12 \% \%}$ \& \bigcirc \& ${ }_{0}^{1}$ \& 7405
6970 \& ${ }_{0}^{1}$ \& \bigcirc \& 1 \& S409693
$\$ 277007$ \& \bigcirc \& \bigcirc \& \bigcirc \& 1

\hline 8901 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& 6098 \& 1 \& 0 \& 0 \& \＄91076 \& 0 \& 0 \& 0 \& 1

\hline 8902 \& 1 \& 1 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 1 \& 6250 \& 0 \& 0 \& 0 \& 5420275 \& 0 \& 0 \& 0 \& 1

\hline 8903 \& \bigcirc \& \& \& 0 \& 0 \& ${ }^{1.12 \%}$ \& 0 \& 1 \& ${ }^{6} 098$ \& 0 \& 1 \& 0 \& \＄1034548 \& 0 \& 0 \& 0 \& 1

\hline 8904
8905 \& \bigcirc \& 0 \& \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& ${ }_{6}^{6998}$ \& 0 \& 0 \& 0 \& \＄399549 \& 0 \& 0 \& 0 \& 1

\hline 8905
8906 \& 0 \& ${ }_{0}^{1}$ \& \bigcirc \& \bigcirc \& \bigcirc \& （1．12\％ \& \bigcirc \& 1 \& 5663
8712 \& \bigcirc \& ${ }_{0}^{1}$ \& ${ }_{1}^{0}$ \& $\underset{\substack{\text { S6979 } 997 \\ \$ 492}}{5}$ \& \bigcirc \& \bigcirc \& \bigcirc \& 1

\hline 8907 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& ， \& 9720 \& 0 \& 0 \& 1 \& \＄321328 \& 0 \& 0 \& 0 \& 1

\hline 8908 \& \bigcirc \& 0 \& 0 \& 0 \& 1 \& ${ }^{1.14 \%}$ \& 0 \& 1 \& 10454 \& 1 \& \bigcirc \& \bigcirc \& | S157622 |
| :--- |
| $\$ 112638$ | \& 0 \& 0 \& 0 \& 1

\hline 8909
8910 \& 0 \& ${ }_{0}$ \& ${ }_{0}$ \& ${ }_{0}$ \& ${ }_{0}$ \& ${ }_{\text {l }}^{1.114 \%}$ \& \bigcirc \& 1 \& 7405
6534 \& ${ }_{0}^{1}$ \& 0 \& ${ }_{1}$ \& S112638
$\$ 305000$ \& 0 \& 0 \& 0 \& 1

\hline 8911 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& 7250 \& 0 \& 1 \& \bigcirc \& \＄888426 \& 0 \& 0 \& 0 \&

\hline 8912 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 1 \& 9583 \& 0 \& 0 \& 0 \& \＄318185 \& 0 \& 0 \& \& 1

\hline 8913
8914 \& 0 \& \bigcirc \& \bigcirc \& ${ }_{0}^{1}$ \& \bigcirc \& 1.14%
1.14%
1.14 \& 0 \& 1 \& 5663
6098 \& 0 \& 0 \& 0 \& 5326902
$\$ 87518$ \& 0 \& 0 \& 0 \& 1

\hline 8914
899 \& \bigcirc \& ${ }_{1}^{0}$ \& 0 \& 0 \& 0 \& ${ }_{\text {l }}^{1.114 \%}$ \& ${ }_{0}$ \& 1 \& 6098
8712 \& 0
1 \& ${ }_{0}^{1}$ \& ${ }_{0}$ \& \＄877 518
$\$ 94888$ \& 0 \& \bigcirc \& 0 \& 1

\hline 8916 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．11\％ \& 0 \& 1 \& 6098 \& 0 \& 1 \& 0 \& \＄545880 \& 0 \& 0 \& 0 \& 1

\hline 8917 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．86\％ \& 1 \& 1 \& 9583 \& 0 \& 0 \& 0 \& \＄424880 \& 0 \& 0 \& 0 \& 1

\hline 8918 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 0 \& 6098 \& 0 \& 0 \& 1 \& \＄424 132 \& \& 0 \& 0 \& 1

\hline 8919 \& 0 \& 1 \& 0 \& 0 \& 0 \& ${ }^{1.14 \%}$ \& 0 \& 1 \& 6534
7841 \& ${ }_{1}$ \& 1 \& 0 \& 5889021
$\$ 142929$ \& 0 \& 0 \& 0 \& 1

\hline 8920
8921 \& \bigcirc \& 1 \& ${ }_{0}^{1}$ \& \bigcirc \& \bigcirc \& ${ }^{1.111 \%}$ \& 0 \& 1 \& 7841
9883 \& ${ }_{0}^{1}$ \& 0 \& $\stackrel{0}{0}$ \& \＄142990
$\mathbf{S 4 2 4 8 0}$ \& 0 \& \bigcirc \& 。 \& 1

\hline 8922 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 1 \& 5663 \& 1 \& 0 \& 0 \& \＄105887 \& 0 \& 0 \& 0 \& 1

\hline 8923 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．14\％ \& 0 \& 1 \& 7841 \& ， \& 1 \& 0 \& \＄995752 \& 0 \& 0 \& 0 \& 1

\hline 8924
8925 \& 0 \& \bigcirc \& \bigcirc \& \bigcirc \& ${ }_{0}$ \& ${ }_{\text {1．11\％}}^{1.11 \%}$ \& \bigcirc \& 1 \& 8712
10890 \& 1 \& 1 \& 0 \& （511936 \& $\stackrel{0}{0}$ \& \bigcirc \& \bigcirc \& 1

\hline 8926 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．14\％ \& － \& 1 \& 10454 \& 0 \& － \& 0 \& \＄538651 \& 0 \& 0 \& 0 \& 1

\hline ${ }_{8}^{8927}$ \& 0 \& 0 \& 0 \& 0 \& 1 \& ${ }^{1.14 \%}$ \& 0 \& 1 \& ${ }_{6}^{6970}$ \& 1 \& 0 \& 0 \& ${ }_{\$ 354789}$ \& 0 \& 0 \& 0 \&

\hline 8928
8929 \& \bigcirc \& 1 \& 0 \& 0 \& 0 \& 1．11\％ \& 0 \& 0 \& 5663
563 \& 1 \& 0 \& 0 \& \＄117718 \& 0 \& 0 \& \bigcirc \& 1

\hline 8929
8930 \& 0 \& 1 \& \bigcirc \& \bigcirc \& ${ }_{0}$ \& ${ }^{1.14 \%}$ \& 0 \& ${ }_{0}$ \& 5663
563 \& 0 \& ${ }_{0}^{1}$ \& \bigcirc \& （1094048 \& 0 \& \bigcirc \& 0 \& 1

\hline 8931 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 1 \& 5663 \& 0 \& \& 1 \& \＄158378 \& 0 \& 0 \& 0 \& 1

\hline 8932 \& 0 \& 0 \& 0 \& 0 \& 0 \& ${ }^{1.14 \%}$ \& 0 \& 1 \& 13939 \& 0 \& 0 \& 0 \& \＄362703 \& 0 \& 0 \& 0 \& 1

\hline 8933
8934 \& ${ }_{0}^{1}$ \& \bigcirc \& 1 \& 0 \& \bigcirc \& ${ }^{1.1 .12 \%}$ \& 0 \& 0 \& 13939
6098 \& \bigcirc \& ${ }_{1}$ \& ${ }_{0}^{1}$ \& $\$ 276500$
$\$ 62363$ \& 0 \& 0 \& 0 \& 1

\hline 8935 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1．14\％ \& 0 \& 1 \& 5663 \& 0 \& 0 \& 1 \& \＄378945 \& 0 \& 0 \& 0 \& 1

\hline 8936
8937 \& \bigcirc \& 1 \& 0 \& 0 \& 0 \& ${ }^{1.12 \%}$ \& 0 \& 1 \& ${ }_{6970}$ \& 1 \& － \& 0 \& \＄348151 \& 0 \& 0 \& 0 \& 1

\hline 8937
8988 \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& ${ }_{1}$ \& ${ }^{\text {1．11\％}}$ \& \bigcirc \& 1 \& 5663
563 \& 1 \& \bigcirc \& 0 \& S102 950
S101 134 \& \bigcirc \& \bigcirc \& \bigcirc \& 1

\hline 8939 \& 0 \& \& 0 \& 1 \& 0 \& 1．11\％ \& － \& 1 \& 8276 \& 0 \& 0 \& 1 \& \＄263076 \& 0 \& 。 \& 0 \& 1

\hline 8940 \& 0 \& ， \& 0 \& 0 \& 0 \& ${ }^{1.12 \%}$ \& 0 \& 1 \& ${ }^{6} 534$ \& 0 \& 1 \& 0 \& \＄709645 \& 0 \& 0 \& 0 \& 1

\hline 8941
8942 \& 0 \& 0 \& 1 \& 0 \& 0 \& ${ }^{1.12 \%}$ \& 0 \& ， \& $\begin{array}{r}7841 \\ \hline 9\end{array}$ \& 0 \& \& 0 \& \& 0 \& 0 \& 0 \& 1

\hline 8942
8943 \& ${ }_{0}$ \& 1 \& \bigcirc \& \bigcirc \& ${ }_{0}$ \& ${ }_{1}^{1.12 \%}$ \& \bigcirc \& \bigcirc \& 9148
10672 \& \bigcirc \& ${ }_{0}$ \& 1 \& （ 54202288 \& 0 \& 0 \& \bigcirc \& 1

\hline 8944 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 1 \& 5663 \& 0 \& 1 \& 0 \& \＄731346 \& 0 \& 0 \& 0 \& 1

\hline 8945 \& 0 \& 0 \& 1 \& 0 \& 0 \& 1．19\％ \& － \& 0 \& 7405 \& 0 \& 0 \& 1 \& \＄198813 \& 0 \& \& 0 \& 1

\hline 8946 \& 0 \& － \& 1 \& － \& － \& ${ }^{1.11 \%}$ \& 0 \& 1 \& ${ }_{7}^{6098}$ \& ， \& 0 \& 0 \& | S161858 |
| :--- |
| $\$ 5975$ | \& 0 \& 0 \& 0 \& 1

\hline 8947
8948 \& \bigcirc \& \bigcirc \& ${ }_{0}^{1}$ \& \bigcirc \& 0 \& ${ }_{\text {1．1．11\％}}^{1.08}$ \& 0 \& 1 \& 7841
6970 \& 0
1 \& ${ }_{0}^{1}$ \& 0 \& $\$ 569275$
$\$ 97646$ \& \bigcirc \& \bigcirc \& \bigcirc \& 1

\hline 8949 \& 。 \& 1 \& 0 \& 。 \& 。 \& 1．12\％ \& \& 1 \& 12197 \& ${ }_{0}$ \& 。 \& 1 \& \＄421398 \& 0 \& 0 \& 0 \& 1

\hline 8950 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 0 \& 9583 \& 0 \& 0 \& 1 \& \＄281 149 \& 0 \& 0 \& 0 \& 1

\hline 8951
8952 \& 0 \& 1 \& \bigcirc \& 0 \& 0 \& ${ }^{1.111 \%}$ \& \bigcirc \& 1 \& 5663
6534 \& 1 \& 0 \& 0 \& \＄112195 \& 0 \& \bigcirc \& \& 1

\hline 8952
8953 \& 0 \& 1 \& \bigcirc \& ${ }_{0}$ \& 0 \& ${ }^{1.111 \%}$ \& 0 \& 1 \& 6534
7000 \& 0 \& 0 \& 1 \& S324000
$\$ 470678$ \& 0 \& 0 \& 0 \& 1

\hline 8954 \& 0 \& 1 \& － \& ， \& 0 \& 1．11\％ \& \& 1 \& 7405 \& 0 \& 1 \& 0 \& \＄974987 \& 0 \& 0 \& 0 \& 1

\hline 8955 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．12\％ \& \& 1 \& 12632 \& 0 \& 1 \& 0 \& \＄1032700 \& 0 \& \& 0 \& 1

\hline 8956
8957 \& 1 \& 1 \& \bigcirc \& \bigcirc \& \bigcirc \& 1．12\％ \& 0 \& 1 \& 12632
10100 \& 0 \& \bigcirc \& 1 \& S321454
5397987 \& \bigcirc \& \bigcirc \& \bigcirc \& 1

\hline 8957
8958 \& 1 \& 1 \& 0 \& 0 \& \bigcirc \& ${ }^{1.14 \%}$ 1．14\％ \& 0 \& 1 \& 10100
13068 \& 0 \& ${ }_{1}$ \& 1 \& \& 0 \& 0 \& \bigcirc \& 1

\hline 8959 \& 0 \& 0 \& 0 \& O \& 1 \& 1．14\％ \& － \& \& 5663 \& 0 \& 1 \& 0 \& S605 147 \& 0 \& 0 \& 0 \& 1

\hline 8960 \& 0 \& 1 \& 0 \& \& 0 \& ${ }^{1.14 \%}$ \& 0 \& 1 \& 6098 \& 0 \& 0 \& 0 \& 5487351 \& 0 \& 0 \& 0 \& 1

\hline 8961
8962 \& 0 \& 0 \& 0 \& 1 \& 0 \& ${ }^{1.14 \%}$ \& 0 \& 1 \& ${ }_{1}^{11326}$ \& 1 \& 0 \& 1 \& S339400
$\$ 39898$ \& \& 0 \& 0 \& 1

\hline 8962
8963 \& \bigcirc \& ${ }_{1}$ \& ${ }_{0}$ \& ${ }_{0}^{1}$ \& ${ }_{0}^{1}$ \& ${ }_{\text {1．14\％}}^{1.14 \%}$ \& ${ }_{0}$ \& ${ }_{0}^{1}$ \& 6098
10454 \& 1 \& 0 \& ${ }_{1}$ \& 5188678
S295 282 \& 0 \& 0 \& 0 \& 1

\hline 8964 \& 0 \& \& \& 0 \& 0 \& ${ }_{1} 1.11 \%$ \& \& \& ${ }_{6}^{110954}$ \& 0 \& 0 \& 1 \& S292282
$\$ 304946$ \& \bigcirc \& \bigcirc \& \bigcirc \& 1

\hline 8965 \& 0 \& 1 \& 0 \& － \& － \& 1．11\％ \& 0 \& 0 \& 7930 \& \& 0 \& 1 \& \＄381014 \& 0 \& 0 \& － \& 1

\hline 8966
8967 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1．11\％ \& 0 \& 1 \& 10454
6098 \& \bigcirc \& 1 \& \bigcirc \& 5813538
5670959 \& 0 \& \bigcirc \& \bigcirc \& 1

\hline 8967
8968 \& \bigcirc \& ${ }_{1}$ \& 0 \& 1 \& \bigcirc \& ${ }^{1.11 \% \%}$ 1．14\％ \& \bigcirc \& 1 \& 6098
6098 \& 0 \& ${ }_{0}^{1}$ \& \bigcirc \& \＄670959
$\$ 362703$ \& 0 \& 0 \& 0 \& 1

\hline 8969
8970 \& 0 \& \& \& 1 \& \& （1．14\％ \& － \& 1 \& 6650
5663 \& 0 \& ： \& 1
0 \& \＄277344
$\$ 52321$ \& \& 0 \& \bigcirc \& 1

\hline
\end{tabular}

observation	PROPERTY DURESS $=1$	LTV_9\%	LTV 81\%.90\%	LTV 70\%-78\%	$\begin{gathered} \text { LTV beLow } \\ 70 \% \end{gathered}$	total tax burden	parcel in SCEIP $=1$	CONVENTIONAL LOAN = 1	Lotsize	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	$\begin{gathered} \text { SOLD DURING } \\ 2004 _2007 \end{gathered}$	Soto 2008-2012	PRICE ADJUST. To 2012	ZIP CODE Z95403	ZIP CODE 95404	ZIP CODE 95472	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
8971	-	0	0	1	50\%	1.11\%	Scaror	Lonv=1	5663	${ }_{1}$	${ }^{2004}$	0	\$78225	25403	5504		
8972	0	0	0	1	0	1.11\%	0	1	8276	1	0	0	\$62001	0	0	0	1
8973		0	0	0	1	1.11\%	0	1	6970	1	0	0	\$88283		0	0	1
8974	0	0	0		0	1.11\%	0	1	8276	1	0	0	590518	0	0	0	1
8975	0	1	0	0	0	1.11\%	0	1	8276	1	0	0	\$92194	0	0	0	1
8976	0	1	0	0		1.11\%	0	1	5663	0	0	0	\$152975	0	0	0	1
8977	0	0	0	0	1	1.11\%	0	1	5663	0		1	\$362871	0	0	0	1
8978	0	0	0	0	1	1.11\%	0	1	5663	0	1		\$954362	0	0	0	1
8979	0	0	0		1	1.11\%	0	1	5663	0	0	0	5347606	0	0	0	1
8980	0	1	0	0	0	1.11\%	0	1	5663	0	1	0	5969888	0	0	0	1
8981	0	1	0	0	0	1.11\%	0	1	6534	0	0	0	${ }_{5310557}$	0	0	0	1
8982	0	0	0	0	0	1.11\%	0	1	6000	0	0	1	\$348970	0	0	0	1
8983	1	1	0		0	1.11\%	0	1	6534	0	0	0	\$310557	0	0	0	1
8984	0	1	0	0	0	1.11\%	0	0	6000	0	0	1	\$408862	0	0	0	1
8985	0	1			1	${ }^{1.11 \%}$	0	0	6970	0	0	1	\$256047	0	0	0	1
8986	0	0	0	0	1	1.11\%	0	1	6970	0	0	0	5340523	0	0	0	1
8987	0	1	0	0	0	1.11\%	0	1	7405	0	1	0	\$631662	0	0	0	1
8988	0	1	0	0	0	1.11\%	0	1	8276	0	0	1	5421398	0	0	0	1
8989	0	0	0	0	0	1.11\%	0	1	8276	0	0	1	5387809		0	0	1
8990 8991	0	1	0	0	0	${ }_{\text {1.11\% }}^{1.17}$	0	1	8712 6534	0	\bigcirc	0	\$259594	0	0	0	1
8991	0	1	0	0	-	${ }^{1.12 \%}$	0	0	6534	0	0	1	S255043 $\$ 375813$	0	0	0	1
8992 8993	0	1	0	0	0	${ }_{\text {l }}^{1.14 \%}$	0	1	9148 9148 9	0	0	1	5375813 $\$ 341272$	0	0	0	1
8994 899	0	0	0	${ }_{0}$	-	${ }_{1.14 \%}^{1.14 \%}$	0	1	9148 784	${ }_{0}^{0}$	\bigcirc	1	S3427272 S403	\bigcirc	:	:	1
8995	0	1	0	0	-	1.14\%	0	1	7405		0	0	5468113	0	0	0	1
8996	0	1	0	0	0	1.14\%	0	1	6970	0	1	0	588989	0	0	0	1
8997	0	0	0	0	0	1.14\%	0	1	5663	0	0	1	${ }_{5374756}$	0	0	0	1
8998	0	1	0	0	0	1.14\%	0	1	6767	0	0	0	$\begin{array}{r}5471961 \\ \$ 39476 \\ \hline\end{array}$	0	0	0	1
$\begin{array}{r}8999 \\ \hline 900\end{array}$	0	0	0	0	0	1.14\%\%	\bigcirc	1	${ }_{5}^{5663}$	0	\bigcirc	1	5394476 $\$ 275000$	0	0	0	1
9000 9001	\bigcirc	${ }_{1}^{0}$	0	0	\bigcirc	${ }^{1.14 \%}$	\bigcirc	1	6098 5663	\bigcirc	0	1	$\$ 275000$ $\$ 311273$	0	0	\bigcirc	1
9002	0	0	0	1	0	1.14\%	0	1	5663	0	0	1	S261996	0	0	0	1
9003	0	0	1	0		1.15\%	0	1	8276	1	0	0	\$119713	0	0	0	1
9004	0	1	0	0	0	${ }^{1.15 \%}$	0	1	7841 983	1	0	0	\$52768	0	0	0	1
9005 9006	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	\bigcirc	${ }_{0}$	${ }_{1}^{1.1 .19 \%}$	\bigcirc	1	9583 6098	1	\bigcirc	${ }_{1}$	\$18965 $\$ 190000$	${ }_{0}$	\bigcirc	0	1
9007	0	0	0	0	0	1.14\%		1	8276	1		0	\$102410	0	0	0	1
9008	0	1	0	0	0	1.15\%	0	0	6970	0	0	1	\$235000	0	0	0	1
9009	0	1	0	0	0	${ }^{1.111 \%}$	0	1	6098 5663	1	\bigcirc	0	\$101525	0	0	0	1
${ }_{9}^{9010}$	0	${ }_{0}^{1}$	${ }_{1}$	\bigcirc	0	${ }^{1.111 \%}$	\bigcirc	1	5663 6098	1	\bigcirc	\bigcirc	$\$ 110402$ $\$ 86006$	${ }_{0}$	\bigcirc	0	1
9012	0	0	0	0	1	1.11\%	-	1	12632	1		0	\$120 710	0	0	0	1
9013	0	0	1	0	0	1.11\%	0	1	7841	1	0	0	\$144919	0	0	0	1
9014	0	0	0	0	1	1.11\%	0	1	5663	0	0	0	\$240 125	0	0	0	1
9015	1	1	0	0	0	1.11\%	0	1	6600	0	1	0	\$647258	0	0	0	1
${ }_{9}^{9016}$	0	1	${ }_{0}$	\bigcirc	${ }_{0}$	- ${ }_{\text {1.114\% }}^{1.14 \%}$	\bigcirc	1	6970 6098	\bigcirc	1	${ }_{0}$	$\begin{array}{r}\text { S984362 } \\ \mathbf{S 6 9 6 2 8 8} \\ \hline\end{array}$	${ }_{0}$	${ }_{0}$	\bigcirc	1
9018		1	\bigcirc	\bigcirc	${ }_{0}^{0}$	${ }_{\text {1.14\% }}^{1.14 \%}$	\bigcirc	1	6098 6098	\bigcirc	1	${ }_{1}$		\bigcirc	\%	:	1
9019	0	0	0	1	0	1.15\%	0	1	13504	1	0	0	577108	0	0	0	1
9020	0	0	0	1	0	2.09\%	1	1	7000	0	0	1	\$337 158	0	0	0	1
${ }_{9}^{9021}$	1	0	0	0	0	1.14\%	0	1	9585 6098	0	1	0	\$764233	0	0	\bigcirc	1
${ }_{9}^{9022}$	\bigcirc	\bigcirc	0	1	0	1.1.10\%	\bigcirc	1	6098 8712	\bigcirc	\bigcirc	1	¢ $\begin{gathered}\text { \$268696 } \\ \$ 271108\end{gathered}$	\bigcirc	\bigcirc	0	1
9024	0	1	0	0	0	${ }^{1.111 \%}$	\bigcirc	1	6970 5638	1	0	0	$\begin{array}{r}\text { S137767 } \\ \$ 98382 \\ \hline\end{array}$	0	0	0	1
9025	-	1	0	0	0	1.11\%	0	1	5663	0	1		\$903 382	0	0	0	1
9026 9027	\bigcirc	${ }_{0}^{1}$	0	0	0	- 1.11%	\bigcirc	1	6534 6534	\bigcirc	${ }_{0}^{1}$	0	$\$ 677451$ S25250	0	0	0	1
${ }_{9}^{9027}$	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	0	$\stackrel{0}{0}$	${ }^{1.111 \%}$	\bigcirc	${ }_{0}^{1}$	6534 6098	\bigcirc	0	1	\$2252000	0	\bigcirc	0	1
9029	0	0	0	0	1	1.11\%		1	7841	0	0		\$348647	0	0	0	1
9030	\bigcirc	1	0	0	0	${ }^{1.11 \%}$	\bigcirc	1	9148	\bigcirc	1	0	\$670959	0	0	0	1
9031	0	0	0	0	0	1.11\%	0	1	9148	0	1	0	\$956237	0	0	0	1
9032	0	1	0	0	0	1.11\%	0	1	10400 563	0	1	0	558872 $\$ 44263$	0	-	0	1
${ }^{9033}$	0	\bigcirc	0	0	1	1.11\%	0	1	5663 12632	0	0	\bigcirc	5442463 $\$ 67065$	\bigcirc	0	0	1
9034 9035	0	${ }_{1}$	${ }_{0}^{1}$	0	\bigcirc	${ }_{\text {1.14\% }}^{1.14 \%}$	0	1	${ }_{9}^{12632}$	\bigcirc	1	0	$\underset{\substack{\text { S670 } 653 \\ \$ 68250}}{ }$	\bigcirc	0	0	1
9036	0	1	0	0	0	1.14\%		1	7802	0	,	0	\$515566	0	0	0	
9037	0	1	0	0	0	1.14\%	0	0	7405	0	0	1	\$326757	0	0	0	1
9038	0	1	0	0	0	1.14\%	0	1	6970	0	1	0	\$803474	0	0	0	1
9039 9040	0	0	0	0	\bigcirc	${ }^{1.144 \%}$	\bigcirc	1	6970 5663	0	0	0	$\$ 368460$ $\$ 331789$	0	0	0	1
${ }_{9}^{9040}$	0	${ }_{1}$	0	${ }_{0}^{1}$	0	${ }_{\text {l }}^{\text {1.14\% }}$	0	1	5663 5663	0	0	${ }_{0}^{1}$	\$331789 $\$ 305109$	0	\bigcirc	\bigcirc	1
9042	0	1	0	0	0	1.14\%	0	1	5663	0	1	。	¢545880	${ }_{0}$	0	${ }_{0}$	1
9043	0	0	0	0	0	1.14\%	0	1	6000	0	1	-	5584872	0	0	0	1
9044	0	1	0	0	0	1.14\%	0	1	5663	0	0	1	5334624	0		0	1
9045	0	0	0	0	1	${ }^{1.14 \%}$	0	1	5663 5633	0	1	0	\$923703	0	0	0	1
${ }_{9}^{9046}$	0	${ }_{1}^{0}$	${ }_{0}^{0}$	\bigcirc	$\stackrel{\square}{0}$	${ }^{1.14 \%}$	${ }_{0}^{0}$	1	5663 5663	$\stackrel{0}{0}$	\bigcirc	1	S253020 $\$ 23000$	0	0	\bigcirc	1
9048	0	1	0	0	0	1.14\%		0	6098	0	0	1	\$257701		0	0	1
9049	0	0	0	0	0	1.15\%	0	1	6534	1	0	0	\$104306	0	0	0	1
9050	0	1	0	0	0	1.15\%	0	1	5663	1	0	0	597334	0	0	0	1
9051	0	0	0	0	0	1.15\%	0	1	6534 6098	1	\bigcirc	0	(881298	0	0	0	1
9052 9053	0	\bigcirc	\bigcirc	${ }_{1}$	\bigcirc	${ }_{\text {1.65\% }}^{1.15 \%}$	1	1	6098 6970	\bigcirc	0	\bigcirc	${ }_{\substack{\text { \$231781 } \\ \$ 374217}}$	\bigcirc	0	0	1
9054	0	1	0	0	0	1.11\%	0	0	5663	0	0	1	5261067	0	0	0	1
${ }^{9055}$	0	1	0	0	0	1.11\%	0	1	6098	0	0	0	\$269793	0	0	-	1
${ }_{9}^{9056}$	\bigcirc	${ }_{1}^{1}$	\bigcirc	\bigcirc	1	${ }_{\text {1.15\% }}^{1.14 \%}$	0	1	6098 6970	0	0	${ }_{0}^{1}$	S373406 S13865	${ }_{0}$	\bigcirc	\bigcirc	1
9058	0	0	0	0	1	1.15\%	0	1	6098	1	0		\$71520	0		0	1
9059	0	0	0	0	1	1.11\%	0	1	5663	0	1	0	\$7279911	0	0	\bigcirc	
9060 9061	0	1	0	0	0	1.14\%	\bigcirc	0	8276 6970	0	0	1	S253035 $\$ 688267$	0	0	\bigcirc	1
${ }_{9062} 9061$	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	${ }^{1.14 \% \%}$	${ }_{0}$	${ }_{0}^{1}$	6970 6534	\bigcirc	${ }_{0}^{1}$	0		\bigcirc	\bigcirc	\bigcirc	${ }_{1}^{1}$
9063	0	1	0	0	0	1.14\%	0	0	5663	0	0	1	\$251026	0		0	1
9064	0	1	0	0	0	${ }^{1.111 \%}$	0	1	6098 5663	0	1	0	5830409 $\$ 83133$		0		1
9065 9066	${ }_{0}$	0	\bigcirc	\bigcirc	${ }_{0}^{1}$	-	0	${ }_{0}^{1}$	5663 8712	\bigcirc	${ }_{0}^{1}$	0	5831333 $\$ 206846$	\bigcirc	\bigcirc	0	1
9067	0	0	0	0	0	1.11\%	0	1	6534	0	0	${ }_{0}$	\$208603			0	1
9068	0	1	0	0	0	1.11\%	0	1	6534	1	0	0	S129486	0	0		1
9069	0	0	\bigcirc	\bigcirc	\bigcirc	1.15\%	\bigcirc	1	5663 7405	1	0	\bigcirc	S88122 $\$ 13509$	\bigcirc	\bigcirc	\bigcirc	1
9071	0	1	0	0	0	${ }_{1}^{1.12 \%}$	${ }_{0}^{\circ}$	1	7405 6098	1	\bigcirc	1	\$135 509 $\$ 28700$	\bigcirc	\bigcirc	\bigcirc	1
9072	-	0	0	0	1	1.12\%	0	1	5663	0	1	0	\$855 473	0	0	0	1
9073	0	0	\bigcirc	1	0	${ }^{1.111 \%}$	\bigcirc	1	6098 7841	1	0	0	\$59971	0	0	0	1
${ }_{9075}^{9074}$	\bigcirc	${ }_{1}$	\bigcirc	0	0	${ }_{\text {1.112\% }}^{1.11}$	\bigcirc	1	7841 6098	1	${ }_{1}^{0}$	0		\bigcirc	\bigcirc	\bigcirc	1
9076		0	0	0	0	${ }_{1.11 \%}^{1.12 \%}$	0	1	6098	1	${ }_{0}$	0	(176161	0	0	\bigcirc	1
9077	-	0	0	0	0	${ }^{1.111 \%}$	\bigcirc	1	${ }_{5}^{5633}$	1	0	0		O	\bigcirc	0	
9078 9079	\bigcirc	\bigcirc	\bigcirc	1	1	${ }^{1.111 \%}{ }_{1.14 \%}$	\bigcirc	1	6534 6098	\bigcirc	0	1	$\$ 268838$ $\$ 451833$	\bigcirc	\bigcirc	0	1
9080		0	0	0		1.14\%	0	1	5663	1	0	0	\$105883	0	0	0	1
${ }_{9}^{9081}$	0	${ }_{0}^{1}$	0	\bigcirc	0	- 1.12%	\bigcirc	1	5663 6885	\bigcirc	${ }_{0}^{1}$	0	5918738 $\$ 51566$	0	\bigcirc	\bigcirc	1
9083	0	1	0	0	1	1.14\%	0	1	6825 6600	0	\bigcirc	1	\$515 566 $\$ 34388$	\bigcirc	\bigcirc	\bigcirc	1
9084	1	1	0	0	0	1.14\%	0	1	6970	0	0	0	\$545064	\bigcirc	\bigcirc	0	1
9085	0	1	0	0	0	1.14\%	-	1	4792	0	0	1	${ }_{5}^{5377018}$	\bigcirc	O	O	1
${ }_{9}^{9086}$	0	${ }_{0}^{1}$	0	0	0 1	${ }^{1.14 \%}$	0	1	4792 6098	\bigcirc	0	1	5371189 5347000	\bigcirc	\bigcirc	\bigcirc	1
9088	0	0	1	0	1	${ }_{1} 1.11 \%$		1	5663	1	0	1	S 97781 $\$ 9781$	0	0	0	1
9089	0	1	0	0	0	1.12\%	\bigcirc	1	${ }_{5653}^{5634}$	\bigcirc	1	\bigcirc	${ }_{5}^{57235921}$	\bigcirc	\bigcirc	\bigcirc	
9090 9091	0	0	1	0	0	${ }_{1}^{1.12 \%}$	-	1	6534 6098	0	0	\bigcirc	5333917 $\$ 423729$	\bigcirc	0	0	1
9092	0	0	0	0	0	1.13\%	0	1	5663	0	0	1	\$310247		0	0	1
9093 9094	1	1	0	0	\bigcirc	- 1.14%	\bigcirc	1	8600 6534	0	0	0	5423226 S09 S	0	0	0	1
9094 9095	${ }_{0}^{1}$	${ }_{0}^{1}$	0	\bigcirc	1	${ }^{1.14 \%}$	0	1	6534 5663	0	${ }_{0}^{1}$	0	5909363 $\$ 35900$	\bigcirc	\bigcirc	\bigcirc	1
9096	0	0	0	-		1.14\%	0	1	5663	0	0	1	5450662	0	0	0	1
${ }_{9}^{9097}$	-	1	0	0		1.14\%	0	1	6000 6000	0	1	0	$\begin{array}{r}5473243 \\ \hline 5126 \\ \hline\end{array}$		0	0	1
${ }_{9}^{9098}$	0	1	0	0	0	(1.14\%	\bigcirc	1	6000 6098	0	1	0	\$541626 $\$ 32901$	0	0	0	1
9100	0	1	0	0	0	1.14\%	0	0	5663	0	0	1	\$220 987	0	0	0	1

osservation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％．90\％	LTV 70\％－78\％	LtV below 70\％	total tax burden	parcel in SCEIP $=1$	conventional	tor size	SOLD PRIOR 2000	SOLD DURING	SOLD 2008 －2012	PRICE ADJUST．TO	ZIP CODE 295403	ZIP CODE 95404	ZIP CODE 95472	ZIP CODE 94928
9101	${ }_{0}$	1	0	0	0	${ }^{1.14 \%}$	${ }_{0}$	0	6970	1	－	0	S113557				
9102	0	1	0	0	0	1．15\％	0	0	5663	0	－	1	\＄246963	0	0	0	
9103	0	0	0	0	0	1．58\％	1	1	5663	1	－	0	S63277	0	0	0	1
9104	0	0	0	1	0	1．11\％	0	1	6534	1	0	0	\＄112519	0	0	0	1
9105	0	0	0	0	0	1．11\％	0	1	8712	1	0	0	\＄117718	0	0	0	1
9106	0	0	0	0	。	1．11\％	0	1	6970	1	0	。	\＄104 198	。	。	0	1
9107	0	0	0	1	0	${ }^{1.11 \%}$	0	1	5663	1	0	0	588003	0	0	0	1
9108	0	1	0	0	0	${ }^{1.111 \%}$	0	1	6098	1	0	0	\＄107317	0	0	0	1
9109	0	1	0	0	0	1．11\％	0	1	7841	1	0	0	\＄128359	0	0	0	1
9110	0	0	1	0	0	1．11\％	0	1	5663	1	0	0	\＄104306	0	0		1
9111	0	0	0	0	0	1．11\％	0	1	6534	1	0	，	\＄109594	0	0	0	1
9112	0	1	0	0	0	1．11\％	0	0	5663	0	0	1	\＄295282	0	0	0	1
9113	0	1	0	0	0	1．11\％	0	1	5663	0	0	1	\＄464709	0	0	0	1
9114	0	1	0	0	0	1．11\％	0	0	${ }_{6}^{6098}$	0	0	1	${ }_{\$ 324273}$	\bigcirc	0	0	1
9115	0	1	0	0	0	1．11\％	0	0	5663	0	0	1	\＄357018	0	0	0	1
9116	0	0	0	0	0	${ }^{1.11 \%}$	0	1	6534	0	0	1	\＄373406	0	0	0	1
9117	0	1	0	0	0	1．11\％	0	1	6970	0	0	1	\＄357018	0	0	0	1
9118	0	1	0	0	。	${ }_{1.11 \%}^{1.11 \%}$	0	1	6970	0	0	${ }_{0}$	\＄359592	－	－	0	1
9119	0	1	0	0	0	${ }^{1.11 \%}$	0	1	7405	0	0	0	\＄403003	0	0	0	1
9120	1	0	0	1	0	1．11\％	0	1	8276	0	0	0	\＄236416	0	0	0	1
9121	0	0	0	0	0	1．11\％	0	1	9148	0	0	0	\＄335620	0	0	0	1
9122	0	1	0	－	0	${ }^{1.12 \%}$	0	1	${ }^{111326}$	0	0	0	$\begin{array}{r}\text { P354 } 144 \\ \$ 99700 \\ \hline\end{array}$	0	0	\bigcirc	1
¢ $\begin{aligned} & 9123 \\ & 9124\end{aligned}$	\bigcirc	${ }_{1}^{1}$	\bigcirc	0	\bigcirc	${ }_{\text {1．1．12\％}}$	0	1	12632 10890	0	${ }_{0}^{1}$	\bigcirc	5997600 $\$ 325813$	\bigcirc	\bigcirc	\bigcirc	1
9125	0	0	0		1	1．14\％	0	1	6534		0	1	\＄327494	。	。	0	1
9126	0	1	0	0	0	1．14\％	0	1	6534	0	0	0	5403003	0	0	0	1
9127	0	1	0	0	0	1．14\％	0	1	6534	0	1	0	\＄743177	0	0	0	1
9128	0	0	0	0	0	1．14\％	0	1	5663	0	0	0	5232244	0	0	0	1
9129	0	1	0	0	0	1．14\％	0	1	5663	0	0	0	\＄301840	0	0	0	1
9130	0	1	0	0	0	1．14\％	0	1	5663	0	1	0	5886755	0	0	0	1
9131	0	0	0	1	0	1．14\％	0	1	5663	0	0	1	\＄317450	0	0	0	1
9132 9133	0	${ }_{0}^{1}$	\bigcirc	\bigcirc	0	${ }_{\text {1．14\％}}^{1.14 \%}$	0	1	6970 5663	${ }_{0}^{1}$	\bigcirc	${ }_{1}^{0}$	$\$ 169386$ $\$ 252030$	0	0	\bigcirc	1
9134	0	，	0	0	0	1．14\％		1	6970	1	0	0	\＄157341	0	0	0	1
9135	0	1		0	0	1．14\％	0	1	6098	1	0	0	\＄106549	0	0	0	1
9136	0	1	0	，	0	1．11\％	0	1	7405	1	0	0	\＄102592	0	0	0	1
9137	0	0	0	1	0	${ }^{1.11 \%}$	0	1	4792	1	0	0	\＄52992	0	0	0	1
91388 9139	0	\bigcirc	\bigcirc	${ }_{1}^{1}$	0	${ }_{1}^{1.11 \%}$	0	1	4792 4792	0	\bigcirc	1	$\$ 246963$ $\$ 468113$	0	0	\bigcirc	1
9140		1	0	0	0	1．18\％	0	0	4792	0	0	1	\＄249000	0	0	0	1
9141	0	0	0	1	0	1．11\％	0	1	4792	1	0	0	\＄52321	0	0	0	1
9142	0	1	0	0	0	1．11\％	0	1	8276	1	0	0	\＄147178	0	0	0	1
9143	0	0	0	0	0	${ }^{1.111 \%}$	0	1	6500 563	\bigcirc	0	0	$\$ 442463$ $\$ 33512$	0	0	\bigcirc	1
9144 9145	\bigcirc	${ }_{0}^{1}$	\bigcirc	\bigcirc	0	${ }_{1}^{1.11 \%}$	0	1	5663 5663	\bigcirc	\bigcirc	1	$\$ 345312$ $\$ 210862$	0	\bigcirc	\bigcirc	1
9146	0	1	0	0	0	1．11\％	－	0	6970	0	0	1	\＄337948	0	0	0	1
9147	0	1	0	0	0	1．11\％	0	1	7405	0	1	0	\＄883113	0	0	0	1
9148 9149	0	1	\bigcirc	0	\bigcirc	－	\bigcirc	0	7405 6336	0	0	1	$\$ 24293$ $\$ 273117$	0	0	${ }_{0}$	1
9149 9150	0	${ }_{0}^{1}$	\bigcirc	\bigcirc	0	${ }_{\text {1．12\％}}^{1.12 \%}$	0	1 1	6336 6970	0	0	1	${ }_{\substack{\text { S }}}^{\$ 273117}$	\bigcirc	\bigcirc	0	1
9151	0	1	0	0	。	1．14\％	0	1	6970	0	1	0	\＄890450		0	0	1
9152	0	0	0	1	0	1．14\％	0	1	6098	0	0	0	\＄197941	0	－	0	1
9153	0	0	0	0	0	1．14\％	－	1	8276	－	0	1	\＄265 217	0	0		1
9154	0	1		0	0	1．14\％	0	1	5663	1	0	0	\＄109 189	0	0	0	1
9155	0	1	\bigcirc	0	0	1．15\％	\bigcirc	${ }_{1}$	6970 4792	1	\bigcirc	0	\＄106699	\bigcirc	\bigcirc	0	1
9156 9157	0	${ }_{1}^{1}$	\bigcirc	\bigcirc	0	${ }^{1.111 \%}$	0	1	4792 4992	0	${ }_{1}^{0}$	1	\＄240000 $\$ 858$ 139	\bigcirc	\bigcirc	\bigcirc	1
9158	0	0	0	0	－	1．15\％	0	1	5227	0	0	1	\＄234110	0	0	0	1
9159	0	0	0	0	0	${ }^{1.15 \%}$	0	1	6098	1	0	0	\＄78225	0	0	0	1
9160	0	0	0	0	0	1．11\％	0	，	6098	1	，	1	\＄229967	0	0	0	1
${ }_{9161}^{9162}$	0	\bigcirc	1	0	0	1．11\％	\bigcirc	1	4792 6534	${ }_{0}^{1}$	0	0	$\begin{array}{r}\text { S103042 } \\ \$ 770838 \\ \hline\end{array}$	0	0	0	1
9162 9163	0	0	1	\bigcirc	\bigcirc	－${ }_{\text {1．115\％}}^{1.11}$	0	1	6534 4792	\bigcirc	1	\bigcirc	\＄740 838 $\$ 854989$	0	\bigcirc	0	1
9164		1		0	0	1．15\％	0	1	4792	1	0	0	\＄106901	0	0	0	
9165	0	0	\bigcirc	1	0	1．14\％	0	1	${ }_{5}^{5663}$	0	0	0	\＄332351	0	0	0	1
${ }_{9}^{9166}$	1	1	\bigcirc	\bigcirc	0	－	0	1	5665 6534	\bigcirc	\bigcirc	1	\＄195 000 $\$ 301937$	\bigcirc	0	\bigcirc	1
9167 9168	0	1	\bigcirc	${ }_{1}^{0}$	0	－	0	1	6534 6098	\bigcirc	0	1	$\underset{\$}{\$ 301937}$	0	0	\bigcirc	1
9169	0	0	1	0	－	1．10\％	0	1	5663	1	0	0	\＄49862	0	0	0	1
9170	0	0	0	0	0	1．11\％	0	1	8276	1	0	0	\＄102 172	0	0	0	1
${ }_{9} 9171$	0	，	\bigcirc	0	1	${ }_{\text {1．11\％}}^{1.11 \%}$	－	1	4792	1	0	0	5109072 $\$ 88254$	0	0	0	1
${ }_{9}^{9172}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }^{1.111 \%}$	\bigcirc	1	9148 8712	${ }_{0}^{1}$	\bigcirc	${ }_{1}^{0}$	$\$ 83254$ $\$ 23500$	${ }_{0}$	\bigcirc	\bigcirc	1
9174	0	1		0	0	${ }_{1.11 \%}$	－	1	6970	1	－	${ }_{0}$	\＄100461	－	${ }_{0}$	\bigcirc	1
9175	0		0	1	－	1．11\％		1	5663	1	0	0	\＄99243	0	\bigcirc	\bigcirc	1
${ }^{9176}$	－	1	\bigcirc	1	0	${ }^{1.111 \%}$	0	1	7405 8712	1	0	0	\＄110125	0	\bigcirc	\bigcirc	1
9177	0	1	0	0	0	1．11\％	0	，	8712	1	0	0	\＄106245	0	0	0	1
${ }_{9}^{9178}$	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	${ }^{1.11 \%}$	\bigcirc	1	6000 6000	\bigcirc	\bigcirc	1	$\$ 305815$ $\$ 343601$	\bigcirc	\bigcirc	\bigcirc	1
9180			0	${ }_{1}$	1	${ }^{1.111 \%}$	0	1	${ }_{5663}$	${ }_{0}$	${ }_{0}$	1	\＄343601 $\$ 344675$	${ }_{0}$	0	${ }_{0}^{0}$	1
9181	－		0	0	0	1．11\％	0	1	5663	0	1	0	\＄678451	0	0	0	1
9182	0	0	0	1	0	1．11\％	0	0	5663	0	0	1	\＄343488	0	0	0	1
¢9183 ${ }_{9} 184$	0	${ }_{1}^{0}$	${ }_{0}^{1}$	0	\bigcirc	${ }_{\text {1．11\％}}^{1.11 \%}$	0	1	6098 6098	${ }_{0}^{1}$	\bigcirc	\bigcirc	5165622 $\$ 37787$	\bigcirc	\bigcirc	\bigcirc	1
9185		0	0	0	0	1．11\％	0	1	6534	0	1	0	\＄942177	0	0	0	1
9186	0	1	0	0	0	${ }^{1.11 \%}$		0	${ }^{6098}$	0	0	0	$\begin{array}{r}\text { S284981 } \\ \text { S974 } \\ \hline\end{array}$	\bigcirc	\bigcirc	0	1
9187 9188	\bigcirc	1	\bigcirc	\bigcirc	0	${ }_{\text {1．1．14\％}}^{1.14}$	0	1	6970 6336	\bigcirc	${ }_{0}^{1}$	${ }_{0}$	5974987 5442463	0	\bigcirc	\bigcirc	1
${ }_{9} 9189$	${ }_{0}$	${ }_{1}$	\bigcirc	${ }_{0}$	0	${ }_{\text {1．14\％}}^{1.14 \%}$	0	1	6336 7000	0	${ }_{0}$	$\stackrel{0}{0}$	\＄442463	${ }_{0}$	${ }_{0}^{0}$	\bigcirc	1
9190	0	0	0	0	0	1．14\％	0	1	6534	0	1	0	\＄608267	0	0	0	1
${ }^{9} 191$	\bigcirc	0	0	\bigcirc	1	${ }^{1.14 \%}$	0	1	5663 5638	0	1	\bigcirc		\bigcirc	\bigcirc	0	1
9192 9193	\bigcirc	0	\bigcirc	${ }_{1}^{0}$	${ }_{1}^{1}$	${ }_{\text {1．14\％}}^{1.14 \%}$	0	1	5663 6970	0 1	\bigcirc	0	$\$ 388034$ $\$ 107783$	0	0	\bigcirc	1
9194	－	0	0	0		1．15\％		，	5663	1			\＄125033	0		0	1
9195 9196	－	${ }_{1}$	－	0	1	${ }^{1.1 .15 \%}$	0	${ }_{0}^{1}$	5663 5663	1	0	\bigcirc		0	0	\bigcirc	1
9196 9197	\bigcirc	${ }_{0}^{1}$	\bigcirc	\bigcirc	${ }_{1}$	${ }^{\text {1．1．5\％}}$	0	1 1	5663 5663	${ }_{0}^{1}$	\bigcirc	${ }_{1}^{0}$	\＄135 509 $\$ 22285$	\bigcirc	0	\bigcirc	1
9198		0	0	－	0	1．15\％	0	1	${ }_{5663}$	1	－	${ }_{0}$	\＄99352	0	－	0	1
9199	－	0	0	0	1	1．15\％	0	1	${ }_{6}^{6998}$	1	－	0	\＄101145	0	0	\bigcirc	1
9200 9201	\bigcirc	0	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	1．15\％	0	1	5663 5663	1	0	0	\＄106411 $\$ 97334$	0	\bigcirc	${ }_{0}$	1
9201 9202	\bigcirc	1	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }_{1.11 \%}^{1.11 \%}$	${ }_{0}$	1	5663 6000	1	0	\bigcirc		\bigcirc	\bigcirc	0	1
9203	0	0	0	0		1．11\％	0	1	6098			1	\＄370445	0	0		1
9204	0	0	1	0	－	1．15\％	\bigcirc	1	${ }_{6} 6534$	1	0	0	\＄102410	－	\bigcirc		1
9205 9206	0	1	0	\bigcirc	0	${ }_{\text {l }}^{1.111 \%}$	0	1	4792 4792	1	0	\bigcirc	595456 $\$ 310888$	0	0	0	1
${ }_{9}^{9206}$	0	1	0	0	\bigcirc	${ }^{1.111 \%}$	\bigcirc	1	4792 5663	0	0	0	\＄310888 $\$ 189$ 133	0	\bigcirc	\bigcirc	1
9208		1	0	0		${ }_{1.11 \%}^{1.15 \%}$	0	${ }_{0}$	${ }_{5663}$		0	1	\＄219000	0	0	0	1
${ }^{9209}$	0	1	\bigcirc	0		1．11\％										\bigcirc	
9210 9211	0	1	：	0	0	${ }_{\text {l }}^{\text {1．15\％}}$	\bigcirc	1	5663 7280	0	1	0	\＄655 057 $\$ 442463$	0	\bigcirc	0	1
9212	0	1	0	0	0	${ }^{1.15 \%}$			5663	0	0	1	\＄225926	0	0	0	1
9213		\bigcirc	1	0	0	1．15\％	0	1	8712	1	0	0		0	0	0	1
${ }_{9}^{9214}$	\bigcirc	0	\bigcirc	\bigcirc	1	1．11\％	\bigcirc	1	10890 6534	1	\bigcirc	0	$\$ 165622$ $\$ 131884$ S	\bigcirc	\bigcirc	\bigcirc	1
9216		1		1		${ }_{1}^{1.12 \%}$	0	1	${ }_{5}^{6524}$	1	\bigcirc	\bigcirc	\＄131684 $\$ 298222$	－	\bigcirc	\bigcirc	1
9217	－	0	0	1	0	${ }^{1.14 \%}$	－	1	${ }_{6} 698$	0	1	－	\＄1088123	0	0	\bigcirc	1
9218	0			0	0	1．11\％			6098	1	0		\＄109 404	0	0	0	1
9219 9220	\bigcirc	0	0	\bigcirc	\bigcirc	${ }_{\text {line }}^{1.11 \% \%}$	0	1	6534 7841	1	\bigcirc	0	\＄109996 $\$ 295828$	\bigcirc	0	0	1
9221		1		0	0	1．14\％	0	0	6970		0	0	\＄194696	0	0	0	1
9222	0	，	－	1	0	${ }_{\text {1212\％}}^{1.12 \%}$	－	1	4792 563	1	－	0	\＄322402	0	\bigcirc	0	1
－ $\begin{aligned} & 9223 \\ & 9224 \\ & 922\end{aligned}$	0	0 1	\bigcirc	${ }_{0}^{1}$	0	－${ }_{\text {1．111\％}}$	\bigcirc	1	5663 5663	1	0	0	S115 057 $\$ 15999$	0	\bigcirc	${ }_{0}$	1
${ }_{9} 9225$	0	1	0	${ }_{0}^{\circ}$	0	${ }_{1.12 \%}^{1.17 \%}$	0	1	5663 6098	1	0	0	\＄15959911	\bigcirc	\bigcirc	0	1
9226		1	0	0	0	1．12\％	－	1	7405	0	1	0	5677669	0	0	0	1
－ 9227	0	0	\bigcirc	1	0	${ }^{1.14 \%}$	0	1	8100 563	0	0	0	5461701 $\$ 31978$	0	\bigcirc	\bigcirc	1
9228 9228 9230	0	${ }_{1}^{0}$	\bigcirc	10	\bigcirc	（	0	1	5663 6970 8276	－	\bigcirc	1		－	－	0	1

observation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％－90\％	LTV 70\％－78\％	$\begin{aligned} & \text { LTV beLow } \\ & 70 \% \end{aligned}$	total tax burden	parcel in SCEIP $=1$	CONVENTIONAL LOAN＝ 1	Lot SIIE	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	SOLD DURING 2004＿2007	Sold 2008－2012	PRICE ADJUST．TO 2012	ZIP CODE 295403	$\begin{aligned} & \text { ZIP CODE } \\ & 95404 \end{aligned}$	$\begin{aligned} & \text { ZIP CODE } \\ & 95472 \end{aligned}$	$\begin{aligned} & \text { ZIP CODE } \\ & 94928 \end{aligned}$
9231	Sess	0	0	0	2\％	1．15\％			5663	0		1	\＄240000				
9232	。	0	0	1	。	1．11\％	0	1	5663	1	。	0	${ }_{587445}$	。	－	0	1
9233	0	0	0	0	0	1．12\％	0	1	7841	0	。	0	\＄231781	0	0	0	1
9234	0	0	0	1	0	1．12\％	0	1	5227		0	0	5414517	0	0	0	1
9235	0	0	0	0	0	1．11\％	0	1	9148	1	0	0	593870	0	0	0	1
9236	0	0	0	0	0	1．12\％	0	1	6300	0	0	0	5447593	0	0		1
9237	0	0	1	0	0	1．12\％	0	1	7405	0	0	1	\＄362871	0	0	0	1
9238	0	，	0	0	0	1．11\％	0	1	7841	1	0	0	\＄83813	0	0	0	1
9239	0	1	0	0	0	1．11\％	0	1	${ }^{6970}$	1	0	0	\＄109 501	0	0	0	1
9240	0	1	0	0	0	${ }^{1.111 \%}$	0	0	6700	0	0	1	${ }_{5304946}$	0	0	0	1
9241	0	1	\bigcirc	－	0	${ }^{1.111 \%}$	0	1	${ }_{7}^{6098}$	0	1	0	\＄928113	0	0	0	1
9242	0	0	1	0	0	${ }^{1.11 \%}$	0	1	7841	0	0	0	\＄241052	0	0	0	1
9243	0	0	0	0	1	1．14\％	0	1	6098	0		0	5945872	0	0	0	1
9244	0	0		0	0	1．14\％	0	1	8712	0	0	1	\＄220903	0	0	0	1
9245	0	0	0	1	0	1．14\％	0	1	6970			0	\＄941254	0	0	0	1
9246	0	0	0	0	${ }_{0}^{1}$	${ }_{\text {l }}^{\text {1．14\％}}$	0	1	7841 7405	${ }_{0}$	1	0	5413366 $\$ 961862$	0	0	0	1
${ }_{9}^{9248}$	\bigcirc	\bigcirc	${ }_{0}^{1}$	\bigcirc	\bigcirc	${ }_{\text {1．14\％}}^{1.14 \%}$	${ }_{0}$	1	7405 7405	\bigcirc	1	，	¢531165	0	0	\bigcirc	${ }_{1}^{1}$
9249	0	－				1．14\％	0	1	6534		0	1	\＄338232	－	0	0	1
9250	0	0		1	0	1．14\％	0	1	6534	0	0	1	\＄256047	0	0	0	1
9251	0	1	0	0	0	1．14\％	0	0	${ }_{6} 500$	0	0	1	5385993	0	0	0	1
9252	0	1	0	0	0	${ }^{1.19 \%}$	0	1	6098 5663	1	0	0			O	O	1
9253	\bigcirc	0	0	${ }_{0}^{1}$	${ }_{1}$	－ 1.11%	\bigcirc	0	5663 8712	1	${ }_{0}$	\bigcirc		\bigcirc	0	${ }_{0}$	1
9254 9255	0	0	0	\bigcirc	1	（1．11\％	0	${ }_{1}^{0}$	8712 6098	1	\bigcirc	0	S121006 $\$ 80400$	\bigcirc	\bigcirc	\bigcirc	1
9256	0	1	0	0	0	1．11\％	0	1	5663	1	0	0	\＄92 194	0	0	0	1
9257	0	1	0	0	0	1．11\％	0	1	${ }^{6} 098$	0	1	0	\＄686250	0	0	0	1
9258	0	1	0	0	0	${ }^{1.11 \%}$	0	0	6098	0	0		\＄255545	0	0	0	1
9259	0	0	0	0	0	1．12\％	0	1	11761	0	1	0	\＄725 241	0	0	0	1
9260	0	1	0	0	0	1．14\％	0	1	${ }_{5663}$	0	0	0	S356946 S36483	0	0	0	1
${ }_{9262}^{9261}$	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	${ }_{\text {l }}^{1.14 \%}$	\bigcirc	\bigcirc	6534 10890	\bigcirc	\bigcirc	1	5346483 $\$ 317831$	\bigcirc	\bigcirc	\bigcirc	1
9263	0	1	0	0	0	1．14\％	0	1	6970	0	0	0	\＄326357	0	－	0	1
9264	0	0	0	0	0	1．16\％	0	1	${ }^{6970}$	1	0	0	\＄43619	0	0	0	1
${ }_{9}^{9265}$	0	1	O	0	0	${ }^{1.10 \%}$	0	0	4792 5658	${ }^{1}$	0	1	\＄210000	0	0	0	1
9266	0	1	O	0	0	${ }^{1.111 \%}$	0	1	${ }_{5}^{5633}$	1	0	0	S101078 $\$ 152071$	0	0	0	1
－${ }_{9}^{9267}$	0	${ }_{0}^{1}$	\bigcirc	0	${ }_{1}$	${ }^{1.111 \%}$	\bigcirc	${ }_{1}^{1}$	5227 4792	${ }_{0}^{1}$	${ }_{1}$	\bigcirc	\＄152071 S96988	${ }_{0}$	\bigcirc	\bigcirc	1
9269	0	1	0	0	0	1．11\％	0	1	4792	0	0	0	\＄391489	0	0	0	1
9270	0	1	0	0	0	1．11\％	0	1	5227	0	0	0	\＄264230	0	0	0	1
9271	0	1	0	0	0	1．14\％	0	1	4792	0	1	0	\＄738963		0	0	1
${ }^{9272}$	0	0	0	0	0	1．14\％	0	1	9583	0	1	0	\＄764 233	0	0	0	1
92273 9274	0	1	0	\bigcirc	0	${ }^{1.1 .14 \%}$	0	1	${ }_{4792}$	\bigcirc	1	${ }_{0}$	${ }_{\text {S }}^{56239292}$	${ }_{0}^{0}$	\bigcirc	\bigcirc	1
9275	0	0	1		0	1．14\％	0	1	4792	0	0	0	\＄312736	0	0	0	1
9276	0	0	0	1	0	1．11\％	0	1	${ }^{6534}$	1	0	0	\＄62 159	0	0	0	1
${ }^{9277}$	0	1	O	0	0	${ }^{1.111 \%}$	0	0	5227 5653	1	0	0	\＄144919	0	0	0	1
9278	\bigcirc	0	O	1	0	${ }^{1.111 \%}$		1	$\begin{array}{r}5663 \\ 6534 \\ \hline\end{array}$	0	1	0	5997600 $\$ 310888$	0	0	0	1
9279 9280	\bigcirc	${ }_{0}^{1}$	\bigcirc	\bigcirc	\bigcirc	${ }_{\text {1．112\％}}^{1.14}$	\bigcirc	1	6534 5227	\bigcirc	${ }_{0}$	${ }_{1}$	\＄310 888 $\$ 421398$	0	\bigcirc	\bigcirc	1
9281	0	1	0	0	0	1．14\％	0	1	4792	0	0	0	\＄294212	0	0	0	1
9282	0	1	0	0	0	1．14\％	0	1	4792	0	0	1	\＄246006	0	0	0	1
9283	0	0	0	0	0	1．14\％	－	1	4356	0	1	0	\＄969888	0	0	0	1
9284	0	0	0	1	0	1．14\％	－	1	4792	0	0	1	\＄5307651		0		1
9285 9286	${ }_{0}$	0	0	0	0	${ }_{\text {l }}^{1.1 .14 \%}$	\bigcirc	1	4792 4792	\bigcirc	${ }_{0}$	1	S277007 $\$ 285688$	\bigcirc	\bigcirc	\bigcirc	1
9287	0	0	0	0	0	1．15\％	0		6098	1	0	0	\＄88284	0	0	0	1
9288	0	1	－	－	0	1．11\％	0	1	7405	0	0	0	\＄337254	0	0	0	1
9289	0	1	0	0	0	1．11\％	0	1	4792	1	0	0	\＄595422	－	0	－	1
9290	1	0	0	0	0	${ }^{1.111 \%}$		1	${ }_{6} 6988$	0	0	0	\＄348696	0	0	0	1
9291 9292	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{1}$	${ }^{1.111 \% \%}$	${ }_{0}^{1}$	1	${ }_{5663}^{11761}$	${ }_{0}$	0	${ }_{1}^{1}$	S291693 $\$ 28200$	0	\bigcirc	\bigcirc	1
9293	0	1	0	0	0	1．11\％	0	1	7841	1	0		\＄152824	0	0	0	1
9294	0	1	0	0	0	1．11\％	0	1	6970	1	0	0	\＄154329	0		0	1
9295	0	1	0	0	0	1．14\％	0	1	5663	0	0	0	${ }_{\text {¢ }}^{596188}$	0	0	0	1
9296 9297	0	\bigcirc	0	0	0	${ }^{1.111 \%}$	0	1	6098 6970 7	0	\bigcirc	0	（	0	0	0	1
9297 9298	0	\bigcirc	0	\bigcirc	1	${ }_{\text {1．11\％}}^{1.11 \%}$	0	1	6970 7405	\bigcirc	\bigcirc	1	${ }_{\text {S5135011 }}$	${ }_{0}^{0}$	${ }_{0}^{0}$	\bigcirc	1
9299	0	1		0	0	1．11\％	0	1	8712	0	0		\＄313826	0	0	0	1
9300	0	0	0	1	0	1．12\％	0	1	6098	0	0		5487532	0	0		1
9301	0	1	－	0	－	${ }^{1.14 \%}$	0	0	${ }_{6}^{6534}$	0	0	1	S25000 $\$ 368723$	0	0	0	1
9302 9303	0	0	0	1	\bigcirc	1．14\％	0	1	6098 6098	0	\bigcirc	1	$\$ 368723$ $\$ 220903$	0	0	\bigcirc	1
9303 9304	\bigcirc	${ }_{1}$	0	\bigcirc	\bigcirc	${ }_{\text {1．1．14\％}}^{1.14}$	0	${ }_{0}^{1}$	6098 6098	\bigcirc	\bigcirc	1	S220903 $\$ 241989$	\bigcirc	\bigcirc	\bigcirc	1
9305	0	0	0	0	1	1．11\％	0	1	6534	1	0	0	\＄97985	0	0	0	1
9306	0	1	0	0	0	1．11\％	0	1	4792	0	0	0	\＄307434	0	0	0	
9307	0	1	0	0	0	${ }^{1.111 \%}$	0	1	4950 5653	0	1	0		0	0	0	1
9308 9309		1	0	0	0	1．11\％	0	1	5663	0	0	0	$\begin{array}{r}\text { S347734 } \\ \$ 37974 \\ \hline\end{array}$	0	0	0	1
9309 9310	${ }_{0}$	1	\bigcirc	\bigcirc	\bigcirc	${ }^{1.14 \%}$	0	1	${ }_{4792}$	\bigcirc	${ }_{0}$	1	－${ }_{\text {S3710 }}$	\bigcirc	${ }_{0}^{0}$	\bigcirc	1
9311	0	0	0		0	1．14\％	0	1	6970	0	0	0	\＄327008	0	0	0	1
9312	0	0	0	0	1	${ }^{1.14 \%}$	0	1	${ }^{6} 098$	0	1	0	\＄866434	0	0	0	1
9313	0	0	0	1	0	${ }^{1.15 \%}$	0	1	${ }_{6}^{6098}$	0	0	1	S293701 S190 S	0	0	0	1
9314 9315	0	1	0	0	\bigcirc	${ }_{\text {l }}^{1.111 \%}$	\bigcirc	1	4792 6098	0	0	1	\＄190054	0	0	0	1
${ }_{9} 9315$	0	${ }_{0}^{1}$	－	${ }_{0}$	1	${ }_{1.11 \%}^{1.1 \%}$	0	1	${ }_{6}^{6098}$	1	${ }_{0}$	${ }_{0}$	－ 572638	${ }_{0}$	0	0	1
9317	0	1	0	0	0	${ }_{1.11 \%}$		1	4792	0	1	0	\＄712894	0	0	0	1
9318	0	0	0	1	－	1．11\％	0	1	4792	0	1	0	\＄622 304	0			
9319 9320	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{1}$	－ 1.11%	0	1	5800 6534	\bigcirc	1	\bigcirc	\＄759365 S794385	0	\bigcirc	\bigcirc	1
9321			0	0	0	1．15\％			4900	0	${ }_{0}$	1	${ }_{\text {\＄178731 }}$				1
9322	0	1	0	0	0	1．15\％	0	0	6098	0	0	1	\＄238373	0	0	0	1
9323	0	0	0	1	0	1．12\％	0	1	6970 6098	0	0	0	\＄401882 $\$ 104723$		0	\bigcirc	
9324 9325	0	1	\bigcirc	\bigcirc	\bigcirc	${ }_{\text {1．12\％}}^{1.14 \%}$	0	1	6098 6970	${ }_{0}^{1}$	0	${ }_{1}$		\bigcirc	\bigcirc	\bigcirc	1
9326		1	O	－	－	1．14\％		，	6534	0	0	1	\＄227430	O	0	0	1
${ }^{9327}$	－	0	0		0	1．14\％	－	1	${ }^{8712}$	0	0	0	\＄331806	0	0	0	1
9328 9329	0	1	\bigcirc	\bigcirc	\bigcirc	－	0	${ }_{1}$	6098 5663	\bigcirc	\bigcirc	1	$\$ 305815$ $\$ 374576$	\bigcirc	\bigcirc	\bigcirc	1
9330				1	0	1．15\％	0	1	5663	1	0	0	\＄86606	0	0	0	1
9331	0	1	0	0	0	1．15\％	0	，	6970 8712	0	0	1	－	0	0	0	1
${ }_{9}^{9332}$	0	${ }_{0}^{1}$	0	\bigcirc	\bigcirc	－${ }_{\text {1．34\％}}$	${ }_{0}^{1}$	1	8712 6098	\bigcirc	0 1	\bigcirc	S239 198 $\$ 696120$	${ }_{0}$	0	\bigcirc	1
${ }_{9} 9334$	0	0	\bigcirc	${ }_{0}$	\bigcirc	${ }^{1.114 \%}$	0	1	6098 10454	0	${ }_{0}^{1}$	1	${ }_{\text {S }}^{56961871}$	0	0	0	1
9335	0	0	0	1	0	1．11\％	0	1	7841	1	0	0	\＄102326			0	1
9336	0	0	0		0	${ }^{1.111 \%}$	0	1	${ }^{6} 098$	0	1	0	\＄895992	0	O	－	1
${ }_{9}^{93387}$	\bigcirc	${ }_{1}^{0}$	：	\bigcirc	\bigcirc	${ }_{\text {1．11\％}}^{1.11 \%}$	0	${ }_{1}^{1}$	6098 6098	${ }_{0}^{1}$	\bigcirc	\bigcirc	${ }_{\$ 384751}^{5950}$	\bigcirc	：	\bigcirc	${ }_{1}^{1}$
9339		1	－		。	${ }_{1.11 \%}$		1	8712	1		0	（107629				1
9340		0	1	0	0	1．14\％	0	1	5227		0	0	\＄112309				1
9341	0		0	0	0	1．18\％	0	1	5663	0	0	1	\＄251026				1
${ }^{9342}$	0	0	0	1	0	${ }^{1.12 \%}$	0	1	${ }_{5}^{5663}$	0	0	0	5338523 $\$ 29211$	0	0	0	
9343 9344	0	1	\bigcirc	\bigcirc	0	1．1．14\％	0	0	6098 6098	0	0	${ }_{0}^{1}$	$\$ 296211$ $\$ 767352$	\bigcirc	\bigcirc	0	1
9345	0	1	0	0	0	1．14\％	0	0	6970	0	0	1	\＄296951	0		0	
9346	0	0	－	0	0	1．11\％		1	9583	1	0	0	\＄107 158			0	1
9347 9348	0	1	0	0	\bigcirc	－1．12\％	0	0	6200 6000	0	\bigcirc	1	5382770 $\$ 486068$	0	0	0	1
9348 9399	0	1	\bigcirc	\bigcirc	\bigcirc	${ }^{1.12 \%}$	0	1	6000 6098	${ }_{0}^{0}$	1	${ }_{0}$	S48068 S751755	\bigcirc	${ }_{0}^{0}$	\bigcirc	1
9350			0	0	1	${ }^{1.111 \%}$	0	1	7841	1	0	0	${ }_{5156562}$	0	0	0	1
9351 9352	0	1	\bigcirc	\bigcirc	\bigcirc	1．14\％	0	${ }_{0}^{1}$	5663 5663	0	${ }_{0}^{1}$	0 1	\＄816554	0	0	0	1
${ }_{9}^{9353}$	0	0	\bigcirc	\bigcirc	\bigcirc	1．112\％	0	0	5663 5663	0	0	1	${ }_{\substack{\text { S269227 } \\ \$ 394}}^{\text {S }}$	0	0	0	1
9354			0	0	0	1．15\％		1	6970	1		0	\＄134003	0	0	0	1
9355 9355	－	－		1	\bigcirc	${ }^{1.12 \%}$	－	1	${ }_{5}^{5663}$	0	－	0			0	0	
9356 9357	0	0	O	1	\bigcirc	${ }_{1}^{1.14 \%}$	－	1	5663 5663	0	0	1	S279713 S351 165	\bigcirc	\bigcirc	0	1
9358	0	，	1		0	1．11\％	0	1	5985	0		0	5447593	0	0	0	1
9359 9360	0	1	0	0	0	1．1．8\％	0	0	5663 7841	0	0	1	$\underset{\$ 320681}{\$ 2900}$	0	\bigcirc	$\stackrel{0}{0}$	${ }_{1}^{1}$

observation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％．90\％	LTV 70\％．78\％	$\begin{aligned} & \text { LTV beLow } \\ & 70 \% \end{aligned}$	totaltax burden	PARCEL IN SCEIP＝ 1	CONVENTIONAL LOAN $=1$	tor size	sold PRIOR＿2000	SOLD DURING 2004＿2007	Sold 2008－2012	PRICE ADJUST．To 2012	ZIP CODE 295403	ZIP CODE 95404	ZIP CODE 95472	ZIP CODE 94928
9361	－1	0	0	1	0	1．11\％	sta	－	5663	－	－	0	\＄753152	O	，	O	10
9362	0	1	0	0	0	1．14\％	0	1	6000	0	1	0	5969888	0	0	0	1
9363	0	1	0	0	0	1．14\％	0	1	6098	0	1	0	\＄662855	0	0	0	1
9364	0	1	0	0	0	1．11\％	0	1	5663	0	0	0	\＄245688	0	0	0	1
9365	0	0	0	0		1．11\％	0	1	5663	0	0	1	\＄253035	0	0	0	1
9366	0	0	0	0	1	1．11\％	0	1	5663	0	－		\＄327494	0	0	0	1
9367	0		0	0	0	1．11\％	0	1	5663	0	0	1	\＄256229	0	0	0	1
9368	0	0	0	0	0	${ }^{1.111 \%}$	0	1	6970	1	0	0	\＄105396	0	0	0	1
9369	0	0	0	0	0	1．11\％	0	1	6970	0	1	0	5822096	0	0	0	1
9370	0	0	0	0	0	1．11\％	0	1	6970	1	0	0	\＄56570	0	0	0	1
9371	0	0	0	0	0	1．11\％	0	1	6970	1	0	0	\＄127859		0	0	1
9372	0	0			0	${ }^{1.12 \%}$	0	1	6970 6098	0	1	0	\＄101287	－	\bigcirc	\bigcirc	1
9373	0	1	1		0	${ }^{1.12 \%}$	0	1	6098 5633	\bigcirc	0	0	5424880 $\$ 22025$	0	0	0	1
9374	0	0	1	0	0	${ }^{1.12 \%}$	0	1	5663	0	0	0	5420275 $\$ 39797$	0	0	0	1
9375	0	0	0	0	0	1．14\％	0	1	5663	0	0	1	5397987	0	0	0	1
9376	0	0	0	1	0	1．15\％	0	1	5227	1	0	0	\＄59964	0	0	0	1
9377	0	1	0	0	0	1．14\％	0	0	6000			1	\＄332408	0	0	0	1
9378	0	0	0	1	0	1．14\％	0	1	8712	0	1	0	\＄912400	0	0	0	1
9379	0	0		0	0	1．11\％	0	1	5663	1	0	0	${ }_{5165622}$	0	\bigcirc	0	1
9380	0	0	0	0	0	1．14\％	0	1	6000	0	0	0	5459777	0	0	\bigcirc	1
9381	0	1	0	0	0	1．14\％	0	1	5663	0	0	0	\＄279528	0	0	0	1
9382	0	1	0	0	0	1．09\％	0	1	5663	0	0	1	S295 207	0	0	0	1
9383	0	1	0	0	0	${ }^{1.11 \%}$	0	1	${ }^{6970}$	1	0	\bigcirc	\＄134003		0	0	1
9384	0	0	0	－	1	${ }^{1.14 \%}$	0	1	${ }_{9}^{9583}$	0	1	0	$\begin{array}{r}5740838 \\ \$ 37476 \\ \hline\end{array}$	0	0	0	1
${ }_{9} 9385$	0	${ }_{1}^{0}$	\bigcirc	\bigcirc	\bigcirc	${ }^{1.14 \%}$ 1．14\％	0	${ }_{0}^{1}$	5663 11761	\bigcirc	\bigcirc	1	${ }_{5}^{53745165}$	\bigcirc	\bigcirc	\bigcirc	1
9387	0	1	0	0	0	1．14\％		0	6970	0	0	1	${ }_{\$ 307855}$	0	。	－	1
9388	1	1	0	0	0	1．12\％	0	1	6302	0	0	0	5442463	0	0	0	1
9389	0	1		O	0	1．12\％	0	0	5663	0	0	1	\＄499693	0	0	0	1
9390	0	1	0	0	0	1．11\％	0	0	5663	0	0	1	5358189	0	0	0	1
9391	0	1	0		0	${ }^{1.14 \%}$	0	1	6000	0	0	0	\＄448876	0	0	\bigcirc	1
9392	0	0	0	0	0	1．11\％	0	1	6534	1	0	0	\＄67050	0	0	0	1
9393	0	1	0	0	0	1．11\％	0	1	6970	0	－	0	\＄354643	0	0	0	1
9394	0	1	0	0	0	1．11\％	0	0	6970	0	0	1	5326868	0	0	0	1
9395	0	0	0	1	0	${ }^{1.11 \%}$	0	1	7405	1	0	\bigcirc	\＄103 316	0	0	0	1
${ }_{9}^{9396}$	\bigcirc	\bigcirc	${ }_{0}^{1}$	\bigcirc	\bigcirc	${ }^{1.111 \%}$	\bigcirc	1	6970 6098	1	0	0	$\begin{array}{r}57888 \\ \$ 88284 \\ \hline\end{array}$	\bigcirc	\bigcirc	\bigcirc	1
${ }_{9} 938$	0	0	1	0	0	${ }_{1.11 \%}^{1.11 \%}$	0	1	7881	1	0	${ }_{0}$	－	0	0	0	1
9399	0	0	0	0	1	1．11\％	0	1	6970	0	1	0	\＄853 114	0	0	0	1
9400	0	1	0	0	0	1．14\％	－	1	7405	0	0	1	\＄248516	0	0	0	1
9401	0	0	－	0	1	1．14\％	0	1	6970	－	0	1	\＄240 98	0	0	0	1
9402	0	1	0	0	0	1．14\％	0	1	6970	0	0	0	\＄461701	0	0	0	1
9403	0	0	1	0	0	${ }^{1.14 \%}$	0	1	6970 6970	1	1	\bigcirc		0	0	\bigcirc	1
9404 9405	\bigcirc	${ }_{0}^{1}$	\bigcirc	0	0	${ }_{\text {1．14\％}}^{1.14 \%}$	0	${ }_{1}$	6970 6098	${ }_{0}^{1}$	\bigcirc	1	\＄155835 $\$ 27007$	${ }_{0}$	\bigcirc	\bigcirc	1
9406	0	0	0	0	0	1．15\％	0		6970	1	－	0	\＄104306	0	0	。	1
9407	0	0	0	1	0	1．15\％	0	1	6098	0	0	1	\＄226928	0	0	0	1
9408	0	1	0	0	0	${ }^{1.49 \%}$	1	0	6970	0	0	1	\＄353265	0	0	0	1
9409	0	1	0	0	0	${ }^{1.14 \%}$	0	${ }_{0}^{1}$	6300 6300	\bigcirc	\bigcirc	0	\＄436051 $\$ 316166$	0	\bigcirc	\bigcirc	1
9410 9411	0	${ }_{0}^{1}$	0	0	0	${ }_{\text {1．12\％}}^{1.11 \%}$	${ }_{1}$	1	6300 6098	\bigcirc	\bigcirc	1	${ }_{\text {S3110 }}^{\text {\＄357 }}$	\bigcirc	0	\bigcirc	1
9412	0	1	0	0	0	1．14\％	0	0	5663	0	0	1	\＄351165	。	。		1
9413	0	0	1	0	0	1．15\％	0	1	6098	1	0	0	\＄135509	0	0	0	1
9414	0	0	1	0	0	1．14\％	0	1	6098	0	0	1	\＄349995	0	0	0	1
9415	0	0	0	0	0	1．06\％	0	1	6098	0	1	0	\＄711252	0	0	0	
${ }_{9417}^{9416}$	0	0	\bigcirc	0	0	${ }_{\text {l }}^{\text {1．14\％}}$	\bigcirc	1	6098 6098	\bigcirc	\bigcirc	1	$\underset{\substack{\text { S342 } 280 \\ \$ 2602}}{ }$	0	0	0	1
9418	0	0	0	1	0	1．14\％		1	6098	0	－	1	\＄195801	－	0		1
9419	0	1	0	0	0	1．11\％	0	1	6300	0	0	0	\＄429638	0	0	0	1
9420	0	0	1	0	0	1．19\％	\bigcirc	0	6098	0	0	1	\＄221907	0	0	0	1
9421	0	0	0	1	0	${ }^{1.11 \%}$	0	1	${ }_{6}^{6098}$	1	0	0	\＄84930	0	0	0	1
${ }_{9}^{9422}$	\bigcirc	1	\bigcirc	0	\bigcirc	－${ }_{\text {1．11\％}}^{1.15}$	0	0	6098 6098	\bigcirc	0	1	S240985 $\$ 899$ 807	0	0	0	1
9424	0	1	0	0	0	1．15\％	0	1	6098	1	0	0	${ }_{548744}$	。	。	。	1
9425	0	0	1	0	0	1．11\％	0	1	6098	1	0	0	\＄103990	0	0	0	1
9426	0	1	0	0	0	1．11\％	0	1	6098	1	0	0	\＄158094	0	0	0	1
9427	0	1	0	0	0	${ }^{1.111 \%}$	0	0	6098 6098	1	0	0	S S22098 $\$ 254541$	\bigcirc	0	0	1
9428 94929	0	${ }_{0}^{1}$	0	0	${ }_{1}$	－${ }_{\text {1．14\％}}^{1.14 \%}$	0	1	6098 6098	\bigcirc	1	${ }_{0}^{1}$	${ }_{\substack{\text { S254 } \\ \text { S63940 }}}^{\text {S }}$	0	\bigcirc	0	1
9430	0	0	0	0	0	1．14\％		1	6098	0	1	0	¢969362	0	－	${ }_{0}$	1
9431	0	1	0	0	0	1．14\％	0	0	6098	0	0	1	\＄267901	0	0	0	1
9432	0	0	0	0	－	${ }^{1.14 \%}$	0		6098	1	0	0	${ }_{5105027}$	0	0	0	1
9433	1	1	0	0	0	${ }^{1.14 \%}$	0	1	6098 6098	${ }_{1}$	1	\bigcirc	5595790 $\$ 96808$	\bigcirc	\bigcirc	\bigcirc	1
9434 9435	0	${ }_{1}$	${ }_{0}^{1}$	0	0	${ }^{1.115 \%}$	\bigcirc	1	6098 6098	${ }_{0}^{1}$	0	0	$\$ 96808$ $\$ 251668$	\bigcirc	\bigcirc	0	1
9436	0	1	0	0	0	1．14\％	－	1	6534	0	0	0	\＄391489	0	0	0	
9437	0	1	0	0	0	1．11\％	0	1	7841	0	0	1	\＄290000	0	0	0	1
9438	1	0	0	0	0	1．11\％	0		5665	0	1		571743	0		－	1
9439	0	0	0	0	0	${ }^{1.11 \%}$	0	1	6098 5663	1	\bigcirc	\bigcirc	\＄93591	\bigcirc	\bigcirc	\bigcirc	1
9440 9441	0	${ }_{1}^{0}$	\bigcirc	0	0	${ }_{\text {l }}^{1.111 \%}$	0	${ }_{0}^{1}$	5663 6098	1	0	${ }_{1}^{0}$	\＄115 722 $\$ 29268$	\bigcirc	0	0	1
9442	0	0	0	1	0	1．11\％	0	1	6098	1	－	0	\＄110 312		0	0	1
9443	0	1	0	0	0	${ }^{1.11 \%}$		1	${ }_{6}^{6970}$	0	1	0	$\begin{array}{r}583952 \\ \$ 23616 \\ \hline\end{array}$	0	0	0	1
9444	0	0	1	0	－	${ }^{1.11 \%}$	0	1	7841	0	0	0	${ }_{5236416}$	0	0	0	1
9445 9446	0	\bigcirc	${ }_{0}^{1}$	\bigcirc	\bigcirc	${ }^{1.14 \%}$ 1．14\％	\bigcirc	1	6970 7841	\bigcirc	\bigcirc	${ }_{1}$	S241052 S288 O87	\bigcirc	0	0	1
9447	。	0	0	1	0	${ }_{1}^{1.14 \%}$	0	1	6098	0	－	1	S288087 $\$ 24947$	${ }_{0}$	${ }_{0}$	${ }_{0}^{\circ}$	
9448	0	1	0	0	0	1．17\％	0	1	8712	0	0	0	\＄145141	0	0	\bigcirc	1
9449	1	0	0	0	0	1．20\％	0	1	6098	0	0	0	\＄206748			0	1
${ }_{9}^{9450}$	${ }_{1}^{1}$	1	\bigcirc	\bigcirc	0	${ }_{\text {l }}^{1.171 \%}$	1	1	5663 6968	${ }_{0}^{1}$	${ }_{1}^{0}$	0	598582 $\$ 883060$	${ }_{0}$	\bigcirc	\bigcirc	1
9452	0	1	0	0	0	1．10\％	0	0	6970	0	0	1	\＄256047		0	0	1
9453	0	0	0	1	0	${ }^{1.11 \%}$	0	1	${ }_{6098}^{6098}$	0	0	0	$\begin{array}{r}5480938 \\ \hline 40501\end{array}$	0	0	0	
9454 9455	0	0	0	0	1	1．11\％	0	1	6098 6970	0	0	1	S405 011 $\$ 31057$ 2057	\bigcirc	0	\bigcirc	1
${ }_{9}^{94555}$	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	${ }^{1.114 \%}$	\bigcirc	1	6990 6970	\bigcirc	\bigcirc	0		\bigcirc	\bigcirc	\bigcirc	1
9457	0	0	－	－	0	1．14\％	0	1	12632	0	1	0	\＄503220	0	0		1
9458	0	1	0	0	0	1．14\％	0	1	6098 6098	\bigcirc	1	1	5701846 $\$ 323199$	\bigcirc	0	\bigcirc	
9459 9460	0	\bigcirc	0	0	\bigcirc	${ }_{\text {l }}^{\text {1．14\％}}$	\bigcirc	1	6098 6098	0	\bigcirc	1		0	\bigcirc	0	1
9461	0	0	0	1	0	${ }^{1.14 \%}$	0	1	6970	0	0	1	\＄265926	0	0	0	1
9462	0	1	0	0	1	${ }^{1.15 \%}$	0	1	6098	1	0	0	\＄143037	0		－	1
${ }_{9}^{9463}$	0	\bigcirc	\bigcirc	0	1	（1．15\％	\bigcirc	1	6098 6098	1	\bigcirc	${ }_{1}$	\＄100 461 $\$ 188820$	\bigcirc	\bigcirc	\bigcirc	1
9465	0	1	0	0	0	1．20\％	0	\bigcirc	6098	0	－		\＄278957	0	0	0	1
9466	0	1	－	－		1．11\％	－	1	6210	，	0		\＄407836	0	0	0	1
${ }_{9468}^{9467}$	\bigcirc	1	：	\bigcirc	\bigcirc	${ }_{\text {l }}^{1.1 .14 \%}$	\bigcirc	1	6997 6098	\bigcirc	${ }_{0}^{1}$	0	S840570 $\mathbf{\$ 3 0} 0$	\bigcirc	0	0	1
99689	0	1	\bigcirc	${ }_{0}$	${ }_{0}$	${ }^{1.1 .14 \%}$	\bigcirc	1	6098 5227	1	\bigcirc	1	533095 557464	${ }_{0}$	0	\bigcirc	1
9470	0	1	0	0	0	1．11\％		0	6098	0	0	1	\＄249306		0	0	1
9471	0	1	0	0	－	${ }^{1.11 \%}$	－	1	6200	0	1	0	\＄556798	0	0	0	1
${ }_{94772}^{9472}$	0	1	${ }_{0}$	${ }_{0}$	0	1．15\％	0	${ }_{0}^{1}$	6098 6098	1	\bigcirc	\bigcirc	$\$ 150189$ $\$ 111399$	\bigcirc	${ }_{0}$	\bigcirc	1
${ }_{9}^{9474}$	0	1	\bigcirc	0	1	${ }_{\text {1．14\％}}$	0	1	6098 6200	1	\bigcirc	1	\＄349028 $\$ 4$	\bigcirc	\bigcirc	0	1
9475	0	0	0	0	1	0．55\％	0	1	6098	1	0	0	\＄135885	0		0	1
${ }_{9}^{9476}$	0	1	0	0	0	1．14\％	0	1	6300 6098	0	0		5445028 $\$ 363854$	0	0	0	
${ }_{9}^{94778}$	0	${ }_{0}^{1}$	0	0	${ }_{1}$	1.14% 1.03% 1．	\bigcirc	1	6098 6534	0	${ }_{1}^{0}$	0	$\underset{\substack{\text { S363 } 884 \\ \$ 80040}}{ }$	0	\bigcirc	0	1
9479	0	1	0	0	0	1．12\％	－	1	7405		1	0	571743		0	0	
${ }^{9480}$	1	1	0	0	0	${ }^{1.111 \%}$	0	1	${ }_{6} 968$	0		1	5300246 $\$ 5354$	0	0	0	1
${ }_{9}^{94882}$	0	1	0	0	\bigcirc	${ }^{1.14 \% \%}$	0	1	6098 5663	0	\bigcirc	0	5353054 5448876	0	0	\bigcirc	1
9483	0	，		0		1．12\％	－	1	5663		0	0	\＄371926	0	0	0	1
9484	0	1	－	－	0	${ }^{1.12 \%}$	－	0	5663	－	\bigcirc	1	S25200 $\$ 273807$	0	\bigcirc	0	1
9485 9486	－	0	－	O	－	${ }^{1.14 \% \%}$	－	1	6970 7881	0	\bigcirc	1		0		0	1
9486 9487	0	${ }_{1}^{1}$	0	0	0	${ }^{1.1 .12 \%}$	0	1	7841 6000	1	0	0	S402819 54222	0	0	${ }_{0}$	1
9488	0	1	0	0	0	1．14\％	0		8276	0	0	1	\＄240985	0	0	0	1
								${ }_{0}^{1}$	6098 5663	0	0	0 1	S379974 $\$ 268438$	0	0		1

observation	PROPERTY DURESS $=1$	LTV＿9\％	LTv 81\％－90\％	LTV 70\％－78\％	$\begin{gathered} \text { LTV beLow } \\ 70 \% \end{gathered}$	total tax burden	parcel in SCEIP $=1$	CONVENTIONAL LOAN＝ 1	Lotsize	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	$\begin{gathered} \text { SOLD DURING } \\ 2004 _2007 \end{gathered}$	Sold 2008－2012	PRICE ADJUST. To 2012	ZIP CODE Z95403	ZIP CODE 95404	ZIP CODE 95472	ZIP CODE 94928
9491	Sess	1	0	0	50\％	1．11\％	Sctirs	Lon＝ 1	6970	${ }_{1}$	${ }^{2009}$	0	${ }_{\text {\＄87 } 351}$	25403	5504		${ }^{4} 2$
9492	0	1	0	0	0	1．11\％	0	0	6098	0	。	1	\＄279176	0	。	。	1
9493	0	0	0	0	1	1．12\％	0	1	6534	0	1		\＄993737		0	0	1
9494	1	0	0	0	0	1．14\％	0	1	6534	1	0	0	\＄161858	0	0	0	1
9495	0	1	0	0	0	1．15\％	0	0	6970	0	0	1	\＄275000	0	0	0	1
9496	0	0	0		1	1．14\％	0	1	8712	0	0	1	5386701	0	0	0	1
9497	0	0	0	0	0	1．12\％	0	1	10454	0		1	\＄374576	0	0	0	1
9498	0	1	0	0	0	1．14\％	0	1	6300	0	0	0	\＄398397	0	0	0	1
9499	0	1	0	0		1．11\％	0	0	5663		0	0	\＄114392	0	0	0	1
9500	0	1	0	0		1．11\％	0	0	5663	0	0	1	S268 438	0	0	0	1
9501	1	0	0	0	0	1．11\％	0	1	7405	0	1	0	5960651	0	0	0	1
9502	0	1	0	0	0	1．12\％	0	0	6098	0	0	1	${ }_{5} 540164$	0	0	0	1
9503	0	1	0	0	0	1．14\％	0	0	6534	0	0	1	\＄305514	0	0	0	1
9504	0	${ }_{0}$	0	0	1	1．16\％	0	1	6098	1	－	0	\＄126475	－	0	－	1
9505	0	0	0			1．10\％	0	1	6098	1	0	0	\＄52321	0	0	0	1
9506	0	1	0	0	0	1．11\％	0	1	6534	1	0	0	\＄109 072	0	0	0	1
9507	0	1	0	0	0	1．11\％	0	1	5663	1	0	0	\＄90083	0	0	0	1
9508	0	1	0	0	0	1．11\％	0	1	6098	0	0	1	\＄251 668	0	0	0	1
9509	0	1	0	0	0	1．11\％	0	1	6300	0	0	0	\＄221769		0	0	1
9510 9511	0	0	0	0	0	${ }^{1.111 \%}$	0	1	6098 7 7	1	\bigcirc	0	5113789 $\$ 33388$	0	0	0	1
9511	0	0	0	0		${ }^{1.111 \%}$	0	1	7405	0	0	1	$\$ 343488$ $\$ 33917$	0	0	0	1
${ }_{9}^{9512}$	0	1	0	0	0	${ }^{1.11 \%}$	0	1	7405 7841	0	0	0	${ }_{\$ 333917}$	0	0	0	1
9514	\bigcirc	1	0	0	${ }_{0}^{1}$	${ }_{1.11 \%}^{1.1 \%}$	0	1	7841 8184	0	0	0	S S493763	${ }_{0}$	\％	\bigcirc	1
9515	0	1	O	0	O	1．14\％	0	1	11326	0	1	0	5999363	0	0	0	1
9516	0	1	0	0	0	1．14\％	0	1	7405	0	0	0	\＄355794	0	0	0	1
9517	0	1	0	0		1．14\％\％	0	1	${ }_{6098}^{6098}$	0	1	0	$\begin{array}{r}5721281 \\ \$ 97507 \\ \hline\end{array}$	0	0	0	1
9518	1	1	0	0	0	1．14\％	0	1	6098	0	1	0	5974507 $\$ 277007$	0	0	0	1
9519	0	0	1	0	0	1．14\％	0	0	7841	0	0	1	\＄277007	0	0	0	1
9520	0	0	0	0	1	1．14\％	0	1	6098	0	0	1	\＄263 069		0	0	1
${ }_{9}^{9521}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{0}^{1}$	－${ }_{\text {1．1．14\％}}$	\bigcirc	1	6098 7000	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	5104938 S248037	\bigcirc	\bigcirc	\bigcirc	1
9523	0	1	0	0	0	1．11\％	0	0	7405	1	－		\＄100 232	0	－	。	1
9524	0	0	1	0	0	1．11\％	0	1	9148	1	0	0	\＄59253	0	0	0	1
${ }^{9525}$	0	${ }^{1}$	0	1	0	${ }^{1.111 \%}$	0	1	7405	1	0	0	${ }_{\text {S102 } 950}$	0	0	0	1
9526	0	1	0	0	0	${ }^{1.111 \%}$	0	0	6970	1	0	0	\＄116387	0	0	0	1
9527	0	1	0	0	0	1．11\％	0	0	5663	0	0	1	\＄293 134	0	0	0	1
9528	0	1	0	0	0	1．11\％	0	1	6098	0	0	0	\＄22943	0	0	0	1
9529 9530	0	0	0	1	0	1．11\％	0	1	6098 5663	0	0	0	\＄877518	0	\bigcirc	\bigcirc	1
9530 9531	0	${ }_{1}$	\bigcirc	\bigcirc	\bigcirc	${ }^{1.111 \%}$	\bigcirc	${ }_{0}$	5663 6098	\bigcirc	\bigcirc	1	\＄24000 $\$ 327494$	－	。	0	1
9532	0	1	0	0	0	1．11\％	0	1	6970	0	0	0	\＄328160	0	0	0	1
9533	0	1	0	0	－	1．11\％	0	1	6970	O	0	0	\＄299660	0	0	0	1
9534	0	0	1	0	0	1．11\％	0	1	7841	0	0	0	\＄310557	0	0	0	1
9535	0	1	0	0	0	1．11\％	0	1	9583	1	0	0	\＄179549	0	0	0	1
9536 9537	0	${ }_{0}$	\bigcirc	${ }_{1}$	0	－${ }_{\text {1．114\％}}^{1.14 \%}$	\bigcirc	1	13068 8276	${ }_{0}$	0	1	\＄324273 $\$ 32020$	0	0	0	1
${ }_{9} 538$	0	0	\bigcirc	${ }_{0}^{1}$	${ }_{0}^{0}$	${ }_{\text {1．14\％}}^{1.14 \%}$	\bigcirc	1	8276 705	\bigcirc	${ }_{0}^{0}$	1	${ }_{\text {¢ }}^{\$ 320220}$	\bigcirc	\％	：	1
9539	0	0	0	0	1	1．14\％	0	1	6534	0	1	0	\＄814677	0	0	0	1
9540	0	0	0	0	0	1．14\％	0	1	6098	0	0	1	\＄249500	0	0	0	1
${ }_{9}^{9541}$	0	1	0	0	0	1．14\％	\bigcirc	\bigcirc	$\begin{array}{r}6534 \\ 5734 \\ \hline\end{array}$	0	\bigcirc	1	5286785 $\$ 252630$	0	0	\bigcirc	1
${ }_{9}^{9542}$	0	1	0	0	0	${ }_{\text {1．15\％}}^{\text {1．15\％}}$	\bigcirc	\bigcirc	5734 5663	\bigcirc	0	1	${ }_{\substack{\text { S252630 } \\ \$ 274121}}$	0	0	0	1
9544	0	1	0	0	0	1．15\％	0	1	10019	1	0	0	\＄105746	0	0		1
9545	0	1	0	0	0	1．11\％	0	0	6098	0	0	1	\＄298059	0	0	0	1
9546	0	1	0	0	0	1．12\％	0	1	5663	0	0	0	\＄390337	0	0	0	1
9547 9548	0	1	0	0	0	1．19\％	\bigcirc	1	6098 6098	0	1	0	\＄855473	0	\bigcirc	\bigcirc	1
9548 9549	\bigcirc	1	\bigcirc	\bigcirc	0	${ }^{1.14 \%}$	\bigcirc	${ }_{0}^{1}$	6098 5663	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	\＄1 123110 $\$ 257701$	0	0	0	${ }_{1}^{1}$
9550	0	0	0	1	0	1．12\％	0	1	5663	0	0	1	\＄368723	0	0		1
9551	0	1	0	0	0	1．14\％	0	1	6098	1	0		\＄116052	0	0	0	1
${ }^{9} 955$	0	0	0	0	0	${ }^{1.14 \% \%}$	0	1	5663 563	0	－	1	${ }_{\$ 300651}$	0	－	0	1
9553	0	1	0	0	0	1．15\％	0	1	5663 6534	1	0	\bigcirc	\＄119713	\bigcirc	0	0	1
9554 9555	0	\bigcirc	${ }_{0}^{1}$	0	\bigcirc	1．1．11\％	0	1	6534 6098	1	0	\bigcirc	$\underset{\$ 101461}{ }$	\bigcirc	0	。	1
9556	0	1	0	0	0	1．10\％	0	1	5663	1		0	\＄499191		0	0	
9557	0	1	0	0	0	1．11\％	0	0	5663	1	0	0	\＄136536	0	0	0	1
9558 9598	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	－1．12\％	\bigcirc	${ }_{1}$	6534 6970	1	\bigcirc	0	\＄121043	\bigcirc	0	\bigcirc	1
9560	\bigcirc	1	0	0	0	${ }_{1.77 \%}^{1.15 \%}$	0	1	6000	${ }_{0}$	\bigcirc	1	\＄300651		0	0	1
9.951	0	1	0	0	0	1．96\％	1	1	${ }_{6}^{6098}$	0	－	1	${ }_{\$ 311366}$	\bigcirc	\bigcirc	\bigcirc	1
9562 953	0	1	0	0	0	${ }^{1.111 \%}$	0	1	6098 6098	\bigcirc	0	1	5304343 5600468	0	0	0	1
${ }_{9}^{9563}$	0	${ }_{0}^{1}$	\bigcirc	\bigcirc	\bigcirc	${ }^{1.14 \%}$	0	1	6098 6098	\bigcirc	1	${ }_{1}^{1}$	\＄600468	\bigcirc	\bigcirc	\bigcirc	1
${ }_{9} 565$	0	1	0	0	0	1．10\％		1	6534	1	0	${ }_{0}$	\＄ 88269	0	0	0	1
9566	0	0	0	0	0	${ }^{1.111 \%}$	－	1	7841	1	0	0	\＄57431	0	\bigcirc	\bigcirc	1
9567 9568	0	1	${ }_{0}$	${ }_{0}$	${ }_{0}$	－${ }_{1.111 \%}^{1.15}$	0	1	6534 6970	\bigcirc	1	${ }_{0}$	5905229 583133	0	\bigcirc	\bigcirc	1
9569	0	1	0	0	0	1．14\％	0	1	6970	0	1	－	\＄903382	0	0	。	1
9570	1	0	0	0	0	1．14\％	0	1	6102	0	0	0	542322	0	0	0	1
9571	0	0	0	0	1	1．11\％	0	1	6098 5663	1	\bigcirc	0	\＄102421	0	0	0	
${ }_{9}^{9572}$	0	1	\bigcirc	\bigcirc	\bigcirc	${ }^{1.111 \%}$	\bigcirc	0 1	${ }_{5663}^{5663}$	\bigcirc	0	${ }_{0}^{1}$	S238226 S85 151	\bigcirc	\bigcirc	\％	1
9574	0	0	0	0	0	${ }^{1.111 \%}$	0	1	${ }_{6} 6988$	0	0	0	$\begin{array}{r}\text { S260 } 522 \\ \$ 5975 \\ \hline\end{array}$		0	0	1
9575	0	1	0	0	0	1．11\％	0	1	6534	0	1	0	\＄569275	0	0	0	1
9576 9577	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	－ 1.11%	0	1	6098 10019	\bigcirc	${ }_{0}^{1}$	0	5631662 $\$ 35996$	\bigcirc	\bigcirc	\bigcirc	1
9578	0	1	0	0	0	1．14\％	0	1	6098	0	1	0	\＄643359	0		0	1
9579	0	1	0	0	0	1．14\％	0	1	6098 563	0	0	1	${ }_{\text {S }}^{5351165}$	0	0	\bigcirc	
9580 9581	\bigcirc	0	0	0	0	1．14\％	0	1	5663 6098	0	1	0	－ 533288	0	0	0	1
9581 9582	\bigcirc	1	\bigcirc	1	\bigcirc	${ }^{1.114 \%}$	${ }_{0}$	1	6098 6098	0	\bigcirc	1	$\$ 269000$ $\$ 95462$	\bigcirc	\bigcirc	\bigcirc	1
9583	0	0	0	0	0	1．11\％	0	1	6098	1	0	0	\＄107467	0		0	1
9 984	0	1	0	0	0	${ }^{1.111 \%}$	0	0	${ }_{6}^{6098}$	0	0	1	S288087 $\$ 23827$	0	0	0	1
9585 9586	\bigcirc	${ }_{1}^{1}$	\bigcirc	\bigcirc	\bigcirc	－${ }_{\text {1．111\％}}^{1.11 \%}$	0	0	6098 7405	\bigcirc	\bigcirc	1	（	\bigcirc	\bigcirc	0	1
9587	0	0	0	0	0	${ }_{1} 1.11 \%$	0	1	6200	0	0	1	\＄242000	0	0	0	1
9588		1	0	0	0	1．11\％	0	1	6098	0	1	0	\＄686250	0	0		1
9589	0	1	\bigcirc	\bigcirc	\bigcirc	1．11\％	\bigcirc	0	6098 7405	\bigcirc	0	1	（	\bigcirc	\bigcirc	\bigcirc	
9591	${ }_{0}$	${ }_{0}$	1	0	0	${ }_{1.11 \%}^{1.11 \%}$	${ }_{0}$	1	8712	0	${ }_{0}$	0	（	${ }_{0}^{0}$	0	0	1
9592	0	0	0	1	0	1．14\％	0	1	5663	0	0	0	\＄362703		0	0	1
9593	0	1	0	0	0	1．14\％	0	1	6200	0	0	0	\＄480938	0		0	1
9594 9595	\bigcirc	0 1	\bigcirc	0	1	${ }^{1.1 .14 \%}$	\bigcirc	${ }_{0}^{1}$	6400 6970	\bigcirc	\bigcirc	0 1	5416813 $\$ 304707$	\bigcirc	\bigcirc	0	1
9596		1	0	0	0	1．14\％	0	0	5663	0	0	1	\＄253942	0	－	0	1
9597	－	1	0	0	0	${ }^{1.15 \%}$	\bigcirc	1	${ }_{6}^{6098}$	1	0	0	\＄83813	\bigcirc		0	
9598 9599	0	\bigcirc	\bigcirc	\bigcirc	0	${ }_{\text {1．114\％}}^{1.11 \%}$	\bigcirc	1	6098 6098	\bigcirc	${ }_{1}$	\bigcirc	$\$ 351188$ $\$ 72222$	\bigcirc	\bigcirc	0	1
9600		1	0	0		1．11\％	0	0	7841	0	0	1	\＄265000	0	0	0	1
9601 9602	${ }_{0}^{1}$	${ }_{0}^{1}$	\bigcirc	\bigcirc	0	（1．10\％	\bigcirc	0	6970 6970	${ }_{0}^{1}$	\bigcirc	0		0	\bigcirc	\bigcirc	
9603	0	1	\bigcirc	${ }_{0}^{\circ}$	${ }_{0}^{0}$	1．12\％		1	${ }_{5697}^{697}$	\bigcirc	\bigcirc	${ }_{0}^{1}$	S348970 $\$ 374217$	\bigcirc	0	\bigcirc	1
9604	0	0	0	0	－	1．14\％	0	1	6970	1	－	，	\＄106203	－	0	0	1
9605	0	1	0	0	－	1．12\％		0	6098	0		1	\＄274790	0			1
9606 9607	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	1．1．12\％	$\stackrel{0}{0}$	1	6200 6098	0	0	\bigcirc	S464 266 $\$ 67372$	${ }_{0}$	\bigcirc	\bigcirc	1
9608	0	1	0	0	0	1．12\％		1	6098		1		${ }_{\$ 670653}$	0		0	1
9609	0	0	1	0	0	1．14\％\％	－	1	7251	\bigcirc	0	1	5300832 $\$ 27900$	\bigcirc	\bigcirc	0	
${ }_{9}^{9610}$	0	0	0	0	0	${ }^{1.1 .15 \%}$	－	1	7841 6500	0	0	1	S279000 $\$ 273807$	\bigcirc	0	0	1
9612	0	0	0	0	1	1．14\％	0		6970	0	0	0	\＄340 087		0	0	1
${ }_{9}^{9613}$	\bigcirc	1	\bigcirc	\bigcirc	0	－ 1.12%	\bigcirc	1	6098 6098	0	0	\bigcirc		\bigcirc	0	\bigcirc	1
${ }_{9} 96614$	\bigcirc	1	0	0	1	${ }^{1.14 \%}$	0	${ }_{0}^{1}$	6098 6098	0	${ }_{0}^{1}$	0	5729688 $\$ 2787$	\bigcirc	\bigcirc	\bigcirc	1
9616	0	1		O	0	1．05\％	0	0	${ }_{6}^{6098}$	0	0	1	S23900 S88813	0	0	0	1
${ }_{9}^{9617}$	。	0		0		${ }^{1.111 \%}$	0	1	${ }^{14810}$	1		0	\＄83813		0	0	1
9619	0	1	0	0	0	${ }^{1.11 \%}$	0	1	${ }_{6098}$	0	0	1	${ }_{\$ 319560}$	0	0	0	1
9620	0	0	0	0	0	1．11\％	0	1	6098	0	0	${ }_{0}$	\＄442 663	${ }_{0}$	0	0	1

observation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％．90\％	LTV 70\％－78\％	$\begin{gathered} \text { LTV beLow } \\ 70 \% \end{gathered}$	total tax burden	parcel in SCEIP $=1$	CONVENTIONAL LOAN＝ 1	Lotsize	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	$\begin{gathered} \text { SOLD DURING } \\ 2004 _2007 \end{gathered}$	Soto 2008－2012	PRICE ADJUST. TO 2012	ZIP CODE Z95403	ZIP CODE 95404	ZIP CODE 95472	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
9621	石	0	0	0	\％	1．14\％	Scaror	Lon＝ 1	7405	${ }_{0}$	${ }^{2004}$	0		25403	5504		${ }^{4} 8$
9622	0	1	0	0	0	1．14\％	0	1	6098	0	1	0	5973583	0	0	0	1
9623		0	0	0	0	1．14\％	0	1	6098	0	0	1	\＄392 134	－	0	0	1
9624	0	1	0		0	1．14\％	0	1	6098	0	0	0	\＄233635	0	0	0	1
9625	0	1	0	0	0	1．14\％	0	0	6098	0	0	1	5278137	0	0	0	1
9626	0	0	1	0		1．14\％	0	1	6098	0	1	0	5888281	0	0	0	1
9627	0	0	0	0	1	1．14\％	0	1	6200			1	\＄382772	0	0	0	1
9628	0	1	0	0	0	1．14\％	0		6098	0	0		\＄232 952	0	0	0	1
9629	0	1	0	0	0	1．15\％	0	0	5663	0	0	1	\＄246006	0	0	0	1
9630	0	0	0	0		1．18\％	0	1	5663	0	0	1	5227000	0	0	0	1
9631	0	1	0	0	0	1．11\％	0	1	8712	1	0	0	\＄109737	0	0	0	1
9632	0	0	1	0	0	1．11\％	0	1	6098	1	0	0	\＄99518	0	0	0	1
9633	0	0	0	1	0	1．11\％	0	1	6970	0	0		\＄195 623	0	0	0	1
9634	0	1	0	0	0	1．11\％	0	1	5663	0	1	0	\＄918738	0	0	0	1
9635	0	1			1	${ }^{1.11 \%}$	0	1	6100	0	0	0	\＄420 661	0	0	0	1
9636	0	0	0	0	1	1．11\％	0	1	6098	0	1	0	\＄951550	0	0	0	1
9637	0	0	1	0	0	1．11\％	0	1	6098		1	0	\＄678 451	0	0	0	1
9638	1	1	0	0	0	1．11\％	0	1	6534	0	0	0	5328160	0	0	0	1
9639	0	1	0	0	0	1．11\％	0	1	6970	O	0	0	5339674		0	0	1
9640 9641	0	1	0	0	－	${ }^{1.111 \%}$	0	0	7405 6098	0	0	0	S292033 $\$ 332363$	0	0	0	1
9641	0	1	0	0		1．11\％	0	0	6098	0	0		5332436	0	0	0	1
9642	0	0	0	0	0	1．12\％	0	1	6970	0	0	0	${ }_{\$ 390337}$	0	0	0	1
9643	0	1	0	0	\bigcirc	－1．14\％	\bigcirc	1	7841 6098	0	0	${ }_{1}$		0	\bigcirc	：	1
9644 9645	\bigcirc	\bigcirc	\bigcirc	1	\bigcirc	${ }^{1.14 \% \%}$	\bigcirc	1	6098 6098	\bigcirc	\bigcirc	1	S323544 $\$ 34388$	\bigcirc	\bigcirc	\bigcirc	1
9646	0			0	1	1．14\％	0	1	7405	0	0	1	\＄302440	0	0	0	1
9647	0	0	1	0	0	1．14\％	0	1	6098	0	0	0	\＄448876	0	0	0	1
9648	0	1	0	0	0	${ }^{1.14 \%}$	\bigcirc	0	6098 5653	0	－	1	$\$ 279762$ $\$ 100766$	\bigcirc	0	0	1
9649	0	0	0	0	1	1．15\％	\bigcirc	1	${ }_{5663}^{5698}$	1	0	0	\＄100766	0	0	0	1
9650 9651	${ }_{0}$	${ }_{0}^{1}$	${ }_{0}$	${ }_{0}$	${ }_{1}$	${ }_{\text {1．1．15\％}}^{1.15}$	\bigcirc	1	6098 6970	1	\bigcirc	0	\＄59976	${ }_{0}$	0	0	1
9652	0	0	1	。	0	1．11\％	0	1	6098	1	0	0	\＄108565	0	0	0	1
9653	0	1	0	0	0	1．11\％	0	0	7405	0	－	1	\＄193792	0	0	。	1
9654	0	1	0	0	0	1．14\％	0	1	6098	0	\bigcirc	1	${ }_{5345312}$	0	0	0	1
${ }_{9}^{9655}$	0	${ }^{1}$	0	1	0	${ }^{1.144 \%}$	0	1	${ }^{6970}$	0	0	1	\＄185759	0	0	0	1
${ }_{9}^{9656}$	0	1	0	0	1	1．14\％	0	1	6098	1		0	\＄105396	0	0	0	1
${ }_{9658}^{9657}$	0	${ }_{1}^{1}$	\bigcirc	0	1	1．1．10\％	\bigcirc	1	5663 6970	${ }_{1}^{1}$	\bigcirc	0	S310 557 547849	${ }_{0}$	\bigcirc	\bigcirc	1
9659	0	1	0	0	0	1．11\％	0	1	6970	0	0	0	\＄288764		0	0	1
9660	0	0	0	1	0	1．15\％	0	1	7405	0	0	1	${ }_{\text {S }} 52496963$	0	0	0	1
9661	0	0	0	0	1	1．15\％	0	1	7841	0	0	0	\＄217874	0	0	0	1
${ }_{9}^{9662}$	0	1	0	0		1．14\％	0	0	6700	0	0	1	\＄330 351	0	0	0	1
9663 9664	0	${ }_{0}^{1}$	\bigcirc	0	${ }_{1}^{0}$	${ }^{1.1 .14 \%}$	\bigcirc	1	6000 6200	\bigcirc	${ }_{0}$	${ }_{0}$	\＄420 020 $\$ 4688113$	${ }_{0}$	\bigcirc	\bigcirc	1
9665	0	1	0	0	0	1．14\％	0	0	6500	0	0	1	\＄252332	0	0	0	1
9666	0	1	0	0	0	${ }^{1.14 \%}$	，	0	5663	0	0	1	－ 5358929	0	0	0	1
9667	0	1	0	0	0	${ }^{1.111 \%}$	0	0	7841	1	0	0	\＄109 594 $\$ 371189$	0	0	0	1
9668 969	0	0	0	0	1	1．96\％	1	1	6970	0	0	1	\＄371 189	0	0	0	1
9669 9670	0	${ }_{1}^{0}$	\bigcirc	${ }_{0}^{1}$	0	${ }_{\text {1．1．14\％}}$	\bigcirc	${ }_{0}^{1}$	${ }_{5663}^{6970}$	${ }_{1}$	${ }_{0}$	${ }_{0}^{1}$	\＄264818	0	\bigcirc	\bigcirc	1
9671	0	0	0	0	0	1．14\％	0	1	8276	0	1	0	\＄993737	0	0	0	1
9672	0	1	0	0	0	1．12\％	0	1	${ }_{6}^{6467}$	0	0	0	\＄459 136	0	0	\bigcirc	1
9673	0	0	0	0	0	${ }^{1.14 \%}$	0		5227	0	0	1	\＄323072	0	0	0	1
9674		0	0	0	0	1．12\％	0	1	8276	1	0		\＄111892		0	0	1
${ }_{9}^{9675}$	\bigcirc	1	\bigcirc	\bigcirc	0	${ }_{\text {1．12\％}}^{1.14 \%}$	\bigcirc	1	6098 6000	\bigcirc	\bigcirc	0	S396094 $\$ 423226$	0	\bigcirc	0	1
9677	，	1	0	0	0	1．16\％	－	1	6534	0	0	1	\＄160 000	0	0	0	1
9678	0	0	1	0	0	1．12\％	0	1	5663	0	0	0	\＄332351	0	0	0	1
9679 9680	\bigcirc	1	\bigcirc	0	0	${ }_{\text {1111\％}}^{1.11 \%}$	\bigcirc	1	6970 7841	1	\bigcirc	0	$\begin{array}{r}\text { S94 } 108 \\ \$ 104938 \\ \hline\end{array}$	\bigcirc	0	\bigcirc	1
9680 9681	0	0	0	0	1	${ }^{1.111 \%}$	\bigcirc	1	7841	1	0		\＄104938	0	0	\bigcirc	1
${ }_{9682}^{9681}$	1	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	${ }_{1}$	${ }^{1.112 \%}$	0	1	6000 6970	${ }_{1}$	\bigcirc	\bigcirc	S493763 $\$ 107076$	\bigcirc	\bigcirc	0	1
${ }_{9} 683$	${ }_{0}$	1	0	${ }_{0}$	${ }_{0}$	1．07\％	0	1	6098	${ }_{0}$	1	0	\＄577074	0	0	0	1
9684	0	0	0	0	0	1．15\％	0	1	5663	1	，	0	\＄103751	0	0	0	1
9685	0	1	0	0	0	${ }^{1.11 \%}$	0	1	5663	0	1	0	S951414 $\$ 408760$	\bigcirc	0	0	1
${ }^{9} 9686$	\bigcirc	0	0	0	0	1．11\％	0	1	6970 6098	0	0	1	S4087600 $\mathbf{S 3 9 9 9 5}$	\bigcirc	0	0	1
${ }_{9}^{96888}$	0	0	0	\bigcirc	\bigcirc	${ }^{1.1 .14 \%}$	0	1	6098 6970	${ }_{1}^{0}$	0	${ }_{0}^{1}$	\＄349995 $\$ 94215$	\bigcirc	\bigcirc	\bigcirc	1
9689	0	1	0	0	0	1．11\％	0		5663	0		0	\＄921856	0	0	0	1
9690	0	1	0	0	0	${ }^{1.11 \%}$	0	1	6970	0	1	1	\＄977278	0	0	0	1
${ }_{9}^{9691}$	0	1	0	0	0	${ }^{1.14 \%}$	\bigcirc	1	6970 6098	0	0	1	$\$ 215000$ $\$ 332883$	0	0	0	1
9692 9693	\bigcirc	0	0	0	1	1．11\％	0	1	6098 5633	0	0	1	${ }_{5} 5328836$	0	0	0	1
${ }_{9} 9694$	${ }_{0}$	1	\bigcirc	${ }_{0}$	${ }_{0}$	${ }_{1.15 \%}^{1.15 \%}$	$\stackrel{0}{0}$	0	5663 6098	${ }_{0}^{1}$	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	1
9695	0	1	0	0	0	1．11\％	－	，	6098	1	0	0	\＄104622	0	0	0	1
9696	0	0	0	0	1	1．11\％	0	1	7405	0	0		\＄200259		0	0	1
9697 9698	\bigcirc	1	${ }_{0}$	${ }_{0}$	${ }_{0}$	－${ }_{1}^{1.11 \%}$	\bigcirc	1	6534 6098	\bigcirc	${ }_{0}^{1}$	0	S965 612 $\$ 247760$	0	\bigcirc	${ }_{0}$	1
9699	0	1	0	0	0	1．11\％	0	${ }_{0}$	6098	1	－	－	\＄164869	0	0	0	1
9700	0	0	0	1	0	1．14\％	0	1	5663	0	0	，	\＄368460	0	0	0	1
9701	\bigcirc	0	0	0	0	${ }^{1.144 \%}$	0	1	8712 6970	0	\bigcirc	1	5430177 $\$ 30509$	0	0	0	1
9702 9703	0	1	0	0	\bigcirc	${ }_{\text {1．14\％}}^{1.14 \%}$	\bigcirc	${ }_{0}^{1}$	6970 6098	0	0	${ }_{1}$	${ }_{\text {S }}^{\$ 305109} 109$	0	\bigcirc	0	1
9704	0	1	0	0	0	1．14\％	0	0	6098	0	0	1	${ }_{\text {S299 }}^{167}$				1
9705	0	1	0	0	0	1．14\％	0	1	8276	0	0	1	\＄131535	0	0	0	1
9706	0	1	0	0	0	1．15\％	0		10019	1	0	0	\＄131745	0		－	1
9707	0	1	\bigcirc	\bigcirc	\bigcirc	（1．15\％	\bigcirc	\bigcirc	6098 6534	1	\bigcirc	${ }_{1}$	S109072 $\$ 26900$	\bigcirc	0	0	1
9709	0	${ }_{0}$	0	－	0	${ }^{1.12 \%}$	0	1	${ }_{5663}$	0	0	1	\＄285317	0	0	0	1
9710	0	1	0	0	0	1．11\％	0	1	8712	0	0	0	\＄254 495	0	0	0	
9711	0	0	1	0	0	1．11\％	0	1	8276	0	0	0	${ }_{\text {S326902 }}$	0	0	0	1
9712 9713	\bigcirc	\bigcirc	\bigcirc	${ }_{0}^{1}$	\bigcirc	－ $1.1 .14 \%$	\bigcirc	1	5663 5663	0 1	\bigcirc	${ }_{0}^{1}$	5273807 S149812	0	\bigcirc	\bigcirc	1
9714	0	1	0	0	0	1．14\％	0	${ }_{0}$	6970	${ }_{0}$	0	1	\＄235965		0	0	1
9715	0	0	0	0	1	${ }^{1.111 \%}$	\bigcirc	1	${ }_{6}^{6098}$	1	0	0	\＄15431	0	\bigcirc	0	1
9716	－	1	0	0	0	1．11\％	0	1	5663 563	1	0	0	S116720 $\$ 26036$	O	0	0	1
97718	\bigcirc	\bigcirc	\bigcirc	${ }_{0}^{1}$	\bigcirc	${ }^{1.114 \%}$	0	1	5663 6534	\bigcirc	${ }_{1}^{0}$	${ }_{0}^{1}$	\＄260386 $\$ 62383$	\bigcirc	\bigcirc	0	1
9719	0	0	1	0	0	1．11\％	0	1	7490	0	0	0	\＄403988	0	0	0	1
9720	0	0	0	0	1	${ }^{1.11 \%}$	0	1	8276 563	\bigcirc	1	0	S951414 $\$ 308378$	\bigcirc		0	1
9721 9722	0	${ }_{1}$	\bigcirc	0	0	${ }_{\text {1．1．14\％}}^{1.14}$	\bigcirc	1	5663 6970	\bigcirc	\bigcirc	${ }_{0}$	S308378 $\$ 272419$	0	0	0	1
9723		1	0	0	0	1．11\％	0	1	6970	1	0	0	\＄103 505	－			1
9724	0	0	0	1	0	1．11\％	0	1	5663	1	0	0	\＄77946	0	0	0	1
9725	0	0	\bigcirc	0	\bigcirc	1．11\％	\bigcirc	1	6970 6534	1	\bigcirc	0	575431 $\$ 106069$	0	0	\bigcirc	1
	${ }_{0}^{0}$	${ }_{0}$	\bigcirc	0	0	${ }_{1.11 \%}^{1.11 \%}$	$\stackrel{0}{0}$	1	6534 6970	1	0	${ }_{1}^{0}$	\＄265926	0	。	0	1
9728	0	1	0	－	－	1．11\％	－	1	6970	，	0	1	\＄270 586	0	0	0	1
9729	0	1	0	0	0	${ }^{1.11 \%}$	0	1	${ }_{6} 6970$	1	0	0	\＄1618588	0	0	0	1
9730	0	1	0	0		1．11\％	0	1	5663	0	0	0	\＄213238	0	0		1
${ }_{9}^{9731}$	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	1．11\％	\bigcirc	1	5227 5663	\bigcirc	1	\bigcirc	\＄757437	\bigcirc	\bigcirc	\bigcirc	1
9733	0	1	0	0	0	${ }^{1.11 \%}$	0	1	5663 6500	0	1	\bigcirc	S66285 $\$ 95633$	\bigcirc	\bigcirc	\bigcirc	1
9734	0	1	0	0	0	1．11\％	0	0	6534	0	0	1	${ }_{5311355}$	\bigcirc	－	0	1
9735	0	1			0	1．11\％			6720		1	0	\＄396293			O	1
9736 9737	\bigcirc	${ }_{0}^{1}$	0	${ }_{1}^{0}$	\bigcirc	1．111\％	$\stackrel{0}{0}$	1	6970 6970	0	1	0	$\$ 897840$ $\$ 283315$	${ }_{0}$	\bigcirc	\bigcirc	1
9738	0	0	0	0	1	${ }_{1.11 \%}$		1	6970		0	1	¢195423	0	0	0	1
9739	0	1	0	0	0	1．11\％	－	1	7841	\bigcirc	1	0	$\begin{array}{r}5868281 \\ \$ 33974 \\ \hline\end{array}$	\bigcirc	0	0	
9740 9741	0	1	0	0	0	1．14\％	－	1	6970 6970	0	0	0	S339674 $\$ 294212$	\bigcirc	0	0	1
9742	0	1	0	0	0	1．14\％	0	1	6970		0	0	\＄373066		0	0	
9743 9744	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1	1．14\％	\bigcirc	1	5663 6970	0	0	1	5339460 $\$ 27976$	\bigcirc	0	\bigcirc	
9745	0	0	0	0	0	${ }^{1.144 \%}$	${ }_{0}^{0}$	1	${ }_{6} 6934$	1	0	1		0	0	\bigcirc	1
9746	0	0	0	0	0	1．14\％	0	1	5663		0	0	\＄107 151	0	0	0	1
9747	0				0	1．15\％	0	1	6534	1	0		\＄102 410	0	0	0	1
9748	0	1	0	0	0	${ }^{1.15 \%}$	－	1	7000	0	0	1	${ }_{5263734}$	0		0	1
9749 9750			\bigcirc	0	0	${ }^{1.1 .15 \%}$	\bigcirc	${ }_{1}^{1}$	6098 6098	0	0	1	\＄237299 $\$ 18782$	0	0	$\stackrel{0}{0}$	1

observation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％－90\％	LTV 70\％．78\％	ltv below 70\％	total tax BURDEN	PARCEL IN SCEIP＝ 1	CONVENTIONAL LOAN $=1$	tor size	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	sold during 20042007	SoLD 2008 －2012	$\begin{aligned} & \text { PRICE ADJUST. TO } \\ & 2012 \end{aligned}$	$\begin{gathered} \text { ZIP CODE } \\ \text { Z95403 } \end{gathered}$	$\begin{aligned} & \text { ZIP CODE } \\ & 95404 \end{aligned}$	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
9751		1	0	0	0	1．11\％		1	6970	－	－	0	${ }_{5319} 524$	O	O	O	1
9752	0	0	0	0	0	1．15\％	0	1	5663	1	0	0	\＄126475	0	0	0	1
9753	0	1	0	0	0	1．11\％	0	0	6098	0	0	1	5263374	0	0	0	1
9754	0	0	0		1	1．15\％	0	1	6098	1	－	0	\＄119 048	0	0	0	1
9755	0	1	0	0	0	1．15\％	0	0	6970	1	0	0	\＄127296		0	0	1
9756	0	1	0	0	0	${ }^{1.111 \%}$	0	0	${ }_{5}^{5633}$	1	0	0	\＄131745	0	0	0	1
9757	0	1	0	0	0	1．14\％	0	1	6098	0	0	0	5283315	0	0	0	1
9758	0	1				${ }^{1.14 \%}$	0	0	6098	0	0	1	\＄273 128	0	0	0	1
9759	0	1	0	0		1．15\％	0	0	5663	0	0	1	\＄269 100	0	0	0	1
9760	0	0	－	1	0	1．11\％	0	1	6970	0	1	0	5637411	0	0	0	1
9761	0	1	0	0	0	${ }^{1.111 \%}$	0	0	7405	0	0	1	\＄245000	0	0	0	1
9762	0	0	0	0	0	${ }^{1.111 \%}$	0	1	${ }_{5}^{5663}$	0	0	0	5398858 $\$ 25032$	0	0	0	1
9763	0	1	－		0	${ }^{1.111 \%}$	0	1	5663	0	0	0	\＄250323	0	0	0	1
9764	0	1	0	0	0	${ }^{1.11 \%}$	0	0	${ }_{6} 698$	0	0	1	\＄345312	0	0	0	1
9765	0	1	0	0		1．15\％	0	0	5663	0	0	1	5265084	0	0	0	1
9766	0	1	0	0	0	${ }^{1.14 \%}$	0	1	6970	0	0	0	5409118	0	0	0	1
9767	0	0	0	1	0	1．14\％	0	1	5663	0	0	0	\＄252641			0	1
9768	0	1	0	0	0	${ }^{1.11 \%}$	0	0	${ }_{5}^{5663}$	\bigcirc	0	1	\＄191784	0	0	0	1
9769	0	0			0	${ }^{1.14 \%}$	0	1	${ }_{6}^{6970}$	0	0	0	\＄229926	0	0	0	1
9770	0	1	0	0	0	${ }^{1.11 \%}$	0	1	7700	0	0	0	${ }_{5429638}$	0	0	0	1
9771	0	1	O	0	0	1．11\％	0	0	8276	0	0	1	\＄259059	0	0	0	1
9772	0	1	0	0	0	1．10\％	0	1	6534	1	0	0	\＄49638	0	0	0	1
9773 9774	\bigcirc	\bigcirc	${ }_{1}$	\bigcirc	${ }_{0}^{1}$	${ }^{1.111 \%}$	\bigcirc	${ }_{0}^{1}$	5663 6534	\bigcirc	\bigcirc	1	S263374 $\$ 272574$	\bigcirc	\bigcirc	\bigcirc	1
9775	0	1	0	0	0	1．11\％	0	0	8712	0	－	1	\＄271108	0	0	0	1
9776	0	1	0	0		1．11\％	0	1	6098	1	0	0	\＄199160	0	0	0	1
9777	0	1	0	0	0	1．13\％	0	1	6098	0	1	0	5898113	0	0	0	1
9778	0		0	－	0	1．14\％	0	0	7841	0	0	1	\＄268438	0	0	0	1
9779 9780	\bigcirc	${ }_{1}^{1}$	0	${ }_{0}^{1}$	\bigcirc	${ }_{1}^{1.14 \%}$	\bigcirc	1	6098 6098	\bigcirc	\bigcirc	1	5218393 $\$ 354643$	\bigcirc	\bigcirc	0	1
9781	0		0	0	0	1．14\％	0	0	6262	0	－	1	\＄268438	0	0	0	1
9782	0	1	0	0	0	1．14\％	0	1	5663	0	1	0	\＄696 120	0	0	0	1
9783	0	1	0	0	0	1．11\％	0	1	5663	0	1	0	\＄658956	0	0	0	1
9784	0	1	－	0	－	${ }^{1.11 \%}$	0	1	5663	0	0	0	5237343	0	0	0	1
9785 9786	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	${ }_{1}^{1.14 \%}$	\bigcirc	${ }_{0}^{1}$	6970 7000	\bigcirc	${ }_{0}^{1}$	${ }_{1}^{0}$	5771603 $\$ 326584$	\bigcirc	\bigcirc	\bigcirc	1
9787	0	0	0	0	0	1．14\％	0	1	5663	1	。	0	\＄102726	0	0	0	1
9788	0	0	0	0	0	${ }^{1.15 \%}$	0	1	5663	0	0	1	\＄246963	0	0	0	1
9789	0	0	0	1	1	1．15\％	0	1	5663	1	0	0	\＄86048	0	0	0	1
9790	0	1	0	0	0	${ }^{1.15 \%}$	0	0	7405	1	0	0	S129 110 $\$ 1637$	0	\bigcirc	0	1
9791	0	0	－	0	1	1．15\％	0	1	5663	0	0	1	\＄163167		0	0	1
9792	0	0	0	1	1	${ }^{1.15 \%}$	0	1	5663	1	0	0	\＄76549	0	0	0	1
9793 9794	\bigcirc	0	0	\bigcirc	1	1．15\％	\bigcirc	${ }_{1}$	6098 6970	\bigcirc	0	1	S225 488 $\$ 282103$	\bigcirc	\bigcirc	\bigcirc	1
9795	－		0	1	${ }_{0}$	1．15\％	0	1	6970	0	0	1	${ }_{\text {S170 }} \mathbf{2 2 7}$	0	－	0	1
9796	0	1	0	0	0	1．11\％	0	1	6098	0	1	0	\＄587089	0	0	0	1
9797	0	0	0	0	1	1．21\％	0	1	5663	0	0	1	\＄233957	0	0	0	1
9798 9799	\bigcirc	1	0	\bigcirc	0	1．11\％	\bigcirc	\bigcirc	7200 7000	\bigcirc	\bigcirc	1	S266088 $\$ 321901$	0	\bigcirc	\bigcirc	1
9800	。		0	0	1	1．14\％	0	1	9148	。	0	1	\＄327754	0	0	0	1
9801	0	0	0	0	1	1．12\％	0	1	8712	0	1	0	\＄87309	0	0	0	1
9802	0	0	0	0	1	1．11\％	0	1	8276	1	0	0	580740	0	0	－	1
9803	0	1	－	0	0	1．14\％	0	1	10890	0	1	0	\＄637411	0	0	0	1
9804	0	0	0	0	0	${ }^{1.12 \%}$	0	1	8712	0	0	1	${ }_{\$ 354568}$	0	0	0	1
9805 9806	0	1	0	0	0	${ }^{1.1 .12 \%}$	\bigcirc	1	7000 6970	0	\bigcirc	\bigcirc	$\$ 429638$ $\$ 34025$	0	0	\bigcirc	1
9807	0	1	0	0	0	1．15\％	0	1	6970	1	－	0	\＄120 452	0	0	0	1
9808	0	0	0	0	1	1．11\％	0	1	6970	1	0	0	\＄996808	0	0	0	1
9809	0	0	0	1	0	1．12\％	0	1	9600	0	0	0	\＄474 526		0	0	1
9810	0	1	0	0	0	1．14\％	0	1	6970	0	1	0	5940330	0	0	0	1
${ }_{9}^{9811}$	0	1	0	0	0	${ }^{1.11 \%}$	0	1	$\begin{array}{r}6098 \\ 7005 \\ \hline\end{array}$	0	0	0	\＄339674	0	0	0	1
9812 9813	\bigcirc	1	0	0	\bigcirc	${ }^{1.11 \%}$	0	1	7405 8276	${ }_{0}^{1}$	\bigcirc	\bigcirc		0	0	0	1
${ }_{9814}^{9814}$	0	1	0	\bigcirc	0	${ }^{1.15 \%}$	0	1	8276 6970	1	\bigcirc	$\stackrel{0}{0}$	\＄385732 $\$ 145295$	\bigcirc	\bigcirc	\bigcirc	1
9815	1	0	1	0	0	1．15\％	0	1	6968	1	0	0	\＄120 452	0	0	0	1
9816	0	0	0	0	1	1．15\％	0	1	5663	1	0	0	\＄97958	0	0	0	1
9817	0	0	0	1	0	${ }^{1.14 \%}$	0	1	7000	0	0	1	\＄279762	0		0	1
9818	0	1	0	0	0	${ }^{1.14 \%}$	0	1	7000	0	0	0	5432203 $\$ 22074$	0	0	－	1
9819 9820	0	${ }_{1}$	${ }_{0}$	${ }_{0}$	${ }_{0}^{1}$	${ }_{\text {1．1．14\％}}^{1.11 \%}$	\bigcirc	${ }_{0}^{1}$	6970 6970	${ }_{1}$	\bigcirc	${ }_{0}$	S217874 S105 133	${ }_{0}$	${ }_{0}$	0	1
9821	0	0	1	0	0	1．11\％	0	1	7000	0	－	。	${ }_{5466517}$	。	0	0	1
9822	0	1	0	0	0	1．14\％	0	1	6970	0	0	0	\＄341977	0	0	0	1
9823	0	1	0	0	0	1．11\％	0	1	6970	1	0	0	\＄102 326	0	0	0	1
9824	0	1	0	0	0	${ }^{1.111 \%}$	0	1	6970	1	0	0	S150565 $\$ 15258$		0	0	1
9825 9826	0	1	${ }_{0}$	${ }_{0}$	0	${ }_{1}^{1.114 \%}$	\bigcirc	${ }_{0}^{1}$	6970 6970	\bigcirc	${ }_{0}^{1}$	${ }_{1}^{0}$	S612250 S288 S	\bigcirc	${ }_{0}$	0	1
9827	0	1	0	0	0	1．21\％	0	0	6970	。	。	1	\＄237973	。	0	0	1
9828	0	0	0	1	1	1．12\％	0	1	6970	0	0	1	5289913	0	0	0	1
9829	0	0	1	0	0	1．14\％	0	1	8712	0	0	0	5446311	0	0	0	1
9830 9831	0	0	\bigcirc	\bigcirc	0	${ }^{1.14 \%}$ 1．14\％	\bigcirc	1	7405 6970	${ }_{0}^{0}$	0	0	S368 460 $\$ 436051$	\bigcirc	0	0	1
9832	0	1	0	0	0	1．14\％	。	1	6098	0		。	${ }_{5338523}$	0	0	0	1
9833	0	1	0	0	0	1．14\％	0	1	7841	0	1	0	\＄524045	0		0	1
9834 9835	0	0		0	0	${ }^{1.11 \%}$	0	1	7005	1		0	\＄103042	0	0	0	1
9835 9836	0	1	0	0	0	${ }^{1.14 \%}$	0	1	6970 8712	0	0	0	S231781 $\$ 282397$	0	0	0	1
${ }_{9837}^{9836}$	${ }_{0}^{\circ}$	1	${ }_{0}$	${ }_{0}$	${ }_{0}$	${ }_{1.14 \%}^{1.14 \%}$	${ }_{0}$	0	8712 6970	\bigcirc	\bigcirc	${ }_{1}^{1}$		\bigcirc	\bigcirc	\bigcirc	1
9838	0	－	1	0	0	1．15\％	0	1	6970	1	0	0	\＄96699	0	0	0	1
9839	0	1	0	0	0	1．11\％	0	1	7841	1	0	0	\＄93110	0	0	0	1
9840 9841	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	1．1．3\％	${ }_{1}^{0}$	\bigcirc	6970 6970	1 0	0	0	S103 S280 O29	\bigcirc	\bigcirc	\bigcirc	1
9842	0		0	0	1	1．10\％	0	1	6970	1	0	0	\＄99761	0		0	1
9843	0	0	0	1	0	1．08\％	0	1	6970	1	0	0	\＄48417	0	0	0	
9844 9845		1	0	0	0	1．14\％	0	1	6970 6970	0	0	0	5420275	0	0	0	1
9845 9846	0	\bigcirc	\bigcirc	\bigcirc	${ }_{1}$	${ }_{1}^{1.12 \%}$	${ }_{0}$	1	6970 6970	\bigcirc	0	${ }_{0}^{1}$		${ }_{0}^{0}$	\bigcirc	0	${ }_{1}^{1}$
9847	1	1	0	0	0	1．11\％	0	1	6970		0	0	\＄170 139	0	0	0	1
9848	0	1	0	0	0	1．07\％		1	6970	0	0	1	\＄170000	0	0		
9849 9850	0	${ }_{1}$	0	0	1	${ }^{1.1 .14 \%}$	\bigcirc	1	9583 6970	0	0	0	$\underset{\substack{\text { S3508 } 875 \\ \$ 1679}}{ }$	0	\bigcirc	\bigcirc	1
9851	0	1	0	0	0	1．12\％	0	1	7000	0	－	0	\＄448876	0	0	0	1
${ }_{9}^{9852}$	0	0	0	1	0	${ }^{1.12 \%}$	0	1	7000	－		1	\＄190780	0	0	0	
9853 9854	\bigcirc	1	0	\bigcirc	\bigcirc	${ }^{1.12 \%} 1$	\bigcirc	1	6970 6970	1	0	\bigcirc	$\$ 367309$ $\$ 101702$	\bigcirc	\bigcirc	\bigcirc	1
9855	0	1	\bigcirc	${ }_{0}$	\bigcirc	${ }^{1.111 \%}$	${ }_{0}$	1	6977 6970	1	\bigcirc	1	${ }_{\text {¢ }}$	${ }_{0}$	${ }_{0}$	\bigcirc	1
${ }_{9}^{9856}$	－	0	，	1	0	${ }^{1.11 \%}$	－	1	8712	0	－	0	${ }_{5262376}$	0	0	0	1
9857 9888	0	0	1	${ }_{0}^{1}$	0	${ }^{1.1 .14 \%}$	\bigcirc	1	7000 6970	\bigcirc	－	1	${ }_{\substack{\text { S300651 } \\ \$ 310247}}$	0	\bigcirc	0	1
9858 989	${ }_{0}$	1	${ }_{0}^{1}$	${ }_{0}$	${ }_{0}$	${ }_{1.11 \%}^{1.11 \%}$	0	1	6970 8712	0	\bigcirc	1	531024 $\$ 83254$	${ }_{0}$	0	${ }_{0}$	1
9860	0		0	0	0	1．12\％	0	1	6970	0		1	\＄427251	0	0	0	1
9861	0	，	－	0	1	${ }^{1.14 \%}$	－	1	6970	0	1	－	\＄532863	\bigcirc	\bigcirc	\bigcirc	
${ }_{98662}^{986}$	0	1	\bigcirc	\bigcirc	0	${ }_{\text {l }}^{1.111 \% \%}$	0	1	6970 6970	0	${ }_{1}$	0	S331 614 $\$ 937888$	\bigcirc	\bigcirc	\bigcirc	1
${ }_{9}^{9863}$	${ }_{0}$	${ }_{0}$	\bigcirc	${ }_{0}$	0	${ }_{1.11 \%}^{1.14 \%}$	0	1	${ }_{8}^{69712}$	0	${ }_{0}$	1	$\begin{array}{r}5937488 \\ 524766 \\ \hline\end{array}$	${ }_{0}$	${ }_{0}$	0	1
9865	0	1	0	0	0	1．11\％	0	1	6970	1	0	0	\＄107741	0	0		1
9866	0	1	－	0	0	${ }^{1.111 \%}$	0	0	6970	1	0	0	\＄115057	0		0	
${ }_{9}^{98688}$	0	0	0	0	1	${ }_{\text {l }}^{\text {1．11\％}}$	\bigcirc	1	6970 6970	\bigcirc	0	${ }_{0}^{1}$		\bigcirc	\bigcirc	0	1
9869	0		0	1	0	${ }^{1.11 \%}$	－		7000	0	0	1	\＄215000	0	0	0	1
9870	0	1	0	0	0	${ }^{1.111 \%}$	－	1	6970	1	0	1	\＄150189	0	0	0	1
${ }_{9872}^{9871}$	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	${ }_{\text {1．1．0\％}}^{1.15}$	${ }_{1}^{0}$	${ }_{0}^{1}$	6970 6970	\bigcirc	0	1	\＄241594 $\$ 326868$	\bigcirc	0	0	1
9873	0	1				1．11\％			8276	0	－	1	\＄100 000	0	0	0	1
9874	0	0	0	0	0	${ }^{1.111 \%}$	0	1	${ }_{6}^{6970}$	1	0	0	${ }_{\text {S }} \mathbf{5 1 2 4 2 1 6}$	0	0	0	1
9875 9876	0	O	1		－	1．11\％	0	1	${ }^{6534}$	1	\bigcirc	1	\＄220 119	0	0	\bigcirc	1
9877	0	0	${ }_{0}$	\bigcirc	\bigcirc	${ }^{1.111 \%}$	0	1	13068 6970	1	\bigcirc	\bigcirc		0	0	\bigcirc	1
9878	0	0	0	0	0	1．11\％	0	1	7000	0	0	0	\＄423226	0	0	0	1
9879 9880						${ }_{\text {1．11\％}}^{1.11 \%}$		1	7405 6970	0	0	${ }_{0}^{0}$	S348310 $\$ 916863$	0	0	0	${ }_{1}^{1}$

observation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％－90\％	LTV 70\％．78\％	$\begin{gathered} \text { LTV beLow } \\ 70 \% \end{gathered}$	total tax burden	PARCEL in SCEIP $=1$	conventional LOAN＝1	tor size	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	SOLD DURING 2004＿2007	SOLD 2008－2012	PRICE ADJUST．To 2012	$\begin{gathered} \text { ZIP CODE } \\ \text { Z95403 } \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95404 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
9881		1	0	0	0	1．14\％	－	O	6970	－	－	1	${ }_{52585} 557$	－	－	，	1
9882	0	0	0	0	0	1．14\％	0	1	7000	0	0	0	5397576	0	0	0	1
9883	0	1	0	0	0	1．14\％	0	1	6970	0	0	1	\＄277007	0	0	0	1
9884	0	1	。	－	0	1．14\％	0	1	6970	0	0	0	\＄344280	0	0	0	1
9885	0	0	0	0	1	1．14\％	0	1	6970	0	1	0	5877518	0	0	0	1
9886	0	1	0	0	0	${ }^{1.14 \% \%}$	0	1	7000	0	0	0	\＄410401	0	0	0	1
9887	0	1	0	0	0	1．15\％	0	0	6970	1	0	0	\＄99249	0	0	0	1
9888	0	1	0	0	0	1．15\％	0	1	6970	1	0	0	\＄94838	0	0	0	1
9889	0	1	0	0	0	1．16\％	0	1	6970	1	0	0	\＄2092	0	0	0	1
9890	0	0	0	1	0	1．11\％	0	1	6970	1	0		\＄157341	0	0	0	1
9891	0	1	0	0	0	1．11\％	0	1	6970	0	0	0	\＄242906	0	0	0	1
9892	0	0	0	0	0	${ }^{1.114 \%}$	0	1	6970	0	0	0	${ }_{5437546}$	0	0	0	1
9893	0	1	0	0	0	${ }^{1.111 \%}$	0	1	7405	0	1	0	\＄717443	0	0	0	1
9894	0	1	0	0	0	1．11\％	0	0	7405	1	0	0	\＄122040	0	0	0	1
9895	0	0	1	0	0	1．11\％	0	1	7841	1	0		\＄87724	0	0	0	1
9896	0	0	0	0	1	1．15\％	0	1	7841	0	0	1	\＄251668	0	0	0	1
9897	0	0	0	0	0	1．08\％	0	1	1742	1	0	0	\＄103086	0	1	0	0
9898	0	0	0	0	0	1．12\％	0	1	3920	1	0	0	\＄135509	0	1	0	0
9899	0	0	1	0	0	1．09\％	0	1	3920	0	0	0	${ }_{\$ 394367}$	0	1	0	0
9900	0	0	0	0	0	1．08\％	0	1	2178	0	1	0	\＄577514	0	1	0	0
9901	0	0	0	0	0	1．09\％	0	1	3485	0	0	0	\＄397246	0	1	0	
9902	0	0	0	0	0	1．12\％	0	1	3485	0	0	1	\＄395 565	0	1	0	0
9903 9904	\bigcirc	${ }_{0}^{1}$	\bigcirc	0	\bigcirc	${ }_{\text {1．12\％}}^{1.12 \%}$	0	1	3060 4792	0	0	0 1	\＄461060 $\$ 520895$	\bigcirc	1	${ }_{0}$	\bigcirc
9905	0	0	0	0	0	1．09\％	0	1	3920	0	1	0	\＄822096	0	1	0	0
9906	0	0	1	0	0	1．12\％	0	1	${ }_{4}^{4792}$	1	0	0	S106069 $\$ 75276$	0	1	0	0
9907	0	1	0	0	0	1．10\％	0	1	6750	0	0	0	5705376	0	1	0	0
998	0	1	0	0	0	1．09\％	0	1	6534	1	－	0	\＄87675	0	1	0	0
9909	0	0	0	0	1	1．09\％	0	1	3049	1	0	0	\＄119 713	0	1	0	0
9910	0	1	0	0	0	1．12\％	0	1	3485	1	0	0	\＄153577	0	1	0	0
9911	0	0	0	0	0	1．12\％	0	1	$\begin{array}{r}5100 \\ 7005 \\ \hline\end{array}$	0	0	0	\＄487351	0	1	0	0
9912	0	0	0	1	0	1．10\％	0	1	7405	1	0	0	\＄212823	0	1	0	－
${ }^{9913}$	0	\bigcirc	\bigcirc	0	0	${ }^{1.12 \%}$	\bigcirc	1	4356 3100	0	\bigcirc	1		\bigcirc	1	0	0
9914 9915	\bigcirc	${ }_{1}$	\bigcirc	${ }_{0}$	${ }_{0}$	－1．12\％	\bigcirc	1	3100 3049	${ }_{0}$	0	${ }_{0}^{1}$	\＄171200 $\$ 229136$	${ }_{0}$	1	0	${ }_{0}$
9916	0	0	。	1	\％	1．10\％	0	1	5663	0	1	。	S639460	－	1	0	。
9917	0	1	0	0	0	1．09\％	0	1	6970	1	0	0	\＄139273	0	1	0	0
9918	0	1	0	0	0	4．11\％	0	1	3920	1	0	0	\＄91179	0	1	0	0
9919	－	0	0	0	0	${ }^{1.12 \%}$	0	1	3920	0	0	0	\＄447593	0	1	0	0
9920	0	1	0	0	0	1．08\％	0	1	3920	0	0	0	\＄403988	0	1	0	0
9921	0	0	0	0	0	1．13\％	0	1	15246	0	1	0	${ }_{\$ 662855}$	\bigcirc	1	0	0
${ }_{9}^{9922}$	0	0	0	0	0	－ $1.1 .19 \%$	0	1	1742 6534	0	0	1	$\$ 138534$ $\$ 440238$	\bigcirc	1	\bigcirc	0
9923 9924	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	1．10\％	\bigcirc	1	6534 5227	0	\bigcirc	1	5440238 $\$ 77599$	\bigcirc	1	\bigcirc	${ }_{0}^{0}$
9925		1	0	0	0	${ }_{1.12 \%}$	0	1	4792	${ }_{0}$	0	0	\＄401852	0	1	0	0
9926	－	0	0	0	0	1．06\％	0	1	5227	1	0	0	\＄62 485	0	1	0	0
9927	1	0	1	0	0	1．09\％	0	1	5227	1	0	0	\＄120 452	0	1	0	0
9928 9929	\bigcirc	0	\bigcirc	\bigcirc	0	－	\bigcirc	1	6534 5663	\bigcirc	1	\bigcirc	5876551 $\$ 779829$	\bigcirc	1	\bigcirc	\bigcirc
9930	0	0	。	1	1	1．12\％	0	1	2614	1	0	0	\＄72698	0	1	。	0
9931	0	1	0	0	0	1．09\％	0	1	${ }^{3485}$	0	1	0	\＄670959	0	1	0	0
9932	0	0	0	1	0	1．12\％	0	1	1742	1	0	0	57488	0	1	0	0
9933	0	0	0	0	0	1．13\％	0	1	6534	1	0	0	\＄127980	0	1	0	0
9934	0	0	0	0	0	1．09\％	\bigcirc	1	4792 6970	0	1	1	$\$ 427251$ $\$ 684990$	\bigcirc	1	0	0
9935 9936	\bigcirc	1	\bigcirc	${ }_{0}^{1}$	\bigcirc	－ 1.12%	\bigcirc	1	6970 6970	\bigcirc	1	0		\bigcirc	1	\bigcirc	\bigcirc
9937		1	0	－	0	1．94\％	1	1	4500	0	1	0	\＄1108444	－	1	0	0
9938	0	0	0	0	1	1．12\％	0	1	2178	0	0	0	5339863	0	1	0	0
9939	0	0	1	0	0	1．55\％	1	1	6534	0	0	1	\＄579 423	0	1	0	0
9940	0		0	0	0	1．13\％	0	1	7405	1	0	0	\＄87724	0	1	0	0
9941	0	0	0	0	0	${ }^{1.12 \%}$	\bigcirc	1	${ }^{6970}$	0	1	0		0	1	0	0
9942 9943	0	0	0	\bigcirc	0	（1．11\％	\bigcirc	1	17424 4356	\bigcirc	1	\bigcirc	\＄947730 $\$ 104205$	\bigcirc	1	0	${ }_{0}$
9944	0		0	0	。	1．12\％	0	1	5227	0	1	0	（1091236	${ }_{0}$	1	0	0
9945	0	1	0	0	0	1．09\％	0	1	5227	0	0	1	5289913	0	1	0	0
9946	0	0	0	0	0	1．12\％	0	1	5227	0	1	0	\＄1 190609	0	1	0	0
9947	0	0	0	1	0	1．09\％	0	1	4792	0	1	0	5881238	0	1	0	0
9948 9949	\bigcirc	\bigcirc	\bigcirc	${ }_{1}^{1}$	\bigcirc	${ }_{\text {1．1．12\％}}^{1.12 \%}$	0	1	7405 7405	${ }_{1}$	。	${ }_{0}^{1}$	$\$ 360000$ $\$ 9380$	\bigcirc	1	${ }_{0}$	\bigcirc
9950	0	1	0	0	0	1．10\％	0	1	12197	0	。	0	\＄314295	${ }_{0}$	1	0	0
9951	0	1	0	0	0	1．09\％	0	1	7405	0	1	0	5787490	0	1	0	－
9952	－	0	0	0	1	${ }^{1.06 \%}$	0	1	3049 4792	0	0	1	5230944 $\$ 768740$	\bigcirc	1	0	0
9953	0	1	0	0	0	${ }^{1.12 \%}$	0	1	4792	0	1	\bigcirc	\＄768740	0	1	0	0
9954 9955	0	${ }_{1}^{1}$	${ }_{0}^{1}$	\bigcirc	\bigcirc	${ }^{1.08 \%}$	0	${ }_{0}^{1}$	5227 6970	1	\bigcirc	0	S120452 $\$ 84232$	0	1	\bigcirc	\bigcirc
9956	0	1	0	－	0	1．09\％	0	1	4356	0	0	1	\＄360 109	0	1	0	0
9957	0	0	0	0	1	1．10\％	0	1	8276	0	1	0	\＄1 130610	0	1		0
9958 9959	0	${ }_{1}$	0	0	0	1.12% 1.09%	\bigcirc	1	4792 7405	${ }_{0}^{1}$	\bigcirc	\bigcirc	$\$ 88284$ $\$ 370763$	\bigcirc	1	\bigcirc	\bigcirc
9960	0	1	－	0	0	1．10\％	0	1	8712	0	0	1	\＄443210	0	1		0
9961	0	1	0	0	0	1．13\％	0	1	4792	0	0	1	\＄229000	0	1	－	
9962 9963		0		1	1	1．12\％	0	1	${ }_{4}^{492}$	0	0	0	\＄213238		1	0	\bigcirc
9963 9964	\bigcirc	0	0	1	$\stackrel{1}{0}$	1.08% 1.03%	0	1	4680 11761	0	${ }_{0}^{1}$	${ }_{1}^{0}$	\＄918738 $\$ 254039$	\bigcirc	1	\bigcirc	\bigcirc
9965	0	0	0	0	1	1．09\％	0	1	6970	0	1	，	\＄979 126	0	1	0	0
9966		1	0	0	0	1．09\％	0	1	3920	0	0	1	\＄259848	0	1	0	
9967 9968	0	1	\bigcirc	\bigcirc	0	1．36\％	1	0	6098 5663	${ }_{0}^{1}$	0	\bigcirc	\＄89119 $\$ 194696$	\bigcirc	1	0	0
9969	0	1	0	－	－	1．09\％	0	0	6970	1	。	。	\＄103086	0	1	－	0
9970	0	1	0	0	0	1．10\％	0	1	9583		1	0	\＄986515	0	1		0
9971	0	0	0	O	0	1．13\％	0	1	11880	0	0	0	S306 198 $\$ 79045$	0	1	0	
${ }_{9}^{9972}$	\bigcirc	\bigcirc	\bigcirc	0	${ }_{0}^{1}$	1．1．0\％	0	1	12197 5227	\bigcirc	1	0	（ $\begin{array}{r}\text { \＄709645 } \\ \$ 1029362\end{array}$	0	1	\bigcirc	0
9974	1	－	－	O		1．08\％	0	1	3920	1	0	0	\＄109 072	0	1	0	0
${ }_{9975}^{9975}$	\bigcirc	0	${ }_{0}^{1}$	${ }_{0}$	${ }_{1}$	${ }_{\text {1．1．2\％}}^{1.10 \%}$	\bigcirc	1	3920 7405	0	${ }_{1}$	0	\＄208 603 $\$ 884908$	${ }_{0}$	1	\％	0
9977	0	0	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }^{1.09 \%}$	\bigcirc	1	7405 7405	0	1	0	\＄884988 $\$ 881821$	${ }_{0}$	1	0	0
9978	0	0	0	0	0	1．09\％	0	1	3920	0	1	0	\＄468744	0	1	0	0
9979	0	0	0	0	1	1．09\％	\bigcirc	1	${ }_{5}^{5227}$	0	0	0	\＄157611	0	1	－	
9980 9981	0	1	0	0	0	－ 1.09%	\bigcirc	0	6098 3920 390	1	\bigcirc	1	\＄295 282 $\$ 106411$	0	1	0	0
9982	0	1		0	0	${ }^{1.12 \%}$	${ }_{0}$	1	3920 3920	1	0	${ }_{0}^{\circ}$	\＄106411	\bigcirc	1	0	0
9983	0	0		1	0	1．12\％	0	1	3920	1	0	0	585341	0	1	0	0
9984	0	0	0	0	1	1．09\％	0	1	3920	1	0	0	\＄108099	0	1		
9985 9986	\bigcirc	0	0	${ }_{0}^{1}$	0	1．09\％ 1.09%	\bigcirc	1	7841 3920	1 1	\bigcirc	1	\＄340000 $\$ 125698$	0	1	0	0
9987	0	0	0	1	－	1．12\％	0	1	3920	1			\＄161858	。	1	。	
9988	0	0	0	0	0	1．09\％	0	1	3920	0	0	1	\＄296211	0	1	0	0
9989	0	0	0	1	－	1．09\％	0	1	3920			1	5253035 $\$ 2030$	0	1	－	0
9990	\bigcirc	0	0	0	0	－ 1.09%	\bigcirc	1	3920 3920	\bigcirc			\＄280000	\bigcirc	1		
9991 9992	\bigcirc	1	0	0	0	1．1．09\％	\bigcirc	1	3920 6970	0	${ }_{0}^{1}$	0	\＄611065 $\$ 352191$	\bigcirc	1	0	0
993	0	1	0	0	0	1．09\％	－		6970		1	0	\＄553679	0	1	0	0
9994 9995	0	0	0	0	1	1．10\％		1	${ }^{8276}$			0	\＄459 424	\bigcirc	1		0
9995 9968	0	0	\bigcirc	0	\bigcirc	${ }_{1}^{1.10 \% \%}$	0	1	6098 7841 7	1	\bigcirc	0		\bigcirc	1	\bigcirc	0
9997	0		。	0		1．08\％	。	1	7841		。	1	\＄221605	。	1	0	
9998		0	0	0	1	1．11\％	0		${ }^{21} 344$	0		1	\＄526139	0	1	0	
9999 10000	0	1	\bigcirc	${ }_{0}$	\bigcirc	${ }_{\text {l }}^{1.10 \%}$	\bigcirc	1	10890 14375	0 1	${ }_{0}^{1}$	\bigcirc	S661734 S136 340	\bigcirc	1	0	\bigcirc
10001		1	0	0	－	${ }_{1.11 \%}$	0	1	16553	1	。		\＄361772	\bigcirc	1	0	0
10002	0	0	0	0	0	1．10\％	0	1	9148	0	0	1	\＄499693	0	1	0	0
1003	0	1	0	\bigcirc	\bigcirc	${ }^{1.10 \%}$	\bigcirc	1	10454 7405	－	，	1	5746352 $\$ 261067$	0	1	\bigcirc	
10004 10005	0	1	0	0 1	\bigcirc	1．1．9\％\％	0	0	7405 7405	0	0	1	\＄261067 $\$ 94372$	\bigcirc	1	0	0
10006		0	0	0	0	1．09\％		1	7405	1		0	\＄127980	0	1	0	0
10007	0	1	0	0	0	1．09\％	0	1	7405	0	0	0	\＄293617	0	1	0	0
10008 10009	0	0	0	0	0	1．10\％	0	1	7841	0	0	1	5337560	0	1	0	0
									7841 9883			0					

osservation	PROPERTY DURESS $=1$	LT＿ 90%	LTV 81\％－90\％	LTV 70\％－78\％	ltv below 70\%	totaltax burden	parcel in SCEIP $=1$	CONVENTIONAL LOAN＝ 1	Lot SILE	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	SOLD DURING 2004＿2007	Sold 2008－2012	PRICE ADJUST．TO 2012	$\begin{aligned} & \text { ZIP CODE } \\ & \text { Z95403 } \end{aligned}$	$\begin{aligned} & \text { ZIP CODE } \\ & 95404 \end{aligned}$	$\begin{aligned} & \text { ZIP CODE } \\ & 95472 \end{aligned}$	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
10011	Sess	1	0	0	\％\％	1．09\％			8712	${ }^{\text {conez }}$	${ }^{2004}$	1	\＄260000	2503			
10012	。	0	0	0	1	1．09\％	0	1	7405	0	1	0	\＄946863	。	1	。	。
10013	0	1	0	0	0	1．09\％	0	1	6970	1	，	0	\＄139273		1	0	0
10014	0	1	0	0	0	1．12\％	0	1	9148	0	1	0	5813538	0	1	0	0
10015	0	0	0	0	0	1．10\％	0	1	7841	1	0	0	590797	0	1	0	0
10016	0	0	0	0	1	1．09\％	0	1	8712	1	0	0	\＄97985	0	1	0	0
10017	0	1	0	0	0	1．10\％	0	0	8712	0		1	\＄304707	0	1	0	0
10018	0	，	－	0	1	1．12\％	0	1	8712	0	，	0	\＄242849	0	1	0	0
10019	0	1	0	0	0	1．08\％	0	1	7405	0		0	5704966	0	1	0	0
10020	0	1	0	0	0	${ }^{1.12 \%}$	0	0	6098	0	0	1	\＄3113 017 $\$ 5859$	0	1	0	0
10021	0	1	0	0	0	${ }^{1.13 \% \%}$	0	1	7405		0	0	${ }_{541589}$	0	1	0	0
10022	0	1	0	0	0	1．07\％	0	0	7405	0	0	1	\＄285000	0	1	0	0
10023	0	1	0	0	0	1．12\％	0	1	4792	0		0	5425787	0	1	0	
10024	0	0	0	0	0	1．12\％	0	1	6970	1	0	0	\＄145 516	0	1	0	0
10025	0	1	0	0	0	1．88\％	1	1	${ }_{4}^{4356}$	1	1	0	5634057	0	1	0	0
10026 10027	0		0	0	${ }_{1}$	1．09\％	${ }_{0}$	1	9148 5663	1	。	0	\＄98582 $\$ 153577$	0	1	0	0
10028	0	0	0	0	1	${ }_{\text {1．13\％}}^{1.09 \%}$	\bigcirc	1	5663 563	1	0	0	\＄153577 $\$ 92112$	\bigcirc	1	\bigcirc	\bigcirc
10029	0		0	0	0	1．12\％	0	1	5663	0	0	0	5429767	0	1	0	0
10030	0	0	0	0	0	1．09\％	0	1	7405	，	1	0	5831333	0	1	0	0
10031	0	1	0	0	0	1．13\％	0	0	5663	1	0	0	\＄92445	0	1	0	0
10032	0	0	0	0	1	1．09\％	0	1	5663	0		1	5319112	0	1	0	
1033 10034 10	\bigcirc	0	0	${ }_{0}^{1}$	\bigcirc	－	\bigcirc	1	5663 5663	${ }_{1}$	\bigcirc	\bigcirc	S 382186 S149919	\bigcirc	1	\bigcirc	\bigcirc
10034 10035	\bigcirc	0	${ }_{1}^{0}$	\bigcirc	\bigcirc	－	\bigcirc	1	5663 5663	${ }_{0}^{1}$	1	${ }_{0}$	\＄144919	\bigcirc	1	\bigcirc	\bigcirc
10036	0		0	0	0	1．09\％	0	1	7405	1	0	0	S104 198	0	1	0	0
10037	0	1	0	0	0	1．10\％	0	0	7405	0	0		${ }_{5} 549028$	0	1	0	0
10038 10039	${ }_{0}$	0	${ }_{1}$	\bigcirc	${ }_{0}$	${ }_{\text {1．13\％}}^{1.12 \%}$	${ }_{0}$	1	7405 10454	${ }_{0}$	${ }_{1}^{1}$	\bigcirc	5670959 $\$ 682351$	\bigcirc	1	${ }_{0}$	${ }_{0}$
10040	0		0	0	1	1．09\％	0	1	8680	0	0		\＄448876	0	1	0	0
10041	0	0		1	0	1．12\％	0	1	7405	0	0	0	5537369	0	1	0	0
10042	0	1	0	0	0	1．09\％	0	1	7405	0	0	0	S289308	0	1	0	0
10043	0	0	1	0	0	1．10\％	0	1	6970	0	0		\＄468220	0	1	0	0
10044 10045	\bigcirc	1	${ }_{0}$	\bigcirc	${ }_{0}$	（1．13\％	0	${ }_{0}$	6970 7405	${ }_{0}$	${ }_{0}$	1	\＄264818 S288 S	${ }_{0}$	1	${ }_{0}$	0
10046	0	${ }_{0}$	0	0	1	1．08\％	0	1	7405	0	。	1	\＄280145	0	1	。	0
10047	0	0	－	0	1	1．13\％	0	1	7405	1	0	0	\＄67050	0	1	0	0
10048	0		0	0	0	1．09\％	0	0	7841	0	－	1	\＄248014	0	1	0	0
10049	0	1	0	0	0	1．10\％	0	1	10560	0	0	0	\＄515566	0	1	0	0
10050 10051	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	1．09\％	\bigcirc	1	3485 4792	${ }_{0}$	${ }_{1}$	${ }_{0}$	\＄403988 $\$ 779829$	${ }_{0}$	1	\bigcirc	0
10052	0	0	0	0	0	1．08\％	0	1	3920	1	0	0	\＄112064	0	1	0	0
10053	0	0	0	0	0	1．12\％	0	1	3920	0	1	0	\＄731240	0	1	0	－
10054	0		0	0	0	1．09\％	0	1	5663	1	0	0	\＄118050	0	1	0	0
10055	0	0	0	O	0	1．09\％	0	1	$\begin{array}{r}5663 \\ 3485 \\ \hline\end{array}$	0	0	1	5375813 59929	0	1	0	0
10056 10057	0	1	0	0	0	－	0	${ }_{1}$	3485 5904	${ }_{0}^{1}$	${ }_{0}$	${ }_{0}$	－ 5992498	${ }_{0}$	1	\bigcirc	0
10058	0	${ }_{0}$	1	。	。	1．09\％	0	1	4560	0	。	0	\＄416813	0	1	0	0
10059	0	0		－	0	1．09\％	0	1	5663	0	0	1	\＄332863	0	1	0	0
10060	0	0	0	0	1	1．09\％	0	，	5663	0	1	0	\＄650378	0	1	0	0
10061	\bigcirc	0	0	1	0	0．90\％	0	1	5663 563	\bigcirc	\bigcirc	0	$\$ 435410$ $\$ 320731$	0	1	0	0
10062 10063	0	0	0	0	0	${ }_{\text {1．12\％}}^{1.14}$	0	1	5663 3920	${ }_{1}$	${ }_{0}^{0}$	${ }_{0}^{1}$	$\$ 320731$ $\$ 86727$	0	1	。	$\stackrel{0}{0}$
10064	0	0	0	0		1．56\％		1	3485	0	1	0	\＄914466	0	1	0	0
10065	0	0	0	0	0	1．08\％	0	1	3485	1	0	0	\＄100829	0	1	0	0
10066 10067	\bigcirc	0	0	\bigcirc	${ }_{0}^{1}$	－ 1.12%	\bigcirc	1	3485 4792	\bigcirc	\bigcirc	1	\＄215000 $\$ 171518$	\bigcirc	1	\bigcirc	\bigcirc
10067 10068	\bigcirc	${ }_{0}^{1}$	0	0	0	${ }^{1.109 \%}$	0	0	4792 3920	\bigcirc	0	${ }_{1}$	\＄171518	\bigcirc	1	\bigcirc	$\stackrel{0}{0}$
10069	0	1	0	0	0	1．12\％	－	1	3355	0	0	0	\＄35231	0	1	0	－
10070	\bigcirc	1	0	0	0	${ }^{1.12 \%}$	\bigcirc	1	4792	0	0	1	\＄4916311	0	1	0	
10071	0	1	0	0	0	1．08\％	0	1	4792	0	0	1	\＄225488	0	1	0	0
10072	0	0	0	0		1．12\％	0	1	4792	0	0	0	\＄228832	0	1	0	0
10073	0	1	0	0	0	1．08\％	0	1	4792 4792	1	\bigcirc	0		0	1	0	0
10074 10075	0	${ }_{1}$	0	0	－	－ $\begin{aligned} & 1.1 .13 \% \\ & 1.08 \%\end{aligned}$	0	1	4792 1742	${ }_{0}^{1}$	\bigcirc	0	S32421 $\$ 228832$	0	1	\bigcirc	\bigcirc
10076	0		0	0	0	${ }^{1.12 \%}$	0	1	3049	0	1		\＄969888	0	1	0	0
10077	0	1	0	0	0	1．13\％	0	1	6970	1	0	0	S127228	0	1	0	－
10078	0	0	1		0	1．08\％	0	1	3920	0	0	0	\＄365 513	0	1	0	0
1079		1	0	\bigcirc	\bigcirc	1．12\％	0	1	3920 5227	0	1	0	5520926 $\$ 54580$	\bigcirc	1	0	\bigcirc
10080 10081	0	${ }_{0}^{1}$	0	${ }_{1}^{0}$	0	1．09\％	0	1	5227 6534	${ }_{0}^{1}$	\bigcirc	0	\＄54580 $\$ 272419$	\bigcirc	1	\bigcirc	0
10082	0	1	0	0	0	1．12\％	0	1	3920	0	1	，	\＄527944	－	1	O	0
10083	0	1	0	0	0	1．12\％	0	0	3920	0	0	1	5268438	0	1	0	0
10084	0	1			0	${ }^{1.12 \%}$	0	1	4490	0	1	0	\＄941238	－	1	0	0
10085 10086	0	0	0	0	\bigcirc	1．09\％	0	1	4792 3920	0	\bigcirc	0	5319274 $\$ 70003$	0	1	0	
10086 10087		。	\bigcirc	1	${ }_{1}$	1．08\％	\bigcirc	1	3920 2320	${ }_{0}^{1}$	\bigcirc	${ }_{1}^{0}$	S70 403 $\$ 198994$	\bigcirc	1	\bigcirc	0
10088	0	0	1	0	0	1．12\％	0	1	4792	0	0	0	\＄155955		1	－	0
10089	0	1	0	0	0	1．09\％	0	1	${ }^{4356}$	0	0	0	\＄423226	0	1	0	0
10090	0	0			1	1．12\％	0		3920	0	1	0	\＄421869	0	1	0	0
1091	0	1	0	0	0	1．12\％	0	1	4792 4800	0	\bigcirc	0	S261494 $\$ 370643$ 8	0	1	0	0
10092 10093	0	1	0	\bigcirc	\bigcirc	${ }^{1.08 \%}$	0	1	4880 4992	\bigcirc	\bigcirc	${ }_{1}$	$\$ 370643$ $\$ 289$ 126	0	1	0	\bigcirc
10994	0	1	0	0	0	1．18\％	0	1	3920	1	0	0	\＄50573	0	1	0	0
10095	0	0	1	0	0	1．19\％	0	1	3920	1	0	0	597867	0	1	0	0
10096	－	1	0	0	0	${ }^{1.12 \%}$	0	1	4792	0	1	0	S57 074 $\$ 42326$	O	1	－	0
10097	0	1	0	0	0	1．09\％		1	4800 4792	\bigcirc	\bigcirc	0	$\$ 423226$ $\$ 20821$	0	1	\bigcirc	0
10098 10099	0	1	\bigcirc	\bigcirc	\bigcirc	${ }^{1.008 \%}$	0	1	4792 4792	\bigcirc	\bigcirc	${ }_{0}^{1}$	\＄200 821 $\$ 217874$	\bigcirc	1	\bigcirc	\bigcirc
10100	－	1	0	0	0	1．12\％	0	1	4792	0	1	0	\＄703 116	0	1	O	0
10101	0	1	0	－	0	1．08\％	0	0	3049	0	0	1	\＄156000	0	1	0	0
10102	0	1	0		0	1．13\％	0		4792	0	0	1	\＄236762	0	1	0	0
10103	0	0	0	0	0	1．08\％	0	1	4792 3049	1	0	0	\＄92172	0	1	\bigcirc	
10104 10105	0	1	0	0	\bigcirc	－	0	1	3049 3049	${ }_{0}^{1}$	0	${ }_{1}^{0}$	\＄7325 $\$ 192286$	\bigcirc	1	0	\bigcirc
10106			O	－	1	${ }^{1.12 \%}$		1	3049	0	1	0	\＄6004688	0	1	－	0
10107	0		0	－	0	1．08\％	－	，	3885	1	0	0	\＄107 654	0	1	0	\bigcirc
10108 10109	0	\bigcirc	${ }_{1}^{0}$	${ }_{0}^{1}$	\bigcirc	1.12% 1.09% 1.20	0	1	4792 4792	1	${ }_{0}$	\bigcirc	599830 $\$ 178564$	${ }_{0}$	1	\bigcirc	${ }_{0}$
10110		1	0	0	0	1．12\％	0	${ }_{0}$	4356	0	0	1	\＄189776	0	1		
10111	0	1	0	0	0	${ }^{1.12 \%}$	0	1	4792	0	0	0	\＄143704	0	1		0
10112 10113	0	${ }_{0}^{1}$	\bigcirc	0	1	－	0	1	4356 4792	${ }_{0}^{1}$	0 1	${ }_{0}$	S40 247 S499091	${ }_{0}$	1	\bigcirc	\bigcirc
10113 1014	0	0	1	0	1	${ }^{1.08 \%}$	0	1	4792 4792	\bigcirc	${ }_{0}^{1}$	\bigcirc	S4999991 $\$ 396355$	\bigcirc	1	\bigcirc	\bigcirc
10115	0	0	0	0	0	1．08\％	0	1	4792	0	1	0	\＄578633		1	0	0
10116	0	，	0	0	0	1．09\％	0	1	4792	0	0	0	$\$ 423226$ $\$ 831233$	0	1	0	
10117 10118	\bigcirc	${ }_{1}^{1}$	0	\bigcirc	${ }_{0}^{1}$	${ }_{1.12 \%}^{1.12 \%}$	0	1	4792 4792	\bigcirc	${ }_{0}^{1}$	\bigcirc	\＄831333 $\$ 262611$	\bigcirc	${ }_{1}^{1}$	\bigcirc	\bigcirc
10119	0	0	0	0	1	1．09\％	0	1	4800	0	0	1	\＄491631		1	0	0
10120	0	1	O	0		${ }^{1.12 \%}$	0	1	${ }_{4}^{336}$	0	0	1	\＄279176		1		0
10121 10122	\bigcirc	${ }_{1}$	\bigcirc	${ }_{0}^{1}$	\bigcirc	（1．13\％	\bigcirc	1	4356 4356	${ }_{0}^{1}$	\bigcirc	\bigcirc	570627 $\$ 179862$	\bigcirc	1	\bigcirc	\bigcirc
10123	${ }_{0}$	1	${ }_{0}^{0}$	${ }_{0}$	${ }_{0}$	1．07\％	0	1	4336 4366	1	${ }_{0}$	\bigcirc	\＄1588828	${ }_{0}$	1	${ }_{0}$	\bigcirc
10124	0	1	0	0	0	1．09\％	－	，	4356		－	1	\＄288839	0	1	0	0
10125	0	0			0	1．12\％	0		4792	0	0	1	537476	0	1	0	0
10126	0	1	0		0	1．09\％		1	4800	0	0		5356536		1		0
10127 10128 10	0	0	1	0	\bigcirc	1．09\％	0	1	5663 4356	0	0	0	S22065 S21000	0	1	0	0
10128 10129	0	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	0	${ }^{1.08 \%}$	0	0	43366 4792	0	${ }_{1}^{0}$	${ }_{0}^{1}$	5210000 $\$ 584872$	\bigcirc	1	\bigcirc	0
10130	0	1	0		0	1．09\％			4792		1		\＄749990		1	0	－
10131 10132		1	O		\bigcirc	${ }^{1.12 \%}$	0	1	4792	0	0		5307855	0	1	0	－
10132 1013	${ }_{0}$	1	0	0	\bigcirc	${ }^{1.09 \%}$	0	1	4800 4792	0	0	\bigcirc		0	1	\bigcirc	0
10134	－		1	0	0	1．13\％	－	1	4792	1		0	\＄74595	－	1	0	－
10135			O	0	\bigcirc	${ }^{1.08 \%}$		1	${ }_{4}^{4356}$	0	0	1	522093 $\$ 357018$	0	1	0	0
10136 10137	0	0	${ }_{0}$	${ }_{0}$	\bigcirc	－${ }_{\text {1．1．3\％}}$	\bigcirc	1	4356 4356	0	0	${ }_{0}^{1}$	\＄357 018 $\$ 65872$	0	1	0	0
10138	0			1	0	1．09\％	0		3920		－		5261067	0	1	0	0
	0		0	0	0	1．07\％	0	0	1742 5663	1	0	0	\＄92445 $\$ 88906$	\bigcirc	${ }_{1}^{1}$	$\stackrel{0}{0}$	

observation	PROPERTY DURESS $=1$	LT＿－90\％	LTV 81\％－90\％	LTv 70\％－78\％	$\begin{aligned} & \text { LTV below } \\ & \text { 70\% } \end{aligned}$	total tax burden	parcel in SCEIP $=1$	CONVENTIONAL LOAN $=1$	Lorsize	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	$\begin{aligned} & \text { SOLD DURING } \\ & \text { 2004_2007 } \end{aligned}$	Soto 2008－2012	PRICE ADJUSt．TO 2012	ZIP CODE 295403	ZIP CODE 95404	ZIP CODE 95472	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
10141	0	1	0	－	\％	1．09\％		1	5663	－	－	0	\＄250625	0	1		0
10142	0	1	0	0	0	1．09\％	。	1	5663	0	1	0	\＄545880	0	1	0	0
10143	0	0	0	0	0	1．09\％	0	1	6534	1	0	0	${ }_{590} 719$	0	1	0	0
10144	0	0	0	1	－	1．12\％	0	1	6534	0	1	0	\＄817732	0	1	0	0
10145	0	0			0	1．08\％	0	1	5663	1	0	0	568447	0	1	0	0
10146	0	1	0	0	0	1．09\％	0	0	5663	0	0	1	\＄277007	0	1	0	0
10147	0	1	0	0		1．08\％	0	0	5663	1	0	0	\＄43154	0	1	0	0
10148	0	1	0	0	0	1．08\％	0	1	5663	0	0	0	\＄123678	0	1	0	0
10149	0	0	1	0	0	1．08\％	0	1	4792	0	1	0	5918738	0	1	0	0
10150	0		0		0	1．12\％	0	1	4792	0	0	1	\＄241594	0	1	0	0
10151	0		0	0	0	1．09\％	0	1	4792	0	1	0	\＄435145	0	1	0	0
10152	0		0	0	1	1．09\％		1	4800	0	0	0	5436051	0	1	0	0
10153	0	0	0	0	1	1．12\％	0	1	4792	0	0	0	${ }_{5}^{5377371}$	0	1	0	0
10154	0	0	0	0		1．08\％	0	1	4792	0	0	1	\＄415 546		1	0	0
10155	0	0	1	0	0	1．08\％	0	1	5663	1		0	5112171	0	1	0	0
10156	0	1	0	0	0	1．12\％	0	0	4800	0	0	0	\＄4039888	0	1	0	0
10157	0	1	0	0	0	1．09\％	0	1	4792	\bigcirc	\bigcirc	1	5284544 $\$ 368460$	0	1	\bigcirc	0
10159 10159	0	0	0	${ }_{0}$	1	${ }^{1.08 \%}$	0	1	4792	1	0	0	$\begin{array}{r}\text { S } \\ \hline 577439 \\ \hline\end{array}$	0	1	0	0
10160	0	1	0	0	0	1．08\％	0	0	4792	0	0	1	\＄298490	0	1	0	0
10161	0	1	0	0	0	1．12\％	0	1	4792	0	0	1	5456515	0	1	0	0
10162	0	0	1	0	0	1．80\％		1	4792 4356	0	0	1		0	1	0	0
${ }^{10163}$	0	0	0	0	0	${ }^{1.12 \%}$	0	1	${ }_{4}^{4356}$	0	0	0	S430921 S241822	0	1	0	
10164	0	0	0	0	1	1．08\％	0	1	2178 6970	0	0	0	\＄5241802		1	0	0
10165 10166	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	0	0	1．13\％	${ }_{0}$	1	6970 3485	${ }_{0}$	${ }_{0}^{1}$	${ }_{0}$	S656 241 S280 951	${ }_{0}$	1	0	0
10167	0	0	${ }_{0}$	0	－	1．07\％	0	1	4792	0	。	1	\＄208309	0	1	0	。
10168	－	0	0	1	0	1．12\％	0	1	4792	0	1	0	\＄419350	0	1	0	0
10169	0	1	0	0	0	1．13\％	0	1	6534	0	1	0	5476476	0	1	0	0
10170	0	0	0	0	1	1．12\％	0	1	4792	0	1	0	586989	0	1	0	0
10171			0	0	0	1．12\％	0	1	4792	0	1	0	5628118		1	0	0
10172 10173	0	\bigcirc	0	0	${ }_{0}^{1}$	1.07% 1.08% 1	\bigcirc	1	4792 4792	0	${ }_{1}$	${ }_{0}^{1}$	S199445 $\$ 711252$	\bigcirc	1	\bigcirc	\bigcirc
10174	0	1	0	0	0	1．09\％	0	1	4792	0	0	0	S222417	0	1	0	0
10175	0	1	0	0	0	1．09\％	0	1	4792	0	0	0	\＄264791	0	1	0	0
10176	0		0	1	0	1．12\％	0	1	3920	0	0	1	\＄210455	0	1	0	0
10177	0	1	0	0	0	1．07\％	0	1	3920	1	0	0	\＄40694	0	1	0	0
10178	0	1	0	0	0	1．12\％	0	1	4200	0	0	0	\＄457853	0	1	0	0
10179 10180	\bigcirc	\bigcirc	0	\bigcirc	0	1．09\％	\bigcirc	1	4792 4792	\bigcirc	${ }_{0}^{1}$	\bigcirc	S670 959 $\$ 343704$	\bigcirc	1	\bigcirc	0
10180 10181	\bigcirc	0	0	\bigcirc	${ }_{0}^{1}$	${ }^{1.1 .12 \%}$	\bigcirc	1	4792 4792	\bigcirc	${ }_{1}^{0}$	\bigcirc	S343704 $\$ 853114$	$\stackrel{0}{0}$	1	\bigcirc	$\stackrel{0}{0}$
10182		1	0	0	0	1．09\％	0	1	4792	0	1		\＄637900	0	1	0	0
10183	0	1	0	0	0	1．08\％	0	1	4792	1	0	0	\＄84066	0	1	0	0
10184	0	0	0	0	1	1．12\％	0	1	4792	0	0	1	\＄356 457	0	1	0	0
10185	0	0	0	1	0	1．09\％	0	1	4792	0	0	0	\＄427715	0	1	0	0
10186 10187	\bigcirc	0	${ }_{0}^{1}$	0	${ }_{1}$	1．08\％	${ }_{0}$	1	4792 4356	${ }_{0}^{1}$	0	${ }_{0}$	$\$ 64480$ $\$ 256073$	${ }_{0}$	1	\bigcirc	0
10188			0	0	1	1．13\％	0	1	5663	0	0	1	\＄198644	0	1	。	0
10189	0	1	0	0	0	1．08\％	0	1	3920	0	1	0	\＄555 238	0	1	0	0
10190	\bigcirc	1	0	0	0	1．12\％	0	0	4792	0	0	1	\＄194796	0	1	0	0
10191 10192	\bigcirc	1	\bigcirc	0	\bigcirc	1．13\％	\bigcirc	0	5663 6534	1	\bigcirc	\bigcirc	542707 $\$ 89502$	0	1	\bigcirc	\bigcirc
10192 10193	0	0	${ }_{1}^{0}$	${ }_{0}^{1}$	\bigcirc	1．09\％	0	1	6534 4792	1	0	0	\＄89502 $\$ 105746$	\bigcirc	1	0	\bigcirc
10194			0	0	0	1．12\％	0	1	4792	0	0	1	\＄217389		1	0	
10195	0	0	0	0	0	1．12\％	0	1	4792	0	0	0	\＄272419	0	1	0	0
10196	0	1	0	0	0	1．08\％	0	1	3920	0	1	0	5769926	0	1	0	0
10197 10198	\bigcirc	${ }_{0}^{1}$	\bigcirc	0	\bigcirc	－ 1.12%	\bigcirc	1	3920 3920	\bigcirc	0	1	S153518 $\$ 881860$	0	1	0	0
10198 10199	\bigcirc	0	0	0	0	1．09\％ 1.09%	\bigcirc	1	3920 4792	\bigcirc	\bigcirc	1	$\$ 281860$ $\$ 288087$	\bigcirc	1	0	0
10200	0	1	0	0	0	1．12\％	0	1	4792	0	0	0	\＄245177		1	0	
10201	0	0	0	0	0	1．09\％	0	1	7405	1	0	0	\＄72358	0	1	0	0
10202	0	1	0	0	0	1．13\％	0	1	2178	1	0	0	\＄32 198	0	1	0	0
10203	\bigcirc	0	0	1	0	1．13\％	0	1	8712 8712	0	1	0	5888755 S18442	\bigcirc	1	0	0
10204 10205	0	\bigcirc	0	0	1	1．19\％ 1.00%	${ }_{0}^{1}$	1	8712 8276	${ }_{0}^{1}$	\bigcirc	0	S184442 $\$ 200821$	\bigcirc	1	0	\bigcirc
10206	0	0	0	0	0	1．09\％	0	1	8276	0	0	1	\＄177 727	0	1	0	0
10207	0	0	0	1	0	1．13\％	0	1	8276	0	0	1	\＄200000	0	1	0	0
10208	0	0	0	0	0	1．09\％	0	1	8276	0	1	0	5771603	0	1	0	0
10209 1020 1020	0	－	0	1	\bigcirc	${ }_{1}^{1.09 \%}$	0	1	8276 8276	1	\bigcirc	0	S102638 $\$ 331355$	0	1	0	0
10210 10211	0	1	0	0	0	－	0	1	8276 7650	0	\bigcirc	1	\＄331355 $\$ 319112$	0	1	\bigcirc	${ }_{0}$
10212		0	0	1	0	1．14\％	0	1	9148	0	0	1	\＄240985	0	1	0	0
10213	1	1	0	0	0	1．09\％	0	0	4792	1	0	0	\＄135509	0	1	0	0
10214	O	0	0	1	0	1．12\％	0	1	4792	1	0	0	\＄89806	0	1	0	0
10215 10216	0	0	0	0	0	1．12\％	0	1	3920 4792	0	\bigcirc	1	$\begin{array}{r}5263374 \\ \hline 95950\end{array}$	0	1	\bigcirc	0
10216 10217	0	${ }_{1}$	1	0	0	1.09% 1.08%	\bigcirc	1	4792 4792	1	\bigcirc	\bigcirc	$\$ 95950$ $\$ 9961$	0	1	0	\bigcirc
10218		0	0	0	0	1．12\％	0	1	4792	0	0	1	S221605	0	1	0	0
10219	0	0	0	0	0	1．09\％	0	1	4792	0	1	0	\＄831333	0	1	0	0
10220 10221	\bigcirc	${ }_{0}^{1}$	0	0	\bigcirc	1．08\％	\bigcirc	1	4792 4792	${ }_{0}^{1}$	0	0	S109 913 S17204	0	1	\bigcirc	0
10221 10222	0	0 1	0	0	\bigcirc	1．12\％	\bigcirc	${ }_{0}^{1}$	4792 4792	\bigcirc	\bigcirc	1	S172204 S195 801	0	1	\bigcirc	\bigcirc
${ }^{10223}$	0	0	0	0	0	1．13\％	0	1	4792	0	0	1	\＄147641	0	1	0	0
10224	－	1	0	0	0	1．12\％	0	1	5100	0	1	0	\＄575514	0	1	0	0
10225	0	1	0	0	0	1．12\％	0	1	6534	0	1	0	5788377	0	1	0	0
10226 10227	\bigcirc	1	0	0	\bigcirc	－ 1.09%	0	${ }_{0}^{1}$	6098 6098	0	\bigcirc	\bigcirc	S339674 S12790	\bigcirc	1	\bigcirc	\bigcirc
10228		1	0	0	0	1．09\％	0	0	6970	${ }_{0}$		1	\＄225926	。	1		0
10229		0	0	1	0	1．09\％	0	1	7841	1	0	0	\＄110811	0	1	0	
10230		1	0	0	0	1．10\％	0	1	10890	0	0		5460575	0	1	0	0
10231	0	0	0	0	0	1．09\％	0	1	10019	1	0	0	\＄100426	0	1	0	0
10232 1023	\bigcirc	\bigcirc	1	0	0	1．13\％	\bigcirc	1		1	\bigcirc			\bigcirc	1	\bigcirc	\bigcirc
10233 10234	\bigcirc	0	0	${ }_{0}^{1}$	1	1．1．9\％	\bigcirc	1	9148 5663	${ }_{0}^{1}$	0	\bigcirc	${ }_{\text {S }}^{\text {\＄210 4987 }}$	\bigcirc	1	\bigcirc	\bigcirc
10235		1	0	0	0	1．14\％	0	1	8712	1	0	0	\＄59047	0	1		
10236	0	1	0	0	0	1．08\％	0	0	5663 5663	0	0	1	$\$ 193275$ $\$ 999363$	0	1	0	0
10237 10238	\bigcirc	1	0	0	0	1．09\％	\bigcirc	1	5663 5663	\bigcirc	1	\bigcirc	$\$ 909363$ $\$ 729668$	\bigcirc	${ }_{1}^{1}$	\bigcirc	\bigcirc
10239	0	1	0	0	0	1．14\％	0	1	6098	1	0	0	\＄27279	0	1		0
10240	0	0	0	1	0	1．12\％	0	1	3485	0	0	1	\＄177169	0	1		
10241	0	1	0	0	0	1．09\％	0	1	6098	0	0	0	\＄190693	0	1	0	0
10242	0	0	0	0	0	1．08\％	0	1	6098	0	0	0	$\$_{\text {S264 } 831}$	0	1	0	0
10223 1024	0	1	0	0	${ }_{0}$	1．13\％	${ }_{0}$	${ }_{1}$	6098 6098	${ }_{1}$	0	${ }_{0}^{1}$	S198813 $\$ 84464$	\bigcirc	${ }_{1}^{1}$	\bigcirc	\bigcirc
10245	0	1	0	0	0	1．06\％	0	${ }_{0}$	6098 3920	${ }_{0}$	0	1	${ }_{\text {S }}$	0	1	0	0
10246	0	1	0	0	0	1．13\％	0	0	4000	0	0	1	\＄175 583	0	1	0	0
10247	0	0	1	0	0	${ }^{1.14 \%}$	0	1	12197	1	0	0	\＄53081	0	1	0	0
10248 10249	0	0	0	1	${ }_{0}^{1}$	（1．13\％	0	1	$\begin{array}{r}6098 \\ \hline 2178 \\ \hline\end{array}$	1	0	0	S62021 $\$ 64179$	0	1	0	\bigcirc
10249 10250	\bigcirc	1	0	0	${ }_{1}^{0}$	1．1．3\％	\bigcirc	${ }_{1}$	2178 4792	1	\bigcirc	${ }_{0}$	\＄64 179 $\$ 120076$	${ }_{0}$	${ }_{1}^{1}$	0	${ }_{0}$
10251	0	0	0	0	0	1．09\％	0	1	4792	0	0	0	\＄172908	0	1		0
10252	0	0	0	0	0	1．12\％	0	1	3485	0	0	1	\＄190 780	0	1	0	0
10253	－	1	0	0	0	1．09\％	0	1	6098	0	1	0	\＄824989	0	1	0	0
10254	0	0	0	0	0	${ }^{1.14 \%}$	0	1	7841	1	0	1	\＄62712	0	1		－
10255 10256	\bigcirc	${ }_{1}$	0	0	${ }_{0}^{1}$	${ }_{\text {l }}^{1.1 .13 \%}$	0	1	7841 5227	\bigcirc	\bigcirc	1	S221819 S187907	\bigcirc	1	\bigcirc	\bigcirc
10257	0	0	0	0	0	1．09\％	0	1	5227 653	1	－	${ }_{0}^{1}$	\＄80916	${ }_{0}$	1	0	0
10258	0	0	0	0	0	1．61\％	1	1	4792	0	－	1	\＄217722	0	1	0	0
10259 10260	0	${ }_{0}^{1}$	\bigcirc	0	\bigcirc	－1．12\％	0	1	4800 4802	\bigcirc	0	0	S348841 S170000	0	1	0	\bigcirc
10261	0	1	0	${ }_{0}$	1	${ }^{1.12 \%}$	${ }_{0}$	1	4792	${ }_{0}$	1	${ }_{0}$	\＄734701	0	1	\bigcirc	$\stackrel{0}{0}$
10262	0	${ }_{0}$	0	0	1	1．07\％	0	1	4792	0	1	0	5704507	0	1	。	。
10263 10264	0	0	0	0	0	1．10\％	\bigcirc	1	7405 3020	0	0	1	S250 $\$ 2130$ 2000	－	1	0	
10264 10265	0	0	0	${ }_{0}^{1}$	\bigcirc	${ }_{\text {l }}^{1.1 .12 \%}$	0	1	3920 6098	\bigcirc	0	${ }_{0}^{1}$	\＄213040 $\$ 266970$	0	1	0	0
10266 1026	0	1	0			（1．13\％	0	1	${ }_{5663}^{6098}$	1		0	\＄49231	0	1	0	0
10267	0	1	0	0	0	1．09\％	0	1	${ }_{6}^{6000}$	${ }^{1}$	0	0	\＄402065	0	1	0	0
10268	0	0	0	0	0	1．08\％	0	1	5663	1	0	0	\＄55675	0	1	0	0

osservation	PROPERTY DURESS $=1$	LT＿${ }^{\text {a }}$ \％	LTV 81\％－99\％	LTV 70\％－78\％	Ltv below	total tax BURDEN	parcelin SCEIP $=1$	CONVENTIONAL	Lot size	sold	sold during	SoLD 2008－2012	Price adust．to	Z1P CODE	2 PP CODE	2 IP CODE	ZIP CODE 94928
10271	S	0	0	0	50\％	1．13\％	Scepr 1	LOAN＝1	5663	1	2004－207	0	${ }_{546955}^{2012}$	${ }_{0}^{29543}$	1	95472	99928
10272	0	0	0	0	0	1．09\％	。	1	5663	0	0	1	\＄290500	0	1	0	0
10273	。	0	－	0	1	1．09\％	0	1	5663	0	。	\bigcirc	\＄351 188	0	1	。	0
10274	0	1	0	0	0	1．09\％	0	1	5663	0	1	0	\＄875 614	0	1	0	0
10275	0	1	0	0	0	1．09\％	0	1	5663	0	0	1	5371767	0	1	0	0
10276	0	1	0	0	0	1．09\％	0	1	6000	0	1	0	\＄914988	0	1	0	0
10277	0	1	0	0	0	1．09\％	0	0	5663	0	0	1	S225 488	0	1	0	0
10278	0	1	0	0	0	1．09\％			6970		0	0	S108074		1	0	0
10279	0	1	0	，	0	1．03\％	0	0	5663	0	0	1	\＄246006	0	1	0	0
10280	1	1	0			1．09\％	0	0	5665	0	0	1	\＄364002	0	1	0	0
10281	0	0	0	1	0	1．09\％	0	1	5663	0	0	1	533607	0	1	0	\bigcirc
10282	0	1	0		0	1．12\％	0	0	5663	0	0	1	5365076	0	1	0	0
10283	0	0	1	0	0	1．09\％	0	1	5663	0	1	0	5669282	0	1	0	0
10284 10285	\bigcirc	${ }_{0}$	${ }_{0}$	${ }_{0}^{1}$	\bigcirc	－ $1.1 .12 \%$	0	1	5663 5663	1	0	0	5269436 $\$ 96710$	\bigcirc	1	0	\bigcirc
10285 10286	0	\bigcirc	${ }_{1}^{0}$	0	0	${ }_{\text {c }}^{\text {0．38\％}}$	0	1	5663 6970	1	0	\bigcirc		0	1	0	\bigcirc
10287			${ }_{0}$	0	0	1．12\％		${ }_{0}$	5663	0	。	1	\＄266291	0	1	。	0
10288	0	0	0	0	0	1．09\％	0	1	5663	1	0	0	\＄111725	0	1	0	0
10289	0	0	1	0	0	1．09\％	0	1	6000	0	1	0	5885831	0	1	0	0
10290	0	0	0	0	0	1．09\％		1	5663	1	0	0	\＄101070	0	1	0	0
10291	0	1	0	0	0	1．12\％	0	1	5663	0	1	0	\＄956033	0	1	0	0
10292	0	1	0	0	0	1．09\％	－	1	5663 5633	0	0	0	$\begin{array}{r}5371926 \\ \$ 23094 \\ \hline\end{array}$	－	1	0	\bigcirc
10293 10294	${ }_{0}$	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	\bigcirc	－	0	1	5663 5663	${ }_{1}^{0}$	\bigcirc	${ }_{0}^{1}$	$\$ 230944$ $\$ 75990$	\bigcirc	${ }_{1}^{1}$	\bigcirc	\bigcirc
10295	0	0	0	0	1	1．03\％	0	1	5663	0	0	1	\＄203000	0	1	0	0
10296	0	1	0	0	0	1．13\％	0	0	6970	0	0	1	S248014	0	1	0	0
10297	0	1	0	0	0	${ }^{1.12 \%}$	0	1	5663 563	0	0	1	$\begin{array}{r}\text { S255 553 } \\ \$ 33974 \\ \hline\end{array}$	0	1	0	0
10298 10299	${ }_{0}$	0	\bigcirc	0	\bigcirc	${ }_{\text {1．12\％}}^{1.12 \%}$	0	1	5663 6970	0	${ }_{1}^{0}$	0	5339674 $\$ 7855148$	0	1	\bigcirc	\bigcirc
10300	0	0	0	0	0	1．09\％	0	1	5663	0		0	\＄184497	0	1	。	－
10301		0	1	0	0	1．09\％	0	1	5663	1	0	0	S103042	0	1	0	0
10302	0	1	0	0	0	1．09\％	0	1	5663	0	1	0	5595790	0	1	0	0
${ }^{10303}$	0	1	0	0	0	${ }^{1.09 \%}$	0	1	5663	0	0	0	\＄298222	0	1	0	0
10304 10305	0	0	0	0	0	－	0	1	6970 5663	1	0	0	\＄129486	0	1	0	0
10305 10306	0	${ }_{1}^{0}$	\bigcirc	\bigcirc	\bigcirc	1．1．2\％	0	${ }_{0}^{1}$	5663 5663	\bigcirc	${ }_{0}^{1}$	${ }_{1}^{0}$		0	1	\bigcirc	0
10307	0	1	0	0	0	1．09\％	0	1	6098	1		0	\＄106411	0	1	0	0
10308	0	1	0	0	0	1．12\％	0	0	6098	0	0	1	\＄198000	0	1	0	0
10309	0	0	0	0	0	${ }^{1.09 \%}$	0	1	${ }^{6} 098$	0	0	0	\＄338523	0	1	0	－
10330 10311	0	${ }_{0}^{1}$	0	0	${ }_{1}^{0}$	${ }^{1.12 \%}$	0	1	6098 9148	0	${ }_{1}^{0}$	\bigcirc	$\$ 416813$ $\$ 923$	0	1	\bigcirc	\bigcirc
10312	0	0	0	1	0	1．09\％		1	9148	1		0	\＄88915	0			0
10313	0	1	0	0	0	1．09\％	0	1	7841	1	0	0	\＄112924	0	1	0	0
10314	0	1	0	0	0	1．13\％		1	9240	0	0	0	\＄401423	0	1	0	0
10315	0	0	0	0	0	${ }^{1.14 \%}$	0	1	9148	1	0	0	547402 $\$ 5563$	0	1	0	0
10316 10317	\bigcirc	\bigcirc	\bigcirc	${ }_{1}$	0	${ }^{1.109 \%}$	0	1	9148 9583	0	\bigcirc	\bigcirc	\＄53 663 $\$ 203967$	0	1	0	\bigcirc
10318	1	0	0	${ }_{0}$	1	1．13\％	0	1	9150			0	\＄600407	0	1	。	
10319	0	0	0	0	0	1．08\％	0	1	9148	1	0	0	546795	0	1	0	0
10320	0	0	0	0	0	1．09\％	0	1	9148	0	0	0	\＄176153	0	1	0	0
10321	0	0	0	0	0	${ }^{1.10 \%}$	0	1	10454	1	0	0	\＄105254	0	1	0	\bigcirc
10322 10323	0	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	0	${ }_{\text {l }}^{\text {1．13\％}}$	\bigcirc	1	6970 6098	1	0	0	\＄124368 $\$ 82695$	0	1	\bigcirc	\bigcirc
10324	0	1	0	0	0	1．09\％	0	0	6098	0		1	\＄328568	0	1	0	0
10325	0	0	1	0	0	1．09\％	0	0	6098	1	0	0	\＄92295	0	1	0	0
10326	0	1	0	0	0	1．13\％	0	1	8930	0	0	1	\＄280932	0	1	0	0
10327	0	0	0	0	0	1．09\％	0	1	7841 7405	0	0	1	\＄240 080 $\$ 223665$	0	1	0	0
10328 10329	0	1	\bigcirc	0	0	${ }_{\text {l }}^{1.109 \%}$	\bigcirc	\bigcirc	7405 9583	0	\bigcirc	1	\＄243766 $\$ 253035$	0	1	\bigcirc	0
10330	0	1	0	0	0	1．12\％	－	1	${ }_{5663}$	0	0	${ }_{0}$	\＄378338	0	1	0	0
10331	0	1	0	0	0	1．13\％	0	1	6970	－	0	1	\＄170698	0	1	0	0
10332	0	1	0	0	0	1．12\％		0	7405	0	0	1	\＄199445	0	1	0	0
10333	0	1	0	0	0	1．20\％	0	0	6534	0	0	1	\＄170698	0	1	0	0
10334 10335	0	1	\bigcirc	\bigcirc	\bigcirc	1．07\％ 1.13%	0	1	6534 6534	${ }_{0}^{1}$	${ }_{1}$	\bigcirc		\bigcirc	1	0	\bigcirc
10336	0	，	0	0	0	1．08\％	0	1	3049	1	0	0	\＄124 593	0	1	0	0
10337	0	1	0	0	0	1．12\％	0	1	2178	0	0	0	\＄349001	0	1	0	0
10338 1039	\bigcirc	1	0	0	0	${ }^{1.09 \%}$	0	，	2178 2178 188	0	0	0	S233635 $\$ 251026$	0	1	0	\bigcirc
10339 10340	0	1	${ }_{0}$	0	0	1．09\％	0	1	2178 2178	0	\bigcirc	1	\＄251026 $\$ 263069$	${ }_{0}$	1	\bigcirc	0
10341	0	0	0	0	1	1．12\％	0	1	2178	0	0	0	\＄321454	0	1	0	0
10342	0		0	0	0	1．09\％	0	1	2544	0	0	0	5415531	0	1	0	0
10343	0	1	0	0	0	1．09\％	0	1	2178	0	0	1	S260 386	0	1	0	0
10344 10345	\bigcirc	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	\bigcirc	1.12% 1.09%	\bigcirc	${ }_{1}^{1}$	2544 2178	\bigcirc	\bigcirc	1	S260 386 S248 005	\bigcirc	1	0	\bigcirc
10346	0		1	0	0	1．09\％	0	1	2534	0	1	0	\＄823114	0	1	0	
10347	0	1	0	0	0	1．12\％	0	1	2614	0	0	0	\＄316645	0	1	－	0
10348	0	1	0	0	0	1．12\％	0	0	2614	1	0	0	\＄131368	0	1	0	0
10349	0	0	1	0	0	1．12\％	0	1	4041	0	0	1	\＄206160	0	1	0	0
10350	－	1	0	0	0	1．09\％	0	1	2614	0	1	0	5868281	0	1	0	0
10351 10352	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	－ 1.09%	0	1	3485	\bigcirc	\bigcirc	1	5339674 $\$ 257521$	\bigcirc	1	\bigcirc	
10352 10353	0	1	0	0	0	1.12% 1.08%	0	0 1	3019 3049	${ }_{1}$	\bigcirc	1	S257521 $\$ 112397$	0	1	0	\bigcirc
10354	0	0	0	0	0	1．12\％	0	1	3049	1	0	0	\＄130 239	0	1	0	0
10355	0	1	0	0	0	1．09\％	0	0	3049	0	0	1	5260386	0	1	0	0
10356 10357	${ }_{1}^{0}$	${ }_{1}$	${ }_{0}^{1}$	\bigcirc	\bigcirc	1.12% 1.09%	0	${ }_{0}^{1}$	3049 3049	${ }_{0}^{1}$	\bigcirc	${ }_{1}^{1}$	S130615 $\$ 246963$	\bigcirc	1	\bigcirc	\bigcirc
10358	0	1	0	0	0	1．12\％	0	1	3049	0	1	0	\＄786700	0	1	0	
10359	0	1	0	0	0	1．08\％	0	0	4356	0	0	1	\＄254846	0	1	0	0
10360	\bigcirc	0	0	0	0	${ }^{1.12 \%}$	0	1	4792	0	1	0	\＄570315	0	1	0	0
10361 10362	0	1	0	0 1	${ }_{0}$	1.12% 1.08%	0	1	4356 4356	0 1	${ }_{0}^{1}$	0	\＄${ }_{\text {S712 } 894}$	0	1	0	\bigcirc
10363		0	0	1	0	1．07\％	0	1	4356	1	0	0	\＄53361	0	1	0	0
10364	0	0	0	0	0	${ }^{1.12 \%}$	0	1	4410	0	0		\＄225924	0	1	0	－
10365 10366	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	\bigcirc	0	－${ }_{\text {1．0．0\％}}^{102 \%}$	0	1	4356 6534	${ }_{1}$	${ }_{0}^{1}$	0	\＄691866 $\$ 35328$	0	1	\bigcirc	${ }_{0}$
10367	0	1	0	0	0	1．13\％	0	0	4356	0	。		\＄161063	0	1	0	0
10368	0	1	0	0	0	1．13\％	0	0	3920	1	0		585167	0	1	0	0
10369 10370	0	1	0	0	0	1．08\％	0	1	6098 5663	1	0	0	\＄97765	0	1	\bigcirc	
10370 10371	0	1	0	0	0	${ }^{1.13 \%}$ 1．13\％	0	${ }_{0}^{1}$	5663 5663	\bigcirc	\bigcirc	${ }_{1}$	\＄191914 $\$ 29327$	0	${ }_{1}^{1}$	0	\bigcirc
10372	0	1	0	0	0	1．08\％	0	1	3485	－	1	0	5757437	0	1	0	0
10373	0	1	0	0	0	1．13\％	0	1	5663	0	1		\＄646592	0	1	0	
10374 10375	\bigcirc	0	\bigcirc	0	0	－ 1.07%	\bigcirc	1	5200 9148 9	\bigcirc	\bigcirc	1	\＄134219 $\$ 428242$	0	1	\bigcirc	0
10375 10376	${ }_{0}$	${ }_{0}$	\bigcirc	${ }^{\circ}$	0	${ }^{1.11 \%}$	0	1	17888 1780	${ }_{0}$	1	0	S428242 $\$ 883800$	0	1	$\stackrel{0}{0}$	0
10377	－	0	0	0	0	1．09\％	\bigcirc	1	7841	1	0	0	\＄140999	0	1	0	
10378 10379	0	1	0	0	0	${ }^{1.111 \%}$	0	1	18731 13068	0 1	0	${ }_{0}^{1}$	$\$ 345000$ $\$ 132565$	0	1	\bigcirc	0
10379 10380	0	1	\bigcirc	${ }_{0}$	${ }_{0}$	1．1．8\％	\bigcirc	${ }_{0}^{1}$	13068 15682	1	${ }_{0}$	0	\＄132565	${ }_{0}$	1	${ }_{0}$	${ }_{0}$
10381	0	0	0	0	0	1．12\％	0	1	6098	0	0	1	549784	0	1	0	0
10382	0	1	0	0	0	1．10\％	－	1	${ }_{6}^{6098}$	0	0	1	${ }_{\$ 571189}$	0	1	0	0
10383 10384	0	${ }_{0}^{1}$	\bigcirc	${ }_{0}$	0	1.10% 1.09%	0	1	6098 6970	0 1	0	0	$\$ 532239$ $\$ 121356$	\bigcirc	1	0	\bigcirc
10385		1	－	0	0	1．09\％		1	5663	1	0	－	\＄120 45	0	1	。	－
10386	0	1	0	0	0	1．09\％	0	1	6098	0	0	1	5368723	0	1	0	
10387 10388	0	0	\bigcirc	0	0	1．12\％		1	6098 5663 5	1	0		$\$ 113062$ $\$ 1188734$	\bigcirc	1	\bigcirc	
10388 10389	0	${ }_{1}$	0	0	1	1．1．10\％	0	1	5663 5663	0	1	0	$\$ 1188734$ $\$ 84789$	0	1	0	\bigcirc
${ }_{10390}^{1039}$	0	1	0	0	${ }_{0}$	${ }_{1}^{1.09 \%}$		1	${ }_{5663}$	0	1	1	¢ 58444002	0	1	0	\bigcirc
10391	0	1	0	0	0	1．12\％	0	0	5663	0	0	1	5366203	0	1	0	0
10392 10393	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1.10% 1.10% 10	\bigcirc	1	5663 5663	\bigcirc	${ }_{1}$	\bigcirc	5339674 5764233	\bigcirc	1	\bigcirc	\bigcirc
10393 10394	${ }_{0}$	${ }_{0}$	\bigcirc	1	${ }_{0}$	${ }_{1}^{1.12 \%}$	0	1	5663 5633	0	1	\bigcirc	564233 562463	${ }_{0}$	1	${ }_{0}$	0
10395	0	0	0	0	1	${ }^{1.12 \%}$	0	1	${ }_{6} 653$	1	\bigcirc	0	\＄136340	0	1	\bigcirc	0
10396 10397	0	0	0	0	1	1．09\％		1	${ }_{6}^{6290}$	1	0	0	5469396	0	1	0	0
10397 10398	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }^{1.09 \%}$	0	1	6098 6098	1	0	\bigcirc	S147554 S106 549	0	1	0	\bigcirc
10399 10400	0	1		0	0	1．1．12\％		1	6970 6970	1	0	\bigcirc	S144985 5970812	0	1		\bigcirc

osservation	PROPERTY DURESS $=1$	LTV＿90\％	LTV 81\％－90\％	LTV 70\％．78\％	Ltv below 70\％	totaltax burden	parcelin SCEIP $=1$	CONVENTIONAL LOAN＝ 1	Lot SILE	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	SOLD DURING 20042007	Sold 2008－2012	PRICE ADJUST．TO 2012	ZIP CODE 295403	$\begin{gathered} \text { ZIP CODE } \\ 95404 \end{gathered}$	ZIP CODE 95472	ZIP CODE
10531	S	0	0	1	0	1．12\％	Scap－1	${ }_{1}$	21780	Phor－200	${ }^{2009}$	1	\＄1357839	295003	${ }^{1} 4$	954	94928
10532	0	0	－		0	1．12\％	0	1	20338	0	0	1	5848469	0	1	0	0
10533	0			0	1	${ }^{1.12 \%}$	0	1	20473		0	0	\＄932664	0	1	0	0
10534	0				1	1．12\％	0	1	22651	0	1	0	\＄228770	0	1	0	0
10535	0		0		1	1．12\％	0	1	21780	0	0	0	\＄949936	0	1	0	0
10536	0	0	0	0	1	1．12\％	0	1	2099	0	0	1	\＄805314	0	1	0	0
10537	0	0	0	0	1	1．12\％	0	1	20338	0	0	1	\＄1375397	0	1	0	0
10538	0			0	1	1．12\％	0	1	22216	0	1	0	\＄2623091	0	1	0	0
10539	0				1	1．10\％	0	1	${ }^{33541}$		1	0	\＄1687788	0	1	0	0
10540	0	1	0	0	0	1．10\％	0	1	40075	0	0	1	544627	0	1	0	0
10541	0	0	0	1	0	1．13\％	0	1	48352		0	0	5794992	0	1	0	
10542	0	0	0	0	0	1．12\％	0	1	43560	0	0	0	\＄765706	0	1	0	0
10543	0	－	－	0	1	${ }^{1.12 \%}$	0	1	${ }^{43996}$	1	0	0	\＄187 182	0	${ }^{1}$	\bigcirc	0
10544	1		0	0	0	${ }^{1.111 \%}$	0	1	15246	0	0	0	\＄139068	0	0	0	0
10545	0	0	0	0	0	${ }^{1.13 \%}$	0	1	6970	0	0	1	\＄201335	\bigcirc	1	0	0
10546	0	0	0	0	0	1．09\％	0	1	6970	0	0	1	\＄225924	0	1	0	0
10547	0	1	0	－	0	1．14\％	0	0	6970	0	1	1	\＄136367	0	1	0	0
10548	1	1	0	0	0	1．09\％	0	1	6970	0	1	${ }_{0}$	\＄557074	0	1	－	0
10549	0	0		0	1	1．09\％	0	1	6970	0	1	－	\＄180920	0	1	0	0
10550	0	1	0	0	0	1．13\％	0	1	6970	0	1	0	5834364 $\$ 55341$	\bigcirc	1	\bigcirc	\bigcirc
10551	0	0	0	0	1	1．13\％	0	1	7841	0	1	0	${ }_{\$ 553541}$	0	1	0	－
10552	0	，	0	0	0	1．12\％	0	1	7841	0	1	0	5561477	0	1	0	0
10553 10554	\bigcirc	1	\bigcirc	0	\bigcirc	－${ }_{\text {1．1．13\％}}$	\bigcirc	${ }_{0}^{1}$	8276 8276	1	\bigcirc	\bigcirc	S 582321 $\$ 8464$	\bigcirc	1	0	\bigcirc
10555	0	0	1		0	1．08\％	0	1	8276	1	0	0	\＄35775	0	1	0	0
10556	0	0	0		0	1．13\％	0	1	8276	1	0	0	\＄74727	0	1	0	0
10557	1	1	0	0	0	1．13\％	0	1	${ }^{6} 996$	0	1	0	5703862	0	1	0	0
10558	0	0	0	0	0	1．13\％	0	1	${ }_{6}^{6050}$	0	0	1	\＄157645	0	1	0	0
10559	0	1	0	0	0	1．13\％	0	0	8276	0	0	1	\＄171800	0	1	0	0
10560	1	1	0	0	0	1．13\％	0	1	8276	0	1	0	\＄811012	0	1	0	0
10561	0	0		0	1	1．13\％	0	1	6970	0	1	0	\＄561928	0	1	0	0
10562 10563	0	${ }_{0}$	1	0	\bigcirc	${ }_{\text {1．1．14\％}}^{1.14}$	${ }_{0}$	1	7405 9583	1	0	\bigcirc	578704 554199	\bigcirc	1	\bigcirc	0
10564	0	1	0	0		1．12\％	0	0	6970	0	0	1	\＄282 103	。	1	。	0
10565	0	0	0	0	0	1．13\％	0	1	5663	0	0	1	\＄239963	0	1	0	－
10566	0	1	0	0	0	1．09\％	0	1	6534	0	0	0	\＄165 491	0	1	0	0
10567	0	1	0	0	0	1．09\％	0	1	${ }^{3485}$	0	1	0	\＄785 148	\bigcirc	1	0	0
10568 10569	\bigcirc	1	${ }_{0}$	0	\bigcirc	${ }_{\text {1．12\％}}^{1.13 \%}$	${ }_{0}$	1	6098 6098	\bigcirc	0	${ }_{0}^{1}$	\＄204013 $\$ 293122$	\bigcirc	1	\bigcirc	0
10570	－	0	1	0		1．09\％	。	1	4792	－	1	0	\＄514687	。	1	。	0
10571	0	1	0	0	0	1．13\％	0	0	6534	0	0	1	\＄219899	0	1	0	0
10572	0	0	0	0	1	1．07\％	0	1	6534	1	0	0	\＄64512	0	1	0	0
10573	0	1	0	0	0	1．08\％	0	1	4356 4356	0	1	0	$\begin{array}{r}\text { \＄584872 } \\ \$ 127980 \\ \hline\end{array}$	\bigcirc	1	\bigcirc	0
10574 10575	\bigcirc	${ }_{0}^{1}$	\bigcirc	0	${ }_{1}$	－${ }_{\text {1．1．09\％}}$	\bigcirc	1	4356 4356	${ }_{0}^{1}$	${ }_{0}$	${ }_{1}^{0}$	\＄127980 $\$ 152908$	\bigcirc	1	\bigcirc	0
10576		1	0	0		1．07\％	0	0	4356	0	0	1	\＄155694	。	1	。	0
10577	0	1	0	0	0	1．07\％	0	1	${ }_{4}^{4366}$	0	1	0	\＄369028	0	1	0	0
10578	0	0	0	0	1	1．09\％	0	1	4792	0	0	1	\＄238226	0	1	0	0
10579 10580	0	1	\bigcirc	${ }_{1}$	0	－ 1.08%	\bigcirc	${ }_{1}$	6534 6534	\bigcirc	\bigcirc	1	S166432 S139888	\bigcirc	1	\bigcirc	0
10580 10581	\bigcirc	1 1	0	${ }_{0}^{1}$	\bigcirc	－${ }_{\text {li．13\％}}^{1.13 \%}$	\bigcirc	1	6534 6534	${ }_{1}^{0}$	\bigcirc	${ }_{0}^{1}$	\＄1395888	\bigcirc	1	0	0
10582		1	0		0	1．12\％	0	0	4792	0	0	1	\＄278591	0	1	0	0
10583	0	1	0	0		1．09\％	0	1	6098	0	1	0	\＄569275	0	1	0	0
10584	0	0	0	1	0	1．12\％	0	1	6098	0	1	0	5444503	0	1	0	0
10585	0	0	0	0	0	1．09\％	0	1	${ }_{6} 698$	0	0	1	\＄213677	0	1	0	0
10586 10587	\bigcirc	1	0	\bigcirc	0	${ }^{1.08 \%}$	${ }_{1}$	${ }_{0}^{1}$	5663 5663	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	\＄431244 $\$ 156768$	\bigcirc	1	\bigcirc	0
10588	0	1	0	0	0	1．08\％	0	0	5663	1	0	${ }_{0}$	\＄51753	。	1	。	0
10589	0	0	0	0	0	1．12\％	0	1	3049	1	0	0	\＄106901	0	1	0	0
10590	0	0	0	1	0	1．12\％	0	1	2614	1	0	0	\＄106901	\bigcirc	1	0	0
10591	\bigcirc	1	${ }^{1}$	0	\bigcirc	${ }^{1.09 \%}$	\bigcirc	1	3049 5227	${ }_{1}$	\bigcirc	\bigcirc	${ }_{\substack{\text { S301677 } \\ \$ 30719}}$	\bigcirc	1	0	0
10592 10593	\bigcirc	0	${ }_{0}^{1}$	0	\bigcirc		0	1	5227 6098	1	${ }_{1}$	0	S30719 $\$ 713999$	0	1	0	\bigcirc
10594	0	1	0	0	0	1．12\％	0	0	6098	1	0	0	\＄124969	0	1	0	0
10595	0	1	0	0	0	1．13\％	0	0	6098	0	0	1	\＄203676	0	1	0	0
10596 10597	0	1	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	1	4792 6000	\bigcirc	\bigcirc	${ }_{1}$	S316 645 $\$ 238226$	\bigcirc	1	\bigcirc	\bigcirc
10597 10598	\bigcirc	1	0	0	0	1．09\％	0	\bigcirc	6000 8276	${ }_{1}^{0}$	0	${ }_{0}^{1}$	\＄238226 $\$ 100758$	\bigcirc	1	0	\bigcirc
10599	0	0	0	0	1	1．09\％	0	0	7841	0	0	0	5517099	0	1	0	0
10600	0	1	0	0	0	1．13\％	0	1	10019	－	0	0	5391163	0	1	0	0
10.601	\bigcirc	1	0	0	0	1．13\％		0	6098 9983	1	0	1	\＄47412	\bigcirc	1	0	0
10602 10603	\bigcirc	\bigcirc	\bigcirc	1	${ }_{1}^{0}$	${ }^{1.1 .14 \%}$	\bigcirc	1	9583 3920	\bigcirc	\bigcirc	1	\＄155 124	0	1	\bigcirc	\bigcirc
10604	0	1	0	0	0	1．09\％	0	0	11761	1	0	0	\＄114053	0	1	0	0
10605	0	1	0	0	0	1．09\％	0	0	6000	0	0	1		0	1	\bigcirc	0
10606 10607	0	0	0	0	0	${ }^{1.12 \%}$	0	1	${ }_{6}^{4356}$	0	0	1	\＄216552	0	1	0	0
10607 10608	\bigcirc	${ }_{1}$	\bigcirc	\bigcirc	\bigcirc	1．09\％	${ }_{0}$	${ }_{0}^{1}$	6534 6534	\bigcirc	${ }_{0}^{1}$	\bigcirc	S549000 $\$ 137299$	\bigcirc	1	${ }_{0}$	\bigcirc
10699	0	0	0	0	0	1．08\％	0	1	2614	1	0	0	\＄87675	0	1	0	0
10610	0	1	0	0	－	1．08\％	0	1	5663	0	0	1	S188930 $\$ 827219$	0	1	0	
10611 10612	0	0	1	0	0	1．12\％	0	1	5663 11326	\bigcirc	0	0	\＄272419	\bigcirc	1	0	\bigcirc
10612	\bigcirc	1	${ }_{0}$	0	${ }_{0}$	${ }_{1.09 \%}^{1.14 \%}$	0	1	${ }_{8}^{11326}$	0	1	\bigcirc		\bigcirc	1	0	${ }_{0}$
10614	0	0	0	－	1	1．06\％	0	1	5227	0	1	0	\＄510931	0	1	0	0
10615	\bigcirc	1	\bigcirc	0	\bigcirc	1．08\％	0	0	8276 6534 182	0	0	1	\＄212870 $\$ 193905$	0	1	\bigcirc	
10616 10617	0	${ }_{0}^{1}$	\bigcirc	0	\bigcirc		0	${ }_{1}$	6534 1742	0	\bigcirc	${ }_{0}^{1}$	${ }_{\substack{\text { S193 } \\ \$ 62395}}^{\text {S }}$	\bigcirc	1	\bigcirc	0
10618	0	0	0	0	0	1．13\％	0	1	6098	1	0	0	\＄62 394	0	1	0	0
10619	0	1	0	0	0	1．08\％	0	0	4792	1	0	0	\＄85974	0	1	0	0
10620 10621	\bigcirc	0	\bigcirc	\bigcirc	${ }_{0}^{1}$	1．13\％	\bigcirc	1	4792 4356	1	0	\bigcirc	S41365 $\$ 600468$	\bigcirc	1	\bigcirc	\bigcirc
10622		0	0	1	0	${ }_{\text {1．15\％}}^{1.13 \%}$	0	1	4098 6098	${ }_{0}^{\circ}$	${ }_{0}$	${ }_{1}$	（	${ }_{0}$	1	0	0
10623	0	0	0	1	0	1．08\％	－	1	${ }^{6098}$	0	0	0	\＄199331	0	1	0	0
10624	0	1	0	－	0	1．07\％	0	0	${ }_{6}^{6098}$	\bigcirc	0	1	$\$ 144043$ $\$ 50284$	0	1	－	0
10625 10626	\bigcirc	1	0	0	0	${ }^{1.1 .13 \%}$	0	${ }^{1}$	${ }_{3}^{6970}$	\bigcirc	${ }_{0}^{1}$	0	\＄530 284 $\$ 24042$	0	1	0	0
10627	0	0	0	1	0	1．13\％	0	1	2300	0	0	1	\＄119667	0	1	－	0
10628	0	1	0	－	0	1．06\％	0	1	${ }^{2614}$	0	0	1	\＄138503	\bigcirc	1	0	
10629 10630	\bigcirc	${ }_{1}^{1}$	${ }_{0}$	\bigcirc	0	${ }_{\text {l }}^{1.1 .13 \%}$	0	1	5227 5227	1	0	\bigcirc	574530 $\$ 30185$	\bigcirc	1	\bigcirc	0
10631	0	1	0		0	${ }_{1.12 \%}$		1	${ }_{5663}^{527}$	${ }_{0}$	1	0	${ }_{\text {S608267 }}$	0	1	0	0
10632	0	1	0	0		1．09\％	0	0	5663	0	0	1	\＄221605	0	1		0
10633 10634	0	1	0	0	1	${ }^{1.149 \%}$	0	1	8712 7841	0	1	\bigcirc	5467898 $\$ 11588$	0	1		
10634 10635	\bigcirc	1 1	0	\bigcirc	${ }_{0}^{1}$	${ }_{\text {1．13\％}}^{1.13 \%}$	0	1	7841 4356	${ }_{0}^{1}$	0 1	\bigcirc	S11582 $\$ 88989$	0	1	0	0
10636	0	0	0	0	0	1．13\％	0	1	5663	0	0	1	\＄170727	0	1		0
10637 10638	0	0 1	\bigcirc	1	1	－${ }_{\text {1．1．13\％}}^{1.09 \%}$	0	1	6000 5663	\bigcirc	\bigcirc	1	\＄150616 $\$ 254846$	\bigcirc	1	0	0
10639	0	${ }_{0}$	1	0	0	1．08\％		1	${ }_{5663}$	0	0	${ }_{0}$	\＄227197	0	1	0	0
10.640	0	1	0	－	0	${ }^{1.12 \%}$	0	1	6534 6500	0	1	0	\＄570407	0	1	0	0
10641 10642	0	1	0	0	\bigcirc	${ }_{\text {l }}^{1.08 \%}$	0	\bigcirc	6600 6098	\bigcirc	0	1	S155 994 $\$ 198994$	\bigcirc	1	${ }_{0}$	0
10643	1	1	。		0	1．13\％		1	6970	0	1	${ }_{0}$	\＄252448	。	1	0	0
10644	0	0	0	0	0	1．08\％	0	1	9148	1	0	0	\＄55037	0	1	0	
10645 10646	0	\bigcirc	0	0	0	1．13\％	0	1	7405 7405	\bigcirc	0	\bigcirc	S125 162 $\$ 106619$	\bigcirc	1	0	
10646 10647	0	0	0	0	\bigcirc	${ }^{1.1 .14 \%}$	0	1	7405 7405	0	0	0	\＄106 619 $\$ 125162$	0	1	0	0
10648	0		0	0		1．14\％	0	1	36155	0		0	\＄213238	0	1	0	
10649 10650	0	0	0	O	－	1．23\％	0	1	${ }^{6970}$	0	0	1	S184500 $\$ 72018$	－	1	0	0
10650 10651	0	${ }_{1}^{0}$	${ }_{0}^{1}$	\bigcirc	\bigcirc	1．67\％	\bigcirc	1	3049 38768	1	0	0	S70018 S446758	0	1	0	0
10652	0					1．34\％		1	39204	0		1	\＄392993	。	1	0	0
10653	0	－	0	0	0	1．13\％	\bigcirc	1	${ }^{11117}$		1	\bigcirc	\＄686250	－	1	0	0
10654 10655	0	0	${ }_{1}^{0}$	${ }_{0}$	${ }_{0}^{1}$	－ $1.4 .45 \%$	${ }_{0}^{0}$	1 1	11326 12197	${ }_{1}$	1	0	5611386 $\$ 80181$	\bigcirc	1	${ }_{0}$	\bigcirc
10656	0	0	0	0	0	1．54\％	0	1	16553	1	0	0	\＄91825	。	1	。	－
10657	－	1	－	0	－	1．08\％	0	1	2599	0	0	0	537532	0	1	0	0
10658	0	1			0	1．12\％		1	2178	0	1	0	5843739	0	1		
									2178 2178								

	だ
	年○○○
	$\text { 遌 }-\rightarrow+\cdots$
－	
器	

observation	PROPERTY DURESS $=1$	LTV＿90\％	LTV 81\％．90\％	LTV 70\％．78\％	$\begin{aligned} & \text { LTV beLow } \\ & 70 \% \end{aligned}$	total tax burden	parcel in SCEIP $=1$	conventional $\text { LOAN }=1$	tor size	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	sold during 20042007	SOLD 2008－2012	PRICE ADJUSt．to 2012	$\begin{gathered} \text { ZIP CODE } \\ \text { Z95403 } \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95404 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	$\begin{aligned} & \text { ZIP CODE } \\ & 94928 \end{aligned}$
10921	1	1	0	0	，	1．13\％	¢	＋1	3920	－	${ }^{-1}$	1	\＄357018	，	1	O	，
10922	0	1	0	0	0	1．13\％	0	1	3920		0	0	5381126	0	1	0	0
10923	0	0	0	0	0	1．1．6\％	0	1	3049		0	0	\＄206748	0	1	0	0
10924	0	1	0	0	0	1．16\％	0	1	3049		0	1	\＄246006	0	1	0	0
10925	0	0	0	1	0	1．13\％	0	1	3485	0	0		\＄203967	0	1	－	0
10926	0	0	0	0	0	1．16\％	0	1	3049		0	，	\＄225291	0	1	0	0
10927	0	1	0	0	0	1．16\％	0	1	3049	0	0	1	${ }_{5232952}$	0	1	0	0
10928	0	0	0	0	0	1．13\％	0	1	3920	0	0	0	5203967	0	1	0	0
10929	0	0	0	0	0	0．62\％	0	1	3920	0	0	1	${ }_{5}^{5287766}$	0	1	0	0
10930	0	1	0	0	0	1．16\％	0	1	3049	0	0	0	\＄219728	0	1	0	0
10931	0	1	0		0	1．16\％	0	1	3049	0	0	0	\＄229926	0	1	0	0
10932	0	0	1	0	0	1．13\％	0	1	3049	0	0	0	\＄223900	0	1	0	0
10933	0	0	0	1	0	1．12\％	0	1	3485	0	0	1	\＄260 386	0	1	0	0
10934	0	0	0	1	0	1．116\％	0	1	3049	0	0	1	$\begin{array}{r}5268838 \\ \hline\end{array}$	0	1	\bigcirc	0
10935	0	1	0	0	0	1．13\％	0	1	4206	0	1	0	5923703	0	1	0	0
10936	0	0	0	0	0	1．16\％	0	1	3049	0	0	1	5388623	0	1	0	0
10937	0	1	0	0	0	1．13\％	0	1	3485	0			\＄217410	0	1	0	0
10938	0	0	0	0	0	1．13\％	0	1	3350		0	0	5488633	0	1	0	0
10939	0	1	0	0	0	1．16\％	0	0	3618	0	0	1	\＄279 176	0	1	0	0
10940	0	0	0	0	0	${ }^{1.13 \%}$	0	1	3049	0	0	0	S225291 $\$ 382922$	0	1	\bigcirc	0
10941	0	0	1	0	0	${ }^{1.116 \%}$	0	1	3920	0	0	1	\＄3882828	0	1	0	0
10942	0	0	0	0	1	1．16\％	0	1	3485	0		0	\＄427073	0	1	0	0
1093	0	1	0	\bigcirc	0	${ }^{1.17 \%}$	0	1		0	0	0		0	1	0	0
10944	0	0	0	0	1	${ }^{1.13 \%}$	0	1	3485		1	0	5877518 $\$ 273508$	0	1	0	0
10945 10946	0	\bigcirc	\bigcirc	${ }_{0}^{1}$	\bigcirc	${ }^{1.1 .16 \%}$	$\stackrel{0}{0}$	1	3049 3049	0	\bigcirc	0	$\begin{array}{r}\text { S277 } 508 \\ \$ 269 \\ \hline 149\end{array}$	0	1	0	0
10947	0	1	0	0	0	1．16\％	0	1	3485	0	1	0	\＄889988	0	1	。	0
10948	0	0	0	0	0	1．13\％	0	1	3049	0	0	0	\＄276232	0	1	0	0
10949	0		0	0	0	1．13\％	0	1	3049	0	0	1	S238475	0	1	0	0
10950	0	0	0	1	0	1．16\％	0	1	3049	0	1	0	5680791	0	1	0	0
10951	0	0	1	0	0	1．13\％	0	1	3920	0	0		\＄256073	0	1	\bigcirc	0
10952	0	0	0	1	0	${ }^{1.113 \%}$	0	1	4792	0	0	0	5308378 $\$ 30229$	\bigcirc	1	0	0
10953	0	\bigcirc	0	0	1	1．1．16\％	0	1	$\begin{array}{r}3485 \\ 3885 \\ \hline\end{array}$	0	0	0	$\$ 302929$ $\$ 301840$	0	1	0	0
10954 10955	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	${ }_{0}$	${ }_{0}$	－ $\begin{aligned} & 1.13 \% \\ & 1.13 \% \\ & 1\end{aligned}$	${ }_{0}$	1	3485 3485	${ }_{0}$	${ }_{1}$	0	5301840 $\$ 709645$	${ }_{0}$	1	0	${ }_{0}$
10956	。	1	。	。	。	1．13\％	0	${ }_{0}$	4356	0	${ }_{0}$	1	\＄304707	0	1	。	0
10957	0	0	0	0	0	1．13\％	0	1	4356	0	1	0	\＄908924	0	1	0	0
10958	0	0	1	0	0	1．16\％	0	1	${ }_{4}^{4356}$	0	1	0	\＄650422	0	1	\bigcirc	0
10959	0	0	1	0	0	1．16\％	0	1	4356	0	0	0	\＄307288	0	1	0	0
10960	0	1	0	0	0	1．16\％	0	1	4752	0	1	－	\＄992703	0	1	0	0
10961 10962	0	${ }_{0}$	${ }_{0}^{1}$	0	${ }_{0}$	${ }_{\text {1．1．13\％}}^{1.15}$	\bigcirc	1	4792 4792	\bigcirc	\bigcirc	\bigcirc	\＄305 109 $\$ 294212$	\bigcirc	1	0	0
10963	0	0	0	0	1	1．16\％	0	1	3920	0	0	0	\＄294212	0	1	0	0
10964	0	0	0	0	0	1．13\％	0	1	3485	0	0	1	\＄295282	0	1	0	0
10965	0	1	0	0	0	1．13\％	0	0	3976	0	0	1	\＄357 018	0	1	0	0
10966	0	1	0	0	0	1．1．13\％	0	${ }^{1}$	4792	0	0	1	S230944 S272419	0	1	0	0
10967 10968	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	1.13% 1.16%	\bigcirc	1	3920 3920	\bigcirc	${ }_{0}$	\bigcirc	S272 219 $\$ 256073$	\bigcirc	1	\bigcirc	\bigcirc
10969	0	0	0	0	0	1．13\％	0	1	3485	0	1	0	\＄706525	0	1	0	0
10970	0	0	0	0	1	${ }^{1.1 .16 \%}$	0	1	3920	0	1	0	\＄701846	0	1	0	0
10971	0	0	0	0	0	${ }^{1.13 \%}$	0	1	3920	0	0	0	\＄273 508	0	1	0	0
10972	0	1	0	0	0	${ }^{1.16 \%}$	－	1	4519	0	0	0	5446311	0	1	0	0
10973 10974	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	${ }_{\text {1．1．16\％}}^{1.15}$	0	\bigcirc	3920 3049	\bigcirc	${ }_{0}$	1	\＄263069 $\$ 299167$	\bigcirc	1	0	\bigcirc
10975	1	1	0	0	0	1．16\％	0	1	3049	0	1	0	\＄728360	0	1	0	0
10976	0	0	0	1	0	1．16\％	0	1	3049	0	0	1	${ }_{5}^{5397460}$	0	1	0	0
10977	0	1	0	0	0	1．16\％	0	1	3049 3	0	－	1	\＄371065	0	1	0	0
10978	0	0	0	1	1	${ }^{1.116 \%}$	0	1	3350	0	0	0	\＄442 463	0	1	0	0
10979 10980	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	\bigcirc	\bigcirc	－${ }_{\text {1．13\％}}^{1.15 \%}$	\bigcirc	${ }_{1}$	3049 3485	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }_{\text {S }}^{530063115}$	\bigcirc	1	\bigcirc	0
10981	0	0	1	0	0	1．13\％	0	1	4792	0	0	1	\＄316049	0	1	0	0
10982	0	0	0	0	0	${ }^{1.113 \%}$	\bigcirc	1	3485 3885	0	0	1	$\$ 300651$ $\$ 500468$	0	1	0	0
10983 10984	0	1	\bigcirc	${ }_{0}$	0	1.13% 1.13% 1.1	0	1	3485 3485	${ }_{0}$	${ }_{0}^{1}$	0	S600 468 $\$ 32988$	0	1	\bigcirc	${ }_{0}$
10985	0	0			0	1．13\％	0	1	4356	0	1	。	\＄653 497	。	1	0	0
10986	0	0	0	0	1	1．13\％	0	1	3976	0	0	0	5487351	0	1	0	0
10987 10988	0	\bigcirc	0	0	0	1．13\％	\bigcirc	1	3976 3920	0	0	\bigcirc	5493763 $\$ 319274$	\bigcirc	1	0	0
10988 10989	0	0	\bigcirc	1	\bigcirc	－${ }_{\text {1．13\％}}^{1.13 \%}$	0	1	3920 4792	0	0	\bigcirc	S319274 S474 526	0	1	0	0
10990	0	0	0	0	0	1．13\％	0	1	4356	0	0		\＄284405		1		0
10991	0	0	0	1	0	1．16\％	0	1	3485	0	0	0	5391489	0	1	0	－
10992	0	1	0	0	0	${ }^{1.113 \%}$	0	1	${ }^{3485}$	0	0		\＄306019	0	1	0	0
10993	0	1	0		0	${ }^{1.13 \%}$	0	1	4462 4356	\bigcirc	\bigcirc	0	5461701 $\$ 316005$	\bigcirc	1	\bigcirc	\bigcirc
10994 10995	0	1	0	0	0	${ }_{\text {1．13\％}}^{1.16 \%}$	0	1	4356 3485	0	0	0	${ }_{\text {S3120 }}^{5357}$	\bigcirc	1	0	\bigcirc
10996	0	0	0	0	0	1．16\％	0	1	3485	0	0	0	\＄321454	－	1		0
10997	0	1	0	0	0	1．13\％	0	1	3485	0	0	0	5317095	0	1	0	0
10998	0	1			0	1．16\％	0	1	${ }_{4}^{4261}$	0	0	1	\＄270000	0	1	－	0
10999	0	，		1	0	${ }^{1.1 .16 \%}$	0	1	3485 3485	\bigcirc	${ }_{0}^{1}$	1	S779990 $\$ 265291$	\bigcirc	1	0	
11000 11001	0	0	0	1	0	${ }_{\text {l }}^{\text {1．1．6\％}}$	0	1	3485 3485	0	0	1	\＄266 291 $\$ 235965$	\bigcirc	1	0	0
11002		0	0	0	0	1．13\％	0	1	4356	0	0	0	\＄321827		1	0	0
11003		0	0	1	0	${ }^{1.1 .13 \%}$	0	1	4792	0	0	0	\＄2775988	－	1	0	0
${ }^{11004}$	0	1	0	1	0	${ }^{1.116 \%}$		1	3920	0	0	0	${ }^{5291488}$	0	1	－	0
11105 11006	0	\bigcirc	1	0	0	${ }^{1.1 .13 \%}$ 1．15\％	0	1	3920 3920	${ }_{0}$	0	\bigcirc	S288584 S269 149	${ }_{0}$	1	0	\bigcirc
11007		1	0	0	0	1．13\％	0		3942	0	－	1	\＄300275		1	。	\bigcirc
11008	0	－	1	0	0	1．16\％	0	1	3920	0	0	0	\＄282226	0	1	0	0
11009	0	0	0	0	1	1．16\％	0	1	4792	0	0	0	\＄271329	0	1	0	0
11010	0	0	1	0	0	${ }^{1.13 \%}$	0	1	3618	0	1	0	\＄665974		1	0	0
${ }_{11011}^{110}$	－	0	0	0	－	${ }^{1.1 .13 \%}$	0	1	$\begin{array}{r}3618 \\ 3886 \\ \hline\end{array}$	\bigcirc	\bigcirc	1	S326888 $\mathbf{5 2 5 0 4 7}$	\bigcirc	1	0	
11012 11013	0	0	${ }_{1}^{0}$	${ }_{0}^{1}$	0	－${ }_{\text {1．1．13\％}}^{1.15}$	0	${ }_{0}^{1}$	3886 4484 4	0	0	1	$\underset{\substack{\text { S2262 } \\ \$ 247}}{\text { S }}$	0	1	0	\bigcirc
11014			1	O	－	1．14\％		1	7405	0	0	0	\＄400951	－	1	0	0
11015	0	1	0	0	0	${ }^{1.16 \%}$	0	1	4792	0	1	0	${ }_{\$ 814929}$	0	1	0	0
${ }_{11016}^{11017}$	0	1	\bigcirc	\bigcirc	0	${ }^{1.1 .16 \%}$	0	\bigcirc	4792 4356	\bigcirc	${ }_{0}$	1	$\$ 360109$ $\$ 32634$	0	1	\bigcirc	${ }_{0}$
11018	0	1	0	0	0	1．13\％		0	4154	0	0	1	\＄234961	0	1		0
11019	0	0	1	0	0	${ }^{1.14 \%}$	0	1	4356	0	1	0	\＄ 574836	0	1		0
11020 11021	0		0	\bigcirc	1	1．13\％	0	1	3920 5663	\bigcirc	0	0	$\begin{array}{r}\text { \＄326 } 694 \\ \$ 370 \\ \hline 18\end{array}$	0	1	0	0
11022	0	0	1	${ }_{0}$	${ }_{0}$	${ }^{1.14 \%}$	0	1	5663 5227	0	0	${ }_{0}$	\＄ 547293818	${ }_{0}$	1	0	0
11023	0	0	0	0	0	1．14\％	0	1	4356	0	0	0	\＄403003	0	1	0	0
11024	0	0	1	0	0	${ }^{1.14 \%}$	0	1	4356 4356	0	0	1	$\$ 456515$ $\$ 427183$	0	1	0	0
11025 11026	\bigcirc	1	\bigcirc	${ }_{0}$	\bigcirc	${ }_{\text {1．1．14\％}}$	\bigcirc	1	4356 6534	0	0	\bigcirc	5427183 $\$ 885732$	0	1	0	${ }_{0}$
11027	0	，	0	1	0	1．16\％	0	1	6534	0	1	0	\＄826 619	0	1	0	
11028		1	0			1．16\％		1	4792	0	1	0	\＄639460	0	1	0	
11029	0	0	0	－	1	1．14\％	0	1	4792	0	0	0	\＄379974	0	1	0	
${ }_{11030}^{11031}$	0	0	1	0	0	1．14\％	\bigcirc	1	4792 5027	\bigcirc	0	0	$\$ 436970$ $\$ 89708$	0	1	0	
11031 11032	${ }_{1}^{0}$	\bigcirc	1	\bigcirc	0	（1．16\％	0	1	5227 5227	\bigcirc	1	\bigcirc	$\begin{array}{r}\text { S897408 } \\ \$ 96988 \\ \hline\end{array}$	\bigcirc	1	0	0
11033			1	0		1．1．16\％	0		3920	0	0	0	532987	0		0	
11034	0	0	0	0	0	${ }^{1.14 \%}$			4792		0	1	\＄270 104	0	1		0
11035 11036	\bigcirc	0	\bigcirc	0	\bigcirc	${ }^{1.1 .13 \%}$	0	1	3920 3920	\bigcirc	\bigcirc	1	S229940 $\$ 325857$	\bigcirc	1	0	0
${ }_{11037}^{11036}$	0		1	1		${ }^{1.1 .14 \%}$	0	1	5663			0	S329857 54093	\bigcirc	1	\bigcirc	0
11038	0	0	0	0	0	1．16\％	0		5227	0	0	1	\＄3355488		1	－	0
11039 11040	0	0	\bigcirc	\bigcirc	${ }_{1}$	${ }_{\text {l }}^{1.1 .13 \%}$	0	0 1	$\begin{array}{r}3920 \\ 3920 \\ \hline 920\end{array}$	\bigcirc	${ }_{1}$	1	S240985 S939363	－	1	\％	0
11041			0	\bigcirc	${ }_{0}^{1}$	${ }^{1.15 \%}$	0	1	3920 4792	${ }_{0}$	1	0	\＄939363 S421398	\bigcirc	1	\bigcirc	\bigcirc
11042	0	0	0	0	1	1．16\％	0	1	3920	0	0	1	\＄295282	0	1		0
11043	0	0	1	1	0	${ }^{1.144 \%}$	－	1	5227	0	－	，	5825059 $\$ 383511$		1	0	
11044 11045	0	0	0	1	\bigcirc	${ }_{\text {1．16\％}}^{1.16 \%}$	0	1	4792 4792	0	0	0	S388314 $\$ 365076$	0	1	0	0
11046	0	1	0	0	0	1．16\％	0	1	4792		0		\＄358474		1	0	0
11047 11048 10	${ }_{0}$	1	0	0	0	1．1．16\％	0	0	4792 4792	0	0	1	S288158 $\mathbf{S 6 9 4 0 4 8}$ S	\bigcirc	1	0	0
11048 11049 11050	0	1	0	0	－	（	－	1	4792 4792 3920	0	1	0	\＄694048 S34388 $\$ 315787$	－	1 1 1	0	－

observation	PROPERTY DURESS $=1$	LT＿－90\％	LTV 81\％－90\％	LTv 70\％－78\％	$\begin{aligned} & \text { LTV below } \\ & \text { 70\% } \end{aligned}$	total tax burden	parcel in SCEIP $=1$	conventional LOAN $=1$	Lorstze	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	$\begin{aligned} & \text { SOLD DURING } \\ & \text { 2004_2007 } \end{aligned}$	Soto 2008－2012	$\begin{aligned} & \text { PRICE ADUST. TO } \\ & 2012 \end{aligned}$	ZIP CODE 295403	ZIP CODE 95404	ZIP CODE 95472	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
12221	0	0	0	0	\％	1．14\％		1	7405	－	－	0	\＄35328	0			
1222	0	1	0	0	0	1．12\％	0	1	6534	0	。	0	\＄295344	0	1	0	0
12223	0	0	0	0	1	1．10\％	0	1	8712	1	0	0	S149 169	0	1	0	0
12224	0	0	0	0	0	1．12\％	0	1	6534	0	1	0	\＄1090309	0	1	0	0
12225	0	0	1	0	0	1．09\％	0	1	4792	0	1	0	\＄7406615	0	1	0	0
12226	0	0	0	0	0	1．10\％	0	1	4792	1	0	0	\＄169386	0	1	0	0
12227	0	1	0	0	0	1．09\％	0	1	9148	0	0	1	\＄204000	0	1	0	0
12228	0	0	0	1	0	1．13\％	0	1	9148	0	0	0	\＄305 131	0	1	0	0
12229	0	0	0	1	－	1．12\％	0	1	6970	0	0	1	5332863	0	1	0	0
12230	0	1	0		0	1．09\％	0	1	7405	0	0	1	5318904	0	1	0	0
12231	0	0	0	0	0	${ }^{1.13 \%}$	0	1	${ }^{3485}$	0	0	1	\＄235965	0	1	0	0
12232	0	1	0	0	0	1．13\％		0	4792	1	0	0	\＄80474	0	1	0	0
12233	0		0	0	0	1．14\％	0	1	7405	1	0	0	579047	0	1	0	0
12234	0	0	0	1	0	1．12\％	0	1	4792	0	0	1	\＄306019	0	1	0	0
12235	0	1	0	0	0	1．09\％	0	0	6000	0	0	1	S294208	0	1	0	0
12236	0	1	0		0	${ }^{1.12 \%}$	0		5663	1	0	0	\＄128359	0	1	0	0
12237	0		0	0	0	2．17\％	1	0	5663	1	0	0	\＄109737	0	1	0	0
$\begin{array}{r}12388 \\ \hline 12238 \\ \hline 12298\end{array}$	0	0	0	1	1	1．10\％	0	1	${ }_{5}^{5663}$	0	0	0	5401852 $\$ 79654$	0	1	0	0
12239	0	0	0	0	0	1．12\％	0	1	${ }_{5663}$	0	1	0	\＄796764	0	1	0	0
12240	0	1	0	0		1．13\％	0	1	5663		0	1	S267092	0	1	0	0
12241	0	0	1	0	0	${ }^{1.12 \%}$	0	1	${ }^{15912}$	0	0	1		0	1	0	0
${ }^{12242}$	0	0	0	0	1	${ }^{1.12 \%}$	0	1	（11761	\bigcirc	\bigcirc	0	S343128 S295	0	1	0	\bigcirc
12224 1224	0	0	${ }_{1}^{0}$	0	${ }_{0}^{1}$	1．09\％	\bigcirc	${ }_{1}^{1}$	5227 3485	\bigcirc	\bigcirc	${ }_{1}^{0}$	S295752 $\$ 191784$	\bigcirc	1	\bigcirc	${ }_{0}$
12245	0	－	0	0	0	1．09\％	0	1	6098	1	0	0	\＄116387	0	1	0	0
12246	0	1	0	0	0	1．12\％	0	1	5940	0	0	0	5448876	0	1	0	0
12247 12248 1	0	\bigcirc	\bigcirc	0	1	－ 1.112%	0	1	5663 5663	0	0	${ }_{0}^{1}$	5335178 S954362	0	1	0	\bigcirc
12248 12248 1	0	\bigcirc	\bigcirc	1	0	${ }^{1.1 .12 \%}$	0	1	5663 6098	0	1	\bigcirc	\＄954362	\bigcirc	1	0	\bigcirc
12249 12250	0	0	0	1	${ }_{1}$	－	${ }_{0}$	1	6098 6098	${ }_{0}^{1}$	${ }_{1}$	${ }_{0}$	\＄84232 S894145	\bigcirc	1	0	${ }_{0}$
${ }_{12251}^{12250}$	1	1	0	${ }_{0}$	1	1．08\％	0	1	6098 6098	1	1	0	\＄881112	0	1	0	0
12252	0	0	0	0	1	1．12\％	0	1	5663	0	0	0	5374217	0	1	0	0
12253	0	0	0	0	1	1．09\％	0	1	5227	1	0	0	\＄184442	0	1	0	0
12254 12255	\bigcirc	${ }_{0}$	0	0	0	1．12\％	0	1	5227 5663	1	0	0	S13403 S37620		1	\bigcirc	${ }_{0}$
12256	0	1	。	0	0	${ }_{1.12 \%}^{1.12 \%}$	0	1	6098	0	1	0	\＄766865	0	1	0	0
12257	－		0	1	0	1．13\％	0	1	6970	1	0	0	\＄88841	0	1	0	0
12258	0		0	1	0	1．10\％	0	1	6098	0	0	1	\＄327494	0	1	0	0
12259	0	0	0	1	0	${ }^{1.12 \%}$	0	1	8712	0	1	0	$\begin{array}{r}5639460 \\ \hline 2290\end{array}$	0	1	0	0
12260 12261	\bigcirc	\bigcirc	0	${ }_{1}^{1}$	${ }_{1}^{0}$	${ }_{\text {1．12\％}}^{1.09 \%}$	0	1	6098 6098	0	${ }_{0}$	${ }_{0}$	S222 509 $\$ 282102$	${ }_{0}$	1	0	0
12262		－	0	1	0	1．10\％	0	1	6900	0	0		\＄416813	0	1	0	0
12263	0	0	0	0	1	1．12\％	0	1	6848	0	0	0	\＄525826	0	1	0	0
12264	0	1	0	0	0	1．10\％	0	1	7405	0	0	0	\＄313191	0	1	0	0
${ }_{1}^{12265}$	0	1	0	0	0	1．09\％	0	1	6534 4792	1	0	0	S127228 $\$ 11357$	0	1	0	0
12266 12267	\bigcirc	${ }_{0}$	0	${ }_{1}$	${ }_{0}^{1}$	${ }_{\text {l }}^{1.109 \%}$	${ }_{0}$	1	4792 6970	${ }_{0}^{1}$	0	${ }_{0}$	5113557 5886834	${ }_{0}$	1	\bigcirc	0
12268	0		0	${ }_{0}$	0	${ }_{1.12 \%}^{1.12 \%}$	0	1	6970	0		0	${ }_{\text {¢ }}$	0	1	0	0
12269	0	0	0	0	0	1．10\％	0	1	10454	1	0	O	\＄144298	0	1	0	0
12270	0	0	1	0	0	1．09\％	0	1	6000	0	0	0	\＄514634	0	1	0	0
12271 12272	0	1	\bigcirc	\bigcirc	0	－	\bigcirc	1	5663 7405	1	0	0	S147544 S116387	0	1	\bigcirc	0
12272 12273	0	0	0	0	1	${ }_{\text {1．12\％}}^{1.09 \%}$	0	1	7405 6970	1	0	0	S116387 $\$ 160615$	\bigcirc	1	0	\bigcirc
12274		1	0	0	0	1．10\％	0	1	6534	0	1		\＄988363	0	1		0
12275	0	0	0	0	1	1．12\％	0	1	4356	0	1	0	\＄812859	0	1	0	0
12276 12277	\bigcirc	${ }_{1}$	\bigcirc	\bigcirc	\bigcirc	（1．08\％	\bigcirc	1	3485 4356	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	S100 081 $\$ 197307$ S	\bigcirc	1	\bigcirc	\bigcirc
${ }_{12278}^{12277}$	${ }_{0}$	1	0	${ }_{0}$	${ }_{0}$	${ }^{1.1 .12 \%}$	${ }_{0}$	1	${ }_{4}^{4} 792$	${ }_{0}$	${ }_{0}$	1	S243766	0	1	${ }_{0}$	${ }_{0}$
12279 12280	0	0	0	0	1	1．09\％	0	1	6720 6534	0	1	0	${ }^{5840570}$	0	1	0	0
12280		1	0	0	1	${ }^{1.12 \%}$	0	1	6534 6534	0	1	0	578200 $\$ 483494$	0	1	0	\bigcirc
12281 12282	\bigcirc	${ }_{0}^{1}$	0	0	${ }_{1}^{1}$	（1．10\％	\bigcirc	${ }_{1}^{1}$	6534 5663	\bigcirc	1	0	$\$ 483494$ $\$ 624643$	0	1	0	0
12283		，	1	0	0	1．12\％	0	1	6534	0	1	0	\＄964504	0	1	0	0
12284	0	1	0	0	0	1．11\％	0	1	16117	0	0	1	547758	0	1	0	0
${ }^{12285}$	0	0	0	0	1	${ }^{1.11 \%}$	0	1	21780	1	0	0	\＄2287848		1	0	0
12286	0	0	0	1	0	1．19\％	0	1	7841 885	0		1	S345000 S502711	0	1	0	0
12287 12288	\bigcirc	${ }_{0}^{1}$	0	${ }_{1}$	0	${ }_{\text {1．1．13\％}}^{1.1}$	\bigcirc	1	8265 7841	\bigcirc	\bigcirc	${ }_{1}^{0}$	\＄5027 741 $\$ 370515$	${ }_{0}^{0}$	1	\bigcirc	0
12289	0	－	0	0	1	1．10\％	0	1	7841	0	0	0	S449061	0	1	0	0
12290	0		0	0	1	1．09\％	0	1	5663	1	0	0	S142990	0	1	0	0
12291	0	0	0	0	1	${ }^{1.12 \%}$	0	1	5663	0	0	0	S433690 S436328	0	1	0	0
12292	0	1	0	0	0	${ }^{1.10 \%}$	0	1	6042 563	0	0	0	S4993288 S2787 S	0	1	0	0
12293 12294	\bigcirc	0	0	0 1	${ }_{0}^{1}$	${ }^{1.09 \%}$	0	1	5663 5663	0	${ }_{1}$	${ }_{0}$	5278137 5717443	0	1	\bigcirc	\bigcirc
${ }_{12295}^{1294}$			0	${ }_{0}$	1	1．09\％	0	1	${ }_{5663}$	1	${ }_{0}$		\＄115682	0	1		。
12296	0		0	0	0	1．12\％		1	5663	0	0	1	5421398		1	0	0
12297	0	0	0	0	1	1．10\％	0	1	${ }_{6} 698$	0	1	0	\＄1 190609	0	1	0	0
12298	0	0	0	0	1	1．10\％	0	1	${ }_{6098}^{6098}$	0	0	0	S493926 $\$ 717243$	0	1	0	\bigcirc
12299 12300	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	${ }^{1.1 .10 \%}$	\bigcirc	1	6098 6098	\bigcirc	${ }_{0}^{1}$	${ }_{0}^{1}$	ST17443 5408628	\bigcirc	1	${ }_{0}^{0}$	${ }_{0}$
12301	0	1		0	0	1．10\％	O	1	6098	0	1	0	\＄1699011		1	0	0
12302	0	0	0	0	1	1．09\％	0	1	7841	1		0	\＄68867		1	0	0
$\begin{array}{r}12303 \\ \hline 12304 \\ \hline\end{array}$		1	0	0	0	${ }^{1.12 \%}$	0	1	6534 11250	1	0	0	${ }_{\text {S }} \mathbf{5 1 2 1 4 5 5 5}$	0	1	0	
12304 12305 1	\bigcirc	0	0	0	1	1．12\％	0	1	11250 11504	0	0	0	\＄1237615	0	1	0	\bigcirc
12305 12306	0	${ }_{1}^{0}$	0	0	\bigcirc	（1．12\％	\bigcirc	1	13504 6970	\bigcirc	${ }_{1}^{0}$	0	\＄618935	\bigcirc	1	\bigcirc	\bigcirc
12307	0		0	0	1	1．10\％	O	1	6970	1	0	0	\＄150 387	0	1	0	0
12308	0	1	0	0	0	1．12\％	0	1	6970	1		0	\＄108074		1	0	
12309	0	1	0	0	0	1．09\％	0	1	7000	0	O	0	5403988	0	1	0	0
12310 12311	1	1	0	0	0	1．12\％	0	1	6700	0	0	0	\＄346276	0	1		0
12311 12312	\bigcirc	1	0	${ }_{1}$	\bigcirc	1．10\％	\bigcirc	${ }_{1}^{1}$	5227 5227	${ }_{1}^{0}$	\bigcirc	${ }_{0}^{1}$	S429901 $\$ 122299$	\bigcirc	${ }_{1}^{1}$	\bigcirc	\bigcirc
12313	0	0	0	1	0	1．12\％	O	1	5227	0	1	0	\＄725 241		1	0	0
12314	0	1	0	0	0	1．10\％	0	1	4792	0	0	0	\＄242256	0	1	0	0
12315 12316	\bigcirc	0	0	${ }_{1}$	\bigcirc	${ }_{1}^{1.12 \%}$	\bigcirc	1	5227 4792	${ }_{1}$	${ }_{0}$	${ }_{0}^{1}$		0	1	${ }_{0}$	\bigcirc
12316 12317	\bigcirc	${ }_{0}$	0	1	1	${ }^{1.12 \%}$	${ }_{0}$	1	${ }_{4792}$	1	0	${ }_{0}$	\＄4118885	0	1	${ }_{0}$	0
12318	0	0	0	0	1	1．12\％	0	1	4792	0	－	0	5370489	0	1	0	0
12319 12320	0	0	0	0	\bigcirc	1．10\％	\bigcirc	1	6534 6098	1	0	0	S222084 S112888	0	1	0	
12320 12321	\bigcirc	0	0	${ }_{0}^{1}$	${ }_{1}$	1．10\％	\bigcirc	1	6098 6534	1	\bigcirc	0	S112868 $\$ 127954$	0	1	0	\bigcirc
12322	0	0	0	0	1	1．10\％	0	1	5267	0	，	0	\＄666901		1	0	
12323 12324	0	0	0	1	0	1．10\％	0	1	3920 4300	0	0	1	S485797 $\$ 55657$	0	1	－	－
12324 12325	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	1．12\％	\bigcirc	1	4300 3900	\bigcirc	\bigcirc		S356457 S247542	0	1	0	
12325 12326	\bigcirc	1	0	${ }_{1}$	\bigcirc	${ }^{1.09 \%}$	\bigcirc	1	3920 3920	0	0	\bigcirc	S247542 $\$ 156292$	\bigcirc	1	0	\bigcirc
${ }_{1}^{12327}$	0	0	0	1	0	1．12\％	0	1	4356	1		0	\＄$\$ 207027$		1	0	0
12328 12329	0	0	0	0	0	1．12\％	\bigcirc	1	4792 4356	0	1	0		0	1		\bigcirc
12329 12330	\bigcirc	1	0	${ }_{1}$	0	${ }^{1.12 \%}$	0	1	4356 4356	${ }_{1}^{0}$	${ }_{0}^{1}$	\bigcirc	$\$ 989665$ $\$ 150971$	\bigcirc	${ }_{1}^{1}$	0	0
12331		0	0	0	0	1．12\％	－	1	5227	0	0	0	\＄356946	0	1	0	0
12332	0	0	1	0	－	1．12\％	0	1	7405	0	1	0	5790055	0	1	0	－
12333 12334	0	1	0	0	0	1．12\％	0	1	7405 6534	1	0	0		0	1	0	O
12334 12335	0	0 1	0	0	${ }_{0}^{1}$	1．10\％	${ }_{0}$	1	6534 5663	0 1	\bigcirc	0	S426032 S154329	\bigcirc	${ }_{1}^{1}$	\bigcirc	\bigcirc
${ }_{12336}^{1235}$	0	1	0	0	0	1．09\％	0	1	${ }_{5} 227$	1	－	。	\＄143037	0	1	0	－
12337 1238 1	0	1	0	0	0	${ }^{1.09 \%}$	0	1	5663 563	1	0	0	S123038 S106549	－	1	0	0
12338 1239	0	${ }_{0}^{1}$	0	0	\bigcirc	－ 1.12%	\bigcirc	1	5663 4792	${ }_{0}^{1}$	0	${ }_{1}$	S1065 549 S409970	0	1	0	\bigcirc
${ }_{12340}^{1239}$	0		0	0	0	${ }_{1}^{1.09 \%}$		1	3621	0		${ }_{0}$	\＄403988		1	0	0
12341	0					1．09\％	0		4356	0		1	5322126		1	0	0
12342 12343 123	0	0	0	0	${ }_{0}^{1}$	1．13\％	\bigcirc	1	6970 5227	\bigcirc	\bigcirc	1	$\$ 322126$ $\$ 371189$	\bigcirc	1	\bigcirc	\bigcirc
12333 1234	0	${ }_{0}^{1}$	1	\bigcirc	0	${ }^{1.12 \%}$ 1．12\％	\bigcirc	${ }_{1}$	5227 8712	\bigcirc	0	${ }_{0}^{1}$	5371189 $\$ 310123$	\bigcirc	1	\bigcirc	\bigcirc
12345	0	－				1．12\％	0	1	4635		0		\＄419 123	0	1	0	0
12346	0	0			1	1．10\％	0	1	5227	0	1	－	\＄1256237		1	0	0
12347 12348	0	${ }_{1}^{0}$	0	0	${ }_{0}^{1}$	1．1．10\％	0	1	6098 5280	0	${ }_{0}^{1}$	0	$\underset{\substack{\text { \＄1321858 } \\ \$ 436051}}{\text { S }}$	0	1	\bigcirc	\bigcirc
12399 12350				1		（1．10\％		1	5663 5663	1			\＄158302 $\$ 391133$		1	\bigcirc	0

observation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％．90\％	LTV 70\％－78\％	LTV BELOW 70%	totaltax burden	parcel in SCEIP $=1$	conventional LOAN $=1$	Lot SIIE	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	SOLD dURING 20042007	SoLD 2008－2012	PRICE ADJUST．TO 2012	ZIP CODE 295403	ZIP CODE 95404	$\begin{aligned} & \text { ZIP CODE } \\ & 95472 \end{aligned}$	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
12741		0	0	1	\％	1．12\％	－	1	16988	－	－	1	\＄690000	O			
12742	0	0	0	1	0	1．12\％	0	1	13504	1	0	0	\＄254805	0	1	0	0
12743	0	1	0		－	1．12\％	0	，	12197	0	0	1	\＄581714	0	1	0	0
12744	0	0	0	0	0	1．12\％	0	1	16553	0	0	0	\＄642 908	0	1	0	0
12745	0			0	0	1．13\％	0	0	14810	0	0		5481970	0	1	0	0
12746	0	0		0	1	1．12\％	0	1	14375	0	1	0	\＄1431740	0	1	0	0
12747	0	0		1	0	1．13\％	0	1	11761	0	1	0	\＄1216114	0	1	0	0
12748	0	0	0	1	1	1．11\％	0	1	10019		0	0	\＄656319	0	1	0	0
12749	0	0	1	\bigcirc	0	2．10\％	1	1	27007		0	0	5240904	0	1	0	0
12750	0	1		0	0	1．10\％	0	0	9148	0	0	1	5408026	0	1	0	0
${ }^{12751}$	0		0	0	0	${ }^{1.12 \%}$	0	1	${ }_{9} 948$	0	0	0	S354 144 $\$ 53216$	0	1	0	0
12752	0	0	1	0	0	1．09\％	0	1	8712	1	0	0	${ }_{5}^{535216}$	0	1	0	0
12753	0	0	0	0	0	1．09\％	0	1	8712	1	0	0	${ }_{566631}$	0	1	0	0
12754		1	0	0	0	1．03\％	0	1	7405	1	0	0	5203263	\bigcirc	1	0	0
12755	0	0	0	0	0	1．10\％	0	1	7841	1	0	0	\＄143320	0	1	0	0
12756	0	0	－	0	0	1．10\％	0	1	7841	1	0	0	\＄79343	0	1	0	0
12757	0	0	0	0	1	1．10\％	0	1	7841	0	0	1	$\begin{array}{r}\text { \＄532 } 601 \\ \$ 37731 \\ \hline\end{array}$	0	1	0	
$\begin{array}{r}12758 \\ \hline 12759\end{array}$	0	1	0	0	0	${ }^{1.10 \%}$	0	1	7841	0	0	0	S397731 $\$ 445823$	0	1	0	0
12759 12760	0	${ }_{0}$	\bigcirc	\bigcirc	${ }_{1}$	${ }_{1}^{1.12 \%}$	0	1	7405 7405	${ }_{0}$	0	1	5445823 $\$ 401642$	0	1	\bigcirc	\bigcirc
12761	0	。	0	0	0	1．10\％	0	1	7841	0	1	${ }_{0}$	\＄884908	。	1	0	0
12762	0	0		0	1	1．80\％		1	12197	0	0	1	\＄586500	－	1	0	0
12763	0	0	0	0	0	1．10\％	0	1	14810	1	0	0	\＄124043	0	1	0	0
12764	0	0	0	1	－	1．12\％	0	1	15682	0	0	1	\＄557278	0	1	0	0
12765	0	0	0	0	－	1．19\％	0	1	13939	0	0	1	\＄27000	0	1	0	0
12766		1	0	0	0	1．10\％	0	0	9583	0	0	1	\＄450976	0	1	0	0
${ }_{1}^{12767}$	0	0	1	0	0	1．10\％	0	1	10454	－		0	5489361	0	1	0	0
12768 12769	${ }_{0}$	${ }_{1}$	\bigcirc	\bigcirc	${ }_{0}$	－	${ }_{0}$	1	10890 5663	${ }_{0}$	${ }_{1}$	1	\＄441806 S905 795	\bigcirc	1	${ }_{0}$	${ }_{0}$
12770			－	－	0	1．10\％	0	1	10454	1	0	0	\＄123038	。	1	0	0
12771	0	0	1	－	－	1．12\％	0	1	9583	0	0	0	\＄437546	0	1	0	0
12772	0	0	0	0	1	1．10\％	0	1	9583		1	0	\＄75954	0	1	0	0
12773	0	1	0	0	0	1．10\％	0	1	10890	0	1	0	\＄1153 110	0	1	0	0
12774 12775		${ }_{1}^{1}$	\bigcirc	${ }_{0}^{1}$	${ }_{0}$	${ }_{\text {1．1．2\％}}^{1.12 \%}$	0	1	30928 30928	${ }_{0}^{1}$	${ }_{1}^{1}$	\bigcirc	\＄307471	\bigcirc	1	${ }_{0}$	0
12776	0	1	。	0	0	${ }_{1.12 \%}^{1.12 \%}$	0	1	${ }_{81022}$	0	1	0	\＄1616481	。	1	0	0
12777	0	0	－	0	1	1．12\％	0	1	54450	1	0	0	561265	0	1	0	0
12778	0	1	0	0	0	1．11\％	0	，	37026	0	0	0	\＄719648	0	1	0	0
12779	0	0	0	0	0	${ }^{1.10 \%}$	0	1	10454 44897	0	0	1	$\$ 375000$ $\$ 178699$	0	1	\bigcirc	0
12780 12781	0	\bigcirc	\bigcirc	\bigcirc	${ }_{0}^{1}$	－${ }_{\text {1．11\％}}^{1.10 \%}$	\bigcirc	1	44867 9 148	${ }_{0}^{1}$	${ }_{1}^{0}$	\bigcirc	\＄178699	\bigcirc	1	\bigcirc	\bigcirc
12782	0	0	0	1	0	1．11\％	0	1	11761	0	0	1	\＄747918	0	1	0	0
12783	0	1	0	0	0	1．09\％	0	1	6098	0	0	1	5356457	0	1	0	0
12784 12785 1	0	\bigcirc	0	0	1	${ }^{1.10 \%}$	0	1	9583		0	0	\＄644229	0	1	0	0
12785 12786	0	\bigcirc	\bigcirc	0	${ }_{1}$	${ }^{1.05 \%}$	$\stackrel{0}{0}$	1	8276 8712	${ }_{1}^{0}$	${ }_{0}^{1}$	0	\＄882619	0	1	\bigcirc	\bigcirc
12787	0	1	－	0	0	1．12\％	0	，	6970	0	0	1	\＄356457	0	1	0	0
12788 12789	0	0	0	0	0	${ }^{1.12 \%}$	0	1	${ }_{6} 634$	0	0	1	${ }_{5} 53815600$	0	1	0	0
12789	0	0	0	0	1	1．12\％	0	1	7200	0	0	1	\＄630 293	0	1	0	0
12790 12791	${ }_{0}^{1}$	${ }_{0}^{1}$	\bigcirc	\bigcirc	\bigcirc	－${ }_{\text {1．1．10\％}}^{1.10 \%}$	\bigcirc	1	6970 8712	\bigcirc	\bigcirc	${ }_{1}^{1}$	S407 934 549784	\bigcirc	1	${ }_{0}$	0
12792	0	1	－	0	0	1．18\％	0	0	15246	0	0	1	\＄460 000	－	1	－	0
12793	0	0	0	0	1	1．10\％	0	1	8712	1	0	0	\＄238095	0	1	0	0
12794	0	0	0	1	1	1．10\％	0	1	8276	0	1	0	\＄124727	0	1	0	0
12795	0	0	0	0	0	1．06\％	0	1	7405	0	－	1	5484881	0	1	0	0
12796 12797	${ }_{1}$	1	\bigcirc	\bigcirc	\bigcirc	－ 1.12%	0	1	8276 6970	\bigcirc	1	\bigcirc	$\$ 1626830$ $\$ 1199984$	\bigcirc	1	\bigcirc	\bigcirc
12797 12798	1	1	0	0	0	－${ }_{\text {1．1．13\％}}^{1.120}$	0	${ }_{0}^{1}$	6970 11326	\bigcirc	${ }_{0}^{1}$	${ }_{1}^{0}$	${ }_{\text {¢ }} \mathbf{\$ 1} 199984$	\bigcirc	1	\bigcirc	$\stackrel{0}{0}$
12799	0	0	0	0	0	${ }^{1.09 \%}$		1	7405	0	1	0	\＄1366857	0	1		0
12800 12801	0	0	0	0	${ }_{0}^{1}$	${ }^{1.1 .12 \%}$	0	1	6970 6970	0	0	0	5403003 446765	0	1	\bigcirc	\bigcirc
12801 12802	\bigcirc	\bigcirc	${ }_{0}$	${ }_{0}^{1}$	${ }_{1}^{1}$	${ }^{1.1 .12 \%}$	0	1	6970 10890	\bigcirc	0	0	\＄446766 $\$ 500875$	0	1	\bigcirc	0
12803	0	1	0		0	1．15\％	0	0	9148	0	0	1	\＄479962	0	1	0	0
12804	0	0	0	0	1	1．10\％	0	1	7841	1	0	0	5203263	0	1	0	0
12805	0	0	0		1	${ }^{1.15 \%}$	0	1	${ }_{6}^{6098}$	\bigcirc	0	1	\＄341396	0	1	0	0
$\begin{array}{r}12806 \\ \hline 18807\end{array}$	0	0	0	0	1	1．05\％	0	1	6098	1	0	0	\＄69985	0	1		${ }_{0}$
12887 12808	\bigcirc	0	\bigcirc	\bigcirc	1	${ }^{1.1 .12 \%}$	\bigcirc	1	10019 8276	${ }_{0}$	${ }_{0}^{1}$	\bigcirc		0	1	\bigcirc	\bigcirc
12809	0	－	1			1．10\％	0	1	6970	0	0	0	\＄366130	0	1	0	0
12810	0	0	0	1	0	1．10\％	0	1	6534	0	0	1	5345000	0	1	0	0
12811	0	0	1	0	0	1．10\％	0	1	${ }_{6}^{6900}$	0	1	0	S795426 $\$ 436395$	0	1	0	0
${ }^{12812}$	0		0	0	0	1．10\％		1	${ }_{6} 634$	0	0	0	5436395	0	1	\bigcirc	0
12813 12814	\bigcirc	\bigcirc	\bigcirc	0 1	\bigcirc	${ }^{1.1 .10 \%}$	0	1	6534 6534	${ }_{0}$	\bigcirc	${ }_{0}^{1}$	S424 132 $\$ 454818$	0	1	\bigcirc	0
12815	0	0	0	1	0	1．10\％	0	1	6534	0	1	0	\＄896804	0	1	0	0
12816	0		0	1		1．12\％	0	1	6534	0	0	1	\＄378548	0	1	0	0
12817	0	0	0	1		1．10\％	0	1	${ }_{6} 6534$	0	0	1	\＄637950	0	1	0	0
12818 12819	0	0	0	0	0	1．10\％		1	${ }_{6}^{6534}$	1	0	0	\＄240829	0	1	0	\bigcirc
12819 12820	\bigcirc	0	\bigcirc	${ }_{0}^{1}$	${ }_{0}^{1}$	${ }^{1.1 .12 \%}$	0	1	8276 8276	1	0	0	\＄199499 $\$ 137601$	0	1	\bigcirc	${ }_{0}^{0}$
12821				0	－	1．12\％	0	1	4792	0	1	0	\＄863860	0	1	－	
12822	0		0	1	0	${ }^{1.12 \%}$	0	1	5663	0	0	0	$\begin{array}{r}\text { S46986 } \\ \hline\end{array}$	0	1		
12823	0	0	0	0	1	1．10\％	0	1	${ }_{5}^{5663}$	0	0	0	$\$ 259502$ $\$ 268865$	0	1	0	
12824 12825	0	0	\bigcirc	0	0	－ 1.10%	0	1	${ }_{5}^{5663}$	0	0	0	\＄268866		1	\bigcirc	\bigcirc
12825 12826	\bigcirc	0	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }^{1.12 \%}$ 1．12\％	0	1	6098 6000	\bigcirc	\bigcirc	1	\＄554989 $\$ 429501$	\bigcirc	1	\bigcirc	\bigcirc
12827		0	0	0	0	1．12\％	0	1	6098	0	1	0	\＄696 120	0	1	0	0
12828	0		0	0	0	1．10\％	0	1	${ }^{6} 098$	0	0	0	S368460 $\$ 43957$	0	1		
12829 12830	\bigcirc	0	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	${ }^{1.1 .10 \%}$	0	1	6098 7841	\bigcirc	\bigcirc	1	5438957 5485246	0	1	0	0
${ }_{12831}^{1280}$	${ }_{0}$	${ }_{0}$	\bigcirc	1	1	1．1．9\％	0	1	${ }_{5663}^{7841}$	1	${ }_{0}$	${ }_{0}^{1}$		${ }_{0}$	1	0	${ }_{0}$
12832	1	1	0	0	0	1．10\％	0	1	5227	1	0	0	\＄219825	0	1	0	0
12833 12834 128	0	${ }_{1}$	0	\bigcirc	0	1．12\％	0	1	5663 3920	\bigcirc	1	0	\＄974 987 $\$ 371189$	0	1	\bigcirc	0
12834 12835	\bigcirc	${ }_{0}^{1}$	\bigcirc	${ }_{1}^{0}$	\bigcirc	1．09\％	0	1	3920 10890	${ }_{1}$	\bigcirc	1	$\$ 371189$ $\$ 78258$	\bigcirc	1	\bigcirc	\bigcirc
12836		1	0	0		1．12\％		1	5663	0	0	1	\＄449902	0	1		0
12837	0	0	0	0	0	1．12\％	0	1	5663	1	0	0	${ }^{594988}$	0	1	0	0
12838 1289	\bigcirc	\bigcirc	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	${ }^{1.12 \%}$	0	1	5586 5227	\bigcirc	\bigcirc	${ }_{1}^{0}$	S513001 S428 427	\bigcirc	1	\bigcirc	\bigcirc
12840	0	0	1	0		${ }^{1.12 \%}$	0	1	${ }_{5663}$	0	0	1	\＄4328224	0	1		0
12841	0	0	0	1	0	1．12\％	－	1	5663	0	0	1	\＄244000	0	1	0	0
12842 12843	0	\bigcirc	${ }_{1}$	0	0	${ }_{\text {l }}^{1.12 \%}$	\bigcirc	1	9148 7405	0 1	\bigcirc	0	\＄641251	\bigcirc	1	\bigcirc	\bigcirc
12843 12844	0	\bigcirc	${ }_{0}^{1}$	0	${ }_{1}$	${ }^{1.1 .12 \%}$	0	1	7405 6970	1	${ }_{1}^{0}$	0		0	1	\bigcirc	0
12845	0	0	0	0		1．10\％		1	6534	1	0	0	\＄132730	0	1	0	0
12846	0	0	0	0	1	1．10\％	，	1	6534	0	0	0	\＄557871	0	1	0	0
${ }^{12847}$	0	0	0	0	1	1．55\％		1	6534 8 8712	0	0	0	（ 51537738	0	1	0	0
12848 12849	0	\bigcirc	\bigcirc	${ }_{0}^{1}$	\bigcirc	1.10% 1.12%	0	1	8712 5663	0 1	${ }_{0}^{1}$	\bigcirc	$\$ 1518730$ $\$ 204016$	\bigcirc	1	${ }_{0}$	0
12850	0	1	－	0		1．10\％	0	1	6098	1	1	0	\＄696120	0	1	。	0
12851		1		0	0	1．10\％	0	1	6090	0	1	0	\＄869510	0	1	0	0
12852	－	0	0	－	1	${ }^{1.12 \%}$	0	1	10454 8276	0	0	1	\＄532000	0	1	0	
12853 12854	0	\bigcirc	0	\bigcirc	1	1．1．04\％	0	1	8276 7405	0	${ }_{0}^{1}$	0	5879080 $\$ 429973$	\bigcirc	1	\bigcirc	\bigcirc
12855		1	0			1．16\％	0	1	6970		0	1	\＄306252	。	1	0	
12856 12857	0	\bigcirc	${ }_{0}^{1}$	\bigcirc	0	－ 1.112%	0	1	7405 6970	0	0	\bigcirc	S449061 $\mathbf{\$ 1} 190953$	0	1	0	\bigcirc
${ }_{12858}^{12857}$	${ }_{0}$	0	0	\bigcirc	${ }_{1}$	${ }^{1.1 .10 \%}$	0	1	6970 6970	0	1	\bigcirc	$\$ 1190953$ $\$ 418980$	0	1	0	0
12859 1285	0	0	－	1	0	${ }^{1.10 \%}$	－	1	${ }_{6970}$	0	0	0		0	1	0	0
12860 12861	${ }_{1}$	0	0	0	1	－${ }^{1.1 .10 \%}$	0	1	6970 7405	0	0	0	S347671 $\$ 56541$	0	1	0	0
12862	0			1		1．04\％	0	1	6970	1	0	0	\＄176914	。	1	。	。
12863	0	0	0	0	0	1．72\％	1	1	7405	1	0	0	\＄171947	0	1	0	0
12864 12855 18	0	0	－	－	，	1．10\％	－	1	7405	－	0	1	5409693 $\$ 48000$	0	1	0	
12865 12866	0	0	－	0	－	${ }^{1.05 \%}$	0	1	7405 7005	－	0	1	S480000 $\$ 461888$	0	1	\bigcirc	0
12867	0	1	0	0	0	1．15\％	0	1	7800	0	0	1	\＄532176	0	1	0	0
${ }^{12868}$	0	0	0	0	1	1．07\％	0	1	9583	0	0	0	\＄652794	0	1	0	0
						1．1．12\％	0	1	7560 7405	0	0	0	\＄552444			${ }_{0}$	

observation	PROPERTY DURESS $=1$	LTV＿90\％	LTV 81\％－90\％	LTV 70\％－78\％	$\begin{aligned} & \text { LTV beLow } \\ & \text { 70\% } \end{aligned}$	totaltax burden	parcel in SCEIP $=1$	conventional LOAN $=1$	torstiz	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	$\begin{aligned} & \text { SOLD DURING } \\ & \text { 2004_2007 } \end{aligned}$	Sold 2008 －2012	PRICE ADJUSt．to 2012	ZIP CODE 295403	ZIP CODE 95404	ZIP CODE 95472	$\begin{aligned} & \text { ZIP CODE } \\ & 94928 \end{aligned}$
13131	${ }_{0}$	0	0	1	\％	1．12\％	－	，	9583	－	－	0	\＄1023213	${ }_{0}$	1		
13132	0	0		0	1	1．10\％	0	1	8276	0		0	\＄512390	0	1	0	0
13133	0	0	0	0	0	1．11\％	－	1	42253	0	1	0	\＄1874975		1	0	
13134	0	0	0	0	1	1．10\％	0	1	8900	0	0	0	\＄606 624	0	1	0	0
13135	0		0		0	1．10\％	0	1	9583	0	1	0	5771503	0	1	0	0
13136	0	0	1	0	0	1．12\％	0	1	11761	0	0	1	\＄737330	0	1	0	0
${ }^{13137}$	0		0	0	0	1．09\％	0	1	6970	0	0	0	\＄92712	0	1	0	0
13138	0	0	0	1	0	1．10\％	0	1	5227	0	0	1	5418763		1	0	0
13139	0	1	0	0	1	1．09\％	0	1	6970	1	0	0	\＄69315	0	1	0	0
13140	0		0	0		1．10\％	0	1	6534	0	0	0	532493	0	1	0	0
13141	0		0	0	1	2．88\％	1	1	8712	0	0	0	\＄354 144	0	1	0	0
13142	0	0	0	0		1．10\％	0	1	6534	0	0	0	5381386	0	1	0	0
13143	0	1	0	0	0	1．10\％	0	1	8712	1	0	0	\＄234882	0	1	0	0
13144 13145	0	\bigcirc	\bigcirc	\bigcirc	${ }_{1}^{1}$	（1．10\％	\bigcirc	1	6534 6098	${ }_{1}$	0	0	5377671 56909	${ }_{0}$	1	\bigcirc	0
${ }_{13}^{13146}$	0	1	\bigcirc	\bigcirc	${ }_{0}$	1．10\％	0	1	${ }_{6} 6290$	1	0	0		0	1	0	\bigcirc
13147	0	1	0	0	0	1．12\％	0	1	5663	0	1	0	\＄922488	0	1	0	0
13148	0	0	0	0	0	1．12\％	0	1	6534	0	0	1	\＄509692	0	1	0	0
13149	0	0	0	0	0	1．10\％	0	1	6970	1	0	0	\＄162 224	0	1	0	0
13150	0	－	0	0	1	1．12\％	0	1	8550	0	0	0	S616884	0	1	0	0
13151	0	1	0	0	0	1．07\％	0	1	6098	0	1	0	\＄562 493	0	1	0	0
13152 13153	0	，	0	0	0	1．10\％	0	0	5663 8276	\bigcirc	0	1	5476950 $\$ 477585$	0	1	0	0
13153 13154	\bigcirc	${ }_{1}$	\bigcirc	$\stackrel{0}{0}$	${ }_{0}^{1}$	－${ }_{\text {1．1．12\％}}^{1.12 \%}$	0	1	8276 6534	\bigcirc	\bigcirc	${ }_{0}^{1}$	S477 585 S43989	0	1	\bigcirc	\bigcirc
13155	0		，	0	1	1．12\％	0	1	6534	0	1	0	5883113	0	1	0	0
13156	0	0	1	0	0	1．10\％	0	1	6970	1	0	0	\＄159 401	0	1	0	0
${ }^{13157}$	0	0	0	0		1．10\％	0	1	9148	1	0	0	\＄145080	0	1	0	0
$\begin{array}{r}13158 \\ \hline 1359\end{array}$	0	1		0	0	1．10\％	0	1	8712	0	1	0	$\begin{array}{r}5838999 \\ \$ 3 \\ \hline 17902\end{array}$	0	1	0	0
13159 13160	0	0	0	\bigcirc	1	${ }^{1.111 \%}$	0	1	18000 6970	0	1	0	\＄1417402	0	1	0	\bigcirc
13160 13161	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	${ }^{1.12 \%}$	\bigcirc	1	6970 6098	0	${ }_{0}^{1}$	${ }_{1}$	\＄928113	\bigcirc	1	\bigcirc	\bigcirc
13162	0	1	0	0	0	1．10\％	0	1	7405	1	0	0	\＄122380		1	0	0
13163 13164 1	0	0	0	0	0	${ }^{1.10 \%}$	0	1	7405	1	0	0	\＄132121	0	1	0	0
13164	0	0	0	0	1	1．10\％	0	1	8276	0	0	0	\＄431789	0	1	0	0
13165 13166	\bigcirc	0	${ }_{0}$	${ }_{0}$	\bigcirc	－${ }_{1}^{1.99 \%}$	${ }_{0}^{1}$	1	8276 8276	1	\bigcirc	\bigcirc	$\$ 182560$ $\$ 132682$	0	1	0	0
${ }_{13167}$		0	－	1	0	${ }_{1.12 \%}^{1.15}$	0	1	83560 4350	1	。	1	\＄1668035	－	1	0	－
13168	0	0	0	0	1	1．11\％	0	1	3056	0	0	0	\＄575 719	0	1	0	0
${ }^{13169}$	0	0	0	0	0	1．13\％	0	1	${ }^{43560}$	1	0	0	\＄350664	0	1	0	0
13170 13171	\bigcirc	${ }_{0}$	\bigcirc	0	0	${ }_{\text {1．12\％}}^{1.12 \%}$	\bigcirc	1	76230 20909	0	${ }_{0}$	0	5417094 $\$ 588723$	0	1	\bigcirc	\bigcirc
13172			0	0	1	1．12\％	0	1	23087		1	－	\＄1893592	0	1	0	－
13173	0	0	1	0	0	1．12\％	0	1	21780	0	0	0	\＄677263	0	1	0	0
13174	0	0	0	1	0	1．11\％	0	1	61147	1	0	0	\＄606545	0	1	0	0
13175	0	0	0	0	1	${ }^{1.12 \%}$	0	1	$\begin{array}{r}25700 \\ \hline 6469\end{array}$	0	1	0	\＄1481888	0	1	0	0
13176 13177	\bigcirc	0	0	0	0	${ }_{\text {1．12\％}}^{1.12 \%}$	0	1	64469 51401	1	0	\bigcirc	\＄355148	0	1	0	0
${ }_{13178}^{1317}$	${ }_{0}$	${ }_{0}$	1	${ }_{0}$	${ }_{0}$	${ }_{\text {1．13\％}}^{1.12 \%}$	1	${ }_{0}$	${ }_{27} 27401$	1	${ }_{0}$	1	\＄	${ }_{0}$	1	${ }_{0}$	${ }_{0}$
13179	0	0	0	0	1	1．12\％	0	1	20038	1	0	0	\＄397944	0	1	0	0
13180	0	0	0	0	0	1．12\％	0	1	20338	0	1	0	\＄1977395	0	1	0	0
${ }^{13181}$	0	0	0	0	1	${ }_{1}^{1.12 \%}$	0	1	$\begin{array}{r}29621 \\ \hline 1653\end{array}$	1	0	0	\＄4885 573	0	1	0	0
13182 13183	0	0	\bigcirc	0	${ }_{0}^{1}$	${ }^{1.12 \%}$	。	1	${ }_{23087}^{1653}$	\bigcirc	\bigcirc	${ }_{1}^{0}$	\＄868811 $\$ 83000$	\bigcirc	${ }_{1}^{1}$	0	\bigcirc
13184			0	1	0	1．12\％	0	1	35284	＋	－	${ }_{0}$	\＄349220	－	1	－	0
13185	0	0	0		1	1．12\％	0	1	27007	1	0	0	5478045	0	1	0	0
13186	0	0	0	0	1	1．12\％	0	1	27443	1	0	0	\＄375765	0	1	0	0
13187 13188 13188	0	0	0	1	0	${ }^{1.122 \%}$	0	1	37462 73560	1	0	0	S289933	0	1	0	0
13188 13189	0	0	。	${ }_{0}^{1}$	${ }_{1}^{0}$	${ }^{1.12 \%}$	0	1	43560 43560	${ }_{0}^{1}$	$\stackrel{0}{0}$	\bigcirc		\bigcirc	1	0	0
13190	0		。	0	1	1．13\％	0	1	43560	1	。	。	\＄391470	－	1	。	0
13191	0	0	0	1	0	1．12\％	0	1	43560	1	0	0	5355813	0	1	0	0
13192	－	0	0	0	1	1．12\％	0	1	44867	0	0	1	\＄1138 178	0	1	0	0
${ }^{13193}$	0	0	0	0	0	${ }_{\text {1．12\％}}^{122}$		1	$\begin{array}{r}43996 \\ \hline 8352\end{array}$	0	0	0	\＄892336	0	1	0	0
13194 13195	0	。	$\stackrel{0}{0}$	${ }_{0}^{1}$	${ }_{1}^{0}$	${ }^{1.12 \%}$	\bigcirc	1	48352 43560	0	1	0		0	1	0	\bigcirc
13196	0	0	0	0	1	1．12\％	0	1	48787	1	${ }_{0}$	0	\＄418995	0	1	0	。
13197	0	0	0	0	0	1．12\％	0	1	43560	1	0	0	\＄154040	0	1	0	0
13198	0	1	0	0	0	1．12\％	0	0	15246	0	0	1	5637115	0	1	0	0
13199	0	0	0	0	0	${ }_{\text {1．12\％}}^{122}$	0	1	${ }_{1}^{16117}$	1	0	0	\＄267253	0	1	0	－
13200 13201	0	\bigcirc	$\stackrel{0}{0}$	${ }_{0}^{1}$	0	${ }_{\text {1．12\％}}^{1.12 \%}$	\bigcirc	1	15246 20909	${ }_{0}^{0}$	${ }_{1}$	${ }_{0}^{1}$	¢ $\begin{gathered}\text { \＄622776 } \\ \$ 1294516\end{gathered}$	${ }_{0}^{0}$	1	\bigcirc	0
13202	0	。	。	0	1	1．12\％	0	1	13504	1	1	0	\＄304142	0	1	0	－
13203	0	0	1	0	0	1．13\％	0	1	16553	1	0	0	5346300		1	0	0
13204	0	0	0	0	1	1．12\％	0	1	18295	1	0	0	\＄271770	0	1	0	0
${ }^{13205}$	0	1	0	0	0	1．14\％	0	1	17424	1	0	0	\＄227454	0	1	0	0
13206 13207	\bigcirc	${ }_{0}^{1}$	\bigcirc	0	${ }_{1}^{0}$	${ }^{1.11 \% \%}$	\bigcirc	1	8276 9148	0	${ }_{1}$	\bigcirc	（ $\begin{aligned} & \text { \＄475098 } \\ & \$ 1446519\end{aligned}$	\bigcirc	1	\bigcirc	\bigcirc
13208	0	1	0	0	0	1．12\％	0	1	13068	－	1	0	\＄1122954	0	1	0	
13209	0	0	0	0	0	1．13\％	0	1	31799	0	0	1	\＄842797	0	1	0	0
13210		0	0	1	1	1．12\％	0	1	29621	0	1		\＄2174398	0	1	0	
13211 13212	0	\bigcirc	0	0	1	${ }_{\text {1．13\％}}^{1.10 \%}$	0	1	15687 10019	\bigcirc	0	0	\＄955464	\bigcirc	1	\bigcirc	0
13213		0	0	0	0	1．13\％	0	1	10000	0	0	1	\＄652627	0	1	0	
13214	0	0	0	1	0	1．49\％	1	1	${ }^{43560}$	0	1	0	\＄2115281	0	1	0	0
13225 13216	\bigcirc	0	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }^{1.712 \%}$	${ }_{0}^{1}$	1	24829 14810	\bigcirc	${ }_{0}^{1}$	${ }_{1}^{0}$	\＄2164380	\bigcirc	1	\bigcirc	\bigcirc
13217	0		0	0	1	1．12\％	0	1	12197	0	0	1	\＄655 508	0	1	0	0
${ }^{13218}$		0	0	0	1	${ }^{1.12 \%}$	0	1	${ }^{13} 068$	0	0	0	\＄5993211	0	1		
13219 13220	${ }_{0}$	${ }_{0}$	\bigcirc	0	1	${ }_{\text {1．112\％}}^{1.12 \%}$	0	1	8712 30928	0	0	0	\＄512147 $\$ 1528465$	0	1	0	0
13220 13221	\bigcirc	1	0	0	${ }_{0}$	${ }_{1.12 \%}^{1.12 \%}$	0	1	30928 33106	${ }_{0}$	${ }_{0}$	\bigcirc	（ ${ }^{\text {S }}$	${ }_{0}$	1	0	\bigcirc
13222	0	0	0	0	1	1．12\％	0	1	38768	0	0	0	\＄1372 278	0	1	0	
13223	0	0	0	0	1	1．12\％	0	1	${ }_{59} 9242$	0		0	\＄980707	0	1	0	
13224 13225	\bigcirc	1	0	$\stackrel{0}{0}$	\bigcirc	${ }_{\text {1．12\％}}^{1.12 \%}$	\bigcirc	1	27878 43124	${ }_{1}^{0}$	0	0	S686071 $\$ 123038$	\bigcirc	1	\bigcirc	\bigcirc
13226		，	0	1	0	1．12\％		1	21344	1	0	0	\＄131307	0	1	0	0
13227	0	1	－	0	0	1．12\％	0	1	29621	0	0	0	5314918	0	1		0
13228 13229	\bigcirc	\bigcirc	${ }_{1}$	\bigcirc	${ }_{0}^{1}$	${ }_{\text {l }}^{1.12 \%}$	\bigcirc	1	20038 34848	\bigcirc	\bigcirc	0	S909636 S969523	\bigcirc	${ }_{1}^{1}$	\bigcirc	0
13230	0		0	0	0	1．12\％	0	1	42253	0		0	\＄384751	0	1	0	0
13231	0	1	0	0	0	1．12\％	0	，	16117	0	0	1	\＄502 166	0	1	0	0
13232 1323	0	0	0	0	1	－ 1.112%	0	1	${ }_{2}^{23588}$	1	0	－	\＄150863	0	1	0	0
13233 13234	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1	1．12\％	\bigcirc	1	9958 13068	\bigcirc	${ }_{0}^{1}$	0	\＄1030853 $\$ 481177$	\bigcirc	${ }_{1}^{1}$	\bigcirc	\bigcirc
13235		0	0	0	1	1．14\％	－	1	5663	1		0	\＄134100	0	1	0	0
13236	－	0	0	0	1	1．11\％	－	1	6098	0	0	1	\＄579423	0	1	0	0
13237 13238	0	\bigcirc	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	${ }^{1.1 .12 \%}$	${ }_{0}$	${ }_{1}^{1}$	8276 6098	1	${ }_{0}$	\bigcirc		\bigcirc	${ }_{1}^{1}$	${ }_{0}$	${ }_{0}$
13239			0	0	1	1．11\％		1	5663	0		0	\＄370 386		1		0
13240		0	0	0	1	1．12\％	0	1	6098	1	0	0	\＄131307	0	1	0	0
13241	0	0	0	0	0	1．12\％	1	1	6534	1	0	0	\＄102854	0	1	0	
13242 13243	0	0	\bigcirc	0	0	${ }_{\text {l }}^{1.1 .14 \%}$	\bigcirc	1	6970 6096	1	0	0	$\$ 104643$ $\$ 577126$	0	1	\bigcirc	\bigcirc
13244	0	1	0	0	0	1．12\％	0	，	6970	0	0	1	544582	0	1	0	
$\begin{array}{r}13245 \\ \hline 1326 \\ \hline\end{array}$	0	0	0	1	0	1．13\％	0	1	6098			0	\＄518147	0	1	0	0
13246 13247	0	\bigcirc	0	1	${ }_{1}$	－${ }_{\text {1．112\％}}^{12 \%}$	0	1	6098 6098	${ }_{1}$	\bigcirc	${ }_{1}^{1}$	S581714 $\$ 106208$	\bigcirc	1	\bigcirc	\bigcirc
13247 13288	1	1	0	0	1	${ }^{1.12 \%}$	${ }^{\circ}$	1	6098 6098	1	0	\bigcirc	\＄5592990	\bigcirc	1	0	0
13249 13250 13	0				1	1．14\％		1	7841	1	－	0	\＄182894	0	1	0	
13250 13251		0	0	0	0	－${ }_{1}^{1.112 \%}$	0	1	6098 6534	0 1	\bigcirc	0	5615601 S102854	0	1	0	\bigcirc
13251 13252	${ }_{0}$	1	\bigcirc	${ }_{0}$	\bigcirc	${ }^{1.112 \%}$	0	${ }_{0}^{1}$	6534 6098	1	${ }_{0}$	${ }_{1}$	\＄102854	${ }_{0}$	1	${ }_{0}$	\bigcirc
13253	0	0	0	0	1	1．11\％	0	1	5663		0	0	5394027	0	1	0	0
13254 13255 1	0	0	0	0	－	${ }^{1.111 \%}$	0	1	5663	0	0	0	\＄553266	0	1	0	
13255 13256	0	0	0	0	0	${ }_{\text {1．112\％}}$	0	1	6970 22651	0	\bigcirc	\bigcirc	5380120 $\$ 32493$	\bigcirc	1	0	0
13256 1325	${ }_{0}$	1	${ }_{0}$	${ }_{0}$	${ }_{0}$	${ }_{\text {1．12\％}}^{1.12 \%}$	0	1	${ }_{6}^{26534}$	${ }_{0}$	－	1	（ 53242438	${ }_{0}$	1	－	${ }_{0}$
13258	0	0	0	0	0	1．12\％	0	1	12197	0	0		\＄354 144	0	1	0	0
			${ }_{0}$			${ }^{1.111 \%}$	${ }_{0}^{0}$	1	7841 5663	0	0	1 1		0	${ }_{1}^{1}$	${ }_{0}^{0}$	0

observation	PROPERTY DURESS $=1$	LT＿－90\％	LTV 81\％ 100%	LTV 70\％－78\％	LTV below	total tax burden	parcel in SCEIP $=1$	CONVENTIONAL LOAN＝ 1	Lorsize	$\begin{aligned} & \text { SOLD } \\ & \text { PRIOR_2000 } \end{aligned}$	$\begin{gathered} \text { SOLD DURING } \\ 2004 _2007 \end{gathered}$	Sold 2008－2012	PRICE ADJUSt．to 2012	ZIP CODE 295403	ZIP CODE 95404	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
13261	0	0	0	1	，	1．12\％		1	5663	－	－	0	\＄254032	－			
13262	0	0	0	0	1	1．12\％	0	1	10019	1	。	0	\＄201939	0	1	0	0
13263	0	0	0	0	0	${ }_{1.11 \%}$	0	1	6098	0	0	1	\＄585275	0	1	0	0
13264	0	0	0	0	0	${ }^{2} .13 \%$	1	1	24394	0	0	0	575635	0	1	0	0
13265	0	0	0	0	0	1．14\％	0	1	17424	0	1	0	\＄1090 201	0	1	0	0
13266	0	1	0		0	1．12\％	0	1	6970	0	0	0	\＄241802	0	1	0	0
13267	0	0		0	1	1．12\％	0	1	6643	0	0	0	561949	0	1	0	0
13268	0	1	0	0	0	1．12\％	0	1	8712	0	0	0	5420614	0	1	0	0
13269	0	0	0	0	，	1．13\％	0	1	9148	0	0	1	5436786	0	1	0	0
13270	0	0	0	0	1	1．14\％	0	1	6970	0	0	1	\＄515401	0	1	0	0
13271	0	0	0	，	0	${ }^{1.14 \%}$	0	1	7405	0	0	1	${ }_{5408026}$	0	1	0	0
13272	0		0		1	1．14\％		1	6970	0	0	1	5381560	0	1	0	0
13273	0	0	0	0	0	1．14\％	0	1	6970	1	0	0	\＄133835	0	1	0	0
13274	0	0	0	0		1．11\％	0	1	7405	0	0	0	\＄285554	0	1	0	0
13275	0	0	0	0		1．12\％	0	1	6970	0	0	0	S278 137	0	1	0	0
13276	0	1	0		0	1．12\％	0	1	6970	0	0	1	5448829	0	1	0	0
13277	0	0	1	0	0	1．12\％	0	1	10890	0	0	0	S331466 S1295	0	1	0	0
$\begin{array}{r}13278 \\ \hline 13298\end{array}$	0	0	0	0	1	1．14\％\％	0	1	${ }^{9583}$	1	0	0	\＄149745	0	1	0	0
13279	0	0	1	0	0	1．12\％	0	1	8276	1	0	0	\＄202 510	0	1	0	0
13280	0	－	0	1		1．11\％		1	6970	0	1	0	5881207	0	1	0	0
${ }^{13281}$	0		0	0	0	1．116\％	0	0	6534	1	0	0	S119380 $\mathbf{1 9 1 2 5 4}$	0	1	0	0
13282	0	0	0		1	1．12\％	0	1	7841 8712	1	0	0	\＄141254	0	1	0	0
13283 13284	\bigcirc	1	\bigcirc	0	0	${ }_{\text {1．1．12\％}}^{1.12 \%}$	${ }_{0}$	${ }_{0}^{1}$	8712 9148	${ }_{0}$	${ }_{0}$	1	5477820 549989	${ }_{0}$	1	0	\bigcirc
13285	0		。	0		1．14\％	0	1	9148	0	。	1	${ }_{\text {S292 }}$ O44	0	1	0	。
13286	0	0	0	0	1	1．12\％	0	1	9583	1	0	0	S178901	0	1	0	0
13287	1	1	0	0		1．12\％	0	1	9583	0	1	0	\＄1235609	0	1	0	0
13288 13289 18	1		0		0	${ }^{1.12 \%}$	0	1	9150 9148 9	\bigcirc	\bigcirc	0	S596364 S004 654	\bigcirc	1	0	\bigcirc
13289 13290	0	0	0	0	1	1．13\％	0	1	9148 8276	${ }_{1}$	\bigcirc	0	S4004 644 $\$ 195701$	0	1	0	${ }_{0}$
13291	0	0	0	0	1	${ }^{1.112 \%}$	0	1	${ }_{8276}$	1	－	0	S455969 S459	。	1	。	－
13292	0	0	1	0	0	1．11\％	0	1	7841	0	0	0	\＄564204	0	1	0	0
13293	0	0	0	0	1	1．12\％	0	1	7841	0	1	0	\＄1217441	0	1	0	0
13294	0	0	0	0	1	${ }^{1.12 \%}$	0	1	7405	1	0	0	S134 146 $\$ 19535$	0	1	0	0
13295 13296 1	0	0	0	0	1	${ }^{1.12 \%}$	0	1	8276 8712	1	0	0	\＄195735 $\$ 493926$	0	1	0	0
13296	0	0	1	0	0	1．12\％	0	1	8712	0	0	1	\＄493926	0	1	0	\bigcirc
13297 13298	\bigcirc	0	1	0	\bigcirc	${ }^{1.1 .12 \%}$	\bigcirc	1	6098 9148	1	\bigcirc	\bigcirc	S113165 \＄162 942	\bigcirc	1	\bigcirc	\bigcirc
13299	0		0	0	1	1．12\％	0	1	7405	0	0	0	\＄277210	0	1	0	0
13300	－	1	0	0	0	1．13\％	0	1	7220	0	0	1	5406663	0	1	0	0
$\begin{array}{r}13301 \\ 13302 \\ \hline 1\end{array}$	－	1	0	0	1	${ }^{1.12 \%}$	0	1	7405	1	0	0	S142990 $\$ 165693$	0	1	0	0
13302	－	1	0	0	0	1．14\％	0	1	6534	1	0	0	\＄165 603	0	1	0	0
13303 13304	\bigcirc	0	1	0	${ }_{1}^{0}$	${ }^{1.1 .12 \%}$	\bigcirc	1	8712 6098	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	$\$ 450883$ $\$ 753152$	\bigcirc	${ }_{1}^{1}$	\bigcirc	\bigcirc
13305	0	0	0	0	1	1．12\％	0	1	7841	0	1	0	\＄1328285	0	1	0	0
13306	0	0	0	0	1	1．12\％	0	1	${ }_{6}^{6534}$	1	0	－	\＄209286	0	1	0	0
13307 13308	－	－	0	0	0	1．14\％	0	1	6750 6534	0	0		\＄511908	0	1	0	0
11308	－	0	1	0	0	1．12\％	0	1	6534	0	0	0	5413531	0	1	0	\bigcirc
13309 13310	\bigcirc	\bigcirc	0	0	1	${ }^{1.112 \%}$	0	1	6098 7405	\bigcirc	\bigcirc	0	\＄492239 $\$ 345353$	\bigcirc	1	\bigcirc	\bigcirc
13311	0	1	0	0	0	1．12\％	1	0	6098	0	0	1	\＄236969	0	1	0	0
13312	－	1	0	0	0	1．14\％	0	1	7841	0	1	0	\＄779829	0	1	0	0
${ }^{13313}$	0	0	1	0	0	${ }^{1.12 \%}$	0	1	6534 6534	1	0	0	\＄126363	0	1	0	0
13314			0	0	1	1．12\％	0	1	${ }_{6}^{654}$	0	0	1	\＄299000	－	1	0	0
13315 13316	${ }_{0}$	0	0	${ }_{0}^{1}$	${ }_{0}$	${ }_{\text {1．1．12\％}}^{1.12 \%}$	\bigcirc	1	6970 6970	${ }_{1}$	${ }_{0}^{1}$	${ }_{0}$	S764233 S104114	\bigcirc	${ }_{1}^{1}$	\bigcirc	\bigcirc
13317	0		－	0	1	1．14\％	0	1	5663	0	1	0	\＄1134360	0	1	0	0
13318	0	0		0	1	1．12\％	0	1	5663	0	0	1	\＄829717	0	1	0	0
13319		0	0	0	0	${ }^{1.12 \%}$	0	1	7405	0	0	1	5453183 571227	0	1	0	0
13320 13321	0	0	1	0	0	1．15\％		1	7405	1		0	571327	0	1	0	\bigcirc
${ }_{13322}^{1332}$	\bigcirc	${ }_{0}^{1}$	\bigcirc	${ }_{1}^{0}$	0	${ }^{1.1 .15 \%}$	\bigcirc	1	6098 6098	1	0	0	\＄114465 \＄135 598	0	1	${ }_{0}$	\bigcirc
13323	0	0	0	1	0	1．14\％	0	1	6970	0	0	1	\＄347366	0	1	0	0
13324	0	0	0	0	0	1．12\％	0	1	7841	0	1	0	\＄1254389	0	1	0	0
13325	0	0	0	1	1	1．14\％	0	1	7841	0	0	0	$\begin{array}{r}5269793 \\ \hline 18961\end{array}$	0	1	0	0
${ }^{13326}$	0	1	0	0	0	${ }^{1.11 \%}$	0	1	6400	0	0	1	5430761	0	1	0	0
13327 1338	\bigcirc	${ }_{0}$	0	1	0	${ }^{1.111 \%}$	\bigcirc	1	7405 7405	${ }_{1}^{0}$	\bigcirc	${ }_{0}$	S426013 S214946	${ }_{0}^{0}$	1	\bigcirc	0
13329	0	－	0	0	1	1．11\％	0	1	6098	0	1	0	\＄1027815	0	1	0	0
13330	0	1	0	0	0	1．11\％	0	1	6098	1	0	0	\＄216514	0	1	0	0
13331	0	0	0	0	1	${ }^{1.111 \%}$	0	1	${ }_{6}^{6970}$	1	0	0	S182047 $\$ 231686$	0	1	0	0
${ }^{13332}$	0	0	0	0	0	${ }^{1.111 \%}$	0	1	6098	1		0	${ }_{5}^{5231686}$	0	1	0	0
13333 1334	\bigcirc	0	0	0	1	${ }_{\text {1．13\％}}^{1.09 \%}$	\bigcirc	1	6098 6098	${ }_{0}$	\bigcirc	${ }_{0}$	5627533 S592990	${ }_{0}$	1	\bigcirc	\bigcirc
13335	0	0	0	0	0	1．13\％	0	1	5663	0	0	0	S561 182	0	1	0	0
13336	0			0	0	1．12\％		1	${ }_{6970}$	1	0	0	${ }_{\text {S16804 }}$		1	0	0
${ }^{13337}$	0	0	0	1	0	1．13\％	0	1	27007	1	0	0	\＄112325	0	1	0	0
13338 1339	0	1	0	0	0	${ }^{1.111 \%}$	0	1	${ }_{5}^{5663}$	0	1	0	\＄1281532	0	1	0	\bigcirc
13339 13340	0	\bigcirc	1	0	1	${ }^{1.1 .12 \%}$	0	1	6534 6970	1	\bigcirc	${ }_{0}^{0}$	S225848 S179308	\bigcirc	${ }_{1}^{1}$	\bigcirc	\bigcirc
13341	0	－	0	0	1	1．12\％	O	1	12632	0			S632 139		1	0	0
13342	0	0	0	0	0	1．11\％	0	1	6970	0		1	\＄5020 03	0	1	0	0
13343		0	0	0	1	${ }^{1.111 \%}$	0	1	${ }_{6}^{6098}$	1	，		（ $\begin{array}{r}\text { S2090909 } \\ \$ 1254389\end{array}$	0	1	0	0
13344 1335 1	0	0	0	0	1	1．11\％	0	1	${ }_{6}^{6098}$	0	1	－	\＄1254389	0	1	0	\bigcirc
13345 1336	\bigcirc	${ }_{0}$	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	${ }_{1.11 \%}^{1.11 \%}$	${ }_{0}$	1	6098 5663	${ }_{0}^{1}$	\bigcirc	$\stackrel{0}{0}$	\＄121148	$\stackrel{0}{0}$	1	\bigcirc	\bigcirc
13347	0	1	0	0	0	1．11\％	O	0	5663	0	－		\＄539000	0	1		0
13348	0	1	0	0	0	1．11\％	0	1	6534	0		1	\＄426476		1	0	0
13349	0	0	0	0	1	1．13\％	0	1	10019	0		1	\＄636198	0	1	0	0
13350 13351	0	0	0	0	1	1．11\％	0	1	6970	0	0	0	\＄558447	0	1		0
13351 1352	\bigcirc	0	0	0 1	\bigcirc	－ 1.12%	\bigcirc	1	6098 1653	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	\＄510000	\bigcirc	1	\bigcirc	0
13353	0		0	0	0	1．12\％	0	1	8276	1		0	\＄108376	0	1	0	0
13354	0	1	0	0	0	1．14\％	0	1	8276	0	－	1	S430 177 $\$ 8094$	0	1	0	0
13355 13356	\bigcirc	0	0	${ }_{1}$	\bigcirc	${ }_{1}^{1.12 \%}$	\bigcirc	1	8276 8276	${ }_{0}^{1}$	${ }_{0}$	${ }_{1}$	S80494 S499920	0	1	${ }_{0}$	${ }_{0}$
13357	0	0	0	${ }_{0}$	1	${ }_{1} 1.12 \%$	0	1	8276 10120	\bigcirc	0	${ }_{0}^{1}$	\＄449902	${ }_{0}$	1	0	${ }_{0}$
13358	0	0	0	0	1	1．12\％	0	1	10454	0		1	5673067	0	1	0	0
13359 13360	0	1	0	1	\bigcirc	1．12\％	\bigcirc	1	6098 6534	\bigcirc	0	0		0	1	0	
13360 13361	\bigcirc	${ }_{0}^{1}$	0	${ }_{1}$	\bigcirc	1．1．12\％	\bigcirc	${ }_{1}^{1}$	6534 3920	${ }_{1}$	$\stackrel{0}{0}$	${ }_{0}^{1}$	\＄413395 $\$ 139000$	\bigcirc	1	\bigcirc	\bigcirc
13362	0	0	0	0	1	1．12\％	0	1	12632	1		O	583813		1	0	
	0	0	0	0	0	1．11\％	0	1	8712	1			\＄218378	0	1	0	0
13364 13365	\bigcirc	0	1	0	\bigcirc	${ }^{1.111 \%}$	0	1	6970 6098	0	${ }_{0}^{1}$	\bigcirc	$\$ 917079$ $\$ 225959$	0	1	0	0
${ }_{13366}^{1365}$	${ }_{0}^{0}$	1	${ }_{0}$	${ }_{0}$	${ }_{0}^{0}$	${ }^{1.111 \%}$	\bigcirc	1	6098 6098	${ }_{0}^{1}$	1	0	$\$ 225459$ $\$ 888225$	${ }_{0}$	1	${ }_{0}$	$\stackrel{0}{0}$
${ }_{1}^{13367}$	0	0	0	0	0	1．12\％	0	1	${ }^{10} 019$	1	0	0	\＄182814	0	1	0	
13368 13369	0	0	0	1	0	－ 1.11%	0	1	6970 8276	0	0	1	560284 $\$ 21973$	0	1	0	\bigcirc
13369 1370	${ }_{0}^{0}$	1	${ }_{0}$	${ }_{0}$	${ }_{0}^{1}$	${ }^{1.12 \%}$	\bigcirc	1	8276 10454	${ }_{0}^{1}$	${ }_{1}^{0}$	\bigcirc	－ $\begin{gathered}\text { \＄219473 } \\ \$ 1330133\end{gathered}$	0	${ }_{1}^{1}$	0	0
13371	0	1	0	0	0	1．16\％	－	1	${ }_{9} 148$	0	${ }_{0}$	1	\＄534729		1	0	0
13372	0	0	0	0	0	1．11\％	0	1	6970	1	－	0	S221498	0	1	0	0
13373 1337	0	－	－	，	1	1．11\％	0	1	8712	1	0	0	\＄206179	－	1	0	0
13374	0	－			，	1．12\％		1	8276	1		0	S202847	0	1		－
13375 13376	\bigcirc	0	0	0	1	${ }_{\text {1．12\％}}^{1.12 \%}$	0	1	8712 7405	\bigcirc	${ }_{0}^{1}$	0	$\$ 1496399$ $\$ 402090$	${ }_{1}$	${ }_{0}^{1}$	\bigcirc	\bigcirc
13377	0	0	0	0	1	1．29\％		1	7841	0	0	0	\＄393372	1	0	0	${ }_{0}$
13378	0	－			1	1．11\％	－	1	27443	0	－	1	\＄773402	1	0	0	0
13379 1380	0	0	\bigcirc	0	1	${ }_{\text {1．1．15\％}}^{1.15}$	0	1	6098 9148 9	${ }_{1}$	\bigcirc	\bigcirc	S199331 S147293	1	0	0	\bigcirc
13381	0	0	0	0	1	1．10\％	${ }_{0}$	1	－9148	1	1	$\stackrel{0}{0}$	¢970 887	1	${ }_{0}$	${ }_{0}$	$\stackrel{0}{0}$
13382	0	0	0	0	1	1．18\％	0	1	3920	0	1	0	\＄1021862	1	0	。	。
13383 13384	0	－	0	0	1	${ }^{1.30 \%}$	0	1	${ }^{9583}$	1	1	0	1617522 S99947	1	0	0	
13384 13385	0	0	0	0	1	${ }_{1}^{1.111 \%}$	\bigcirc	1	13939 37026	0	1	0	S999947 S536 804	1	0	0	0
${ }_{1}^{13385}$	0	0	0	0	1	1．1．18\％		1	3792	0		0	53589048 $\$ 3585$	1	0	0	0
13387	0	0	0	0	1	1．76\％	1	1	6534	1	0	0	\＄76022	1	0	0	0
13388	0	0	0	0	1	1．10\％	0	1	5663	0	0	0	\＄301315	1	0	0	0
						1．33\％		${ }_{1}^{1}$	4792 6970		0	\bigcirc	$\$ 146801$ $\$ 105883$		0	${ }_{0}$	${ }_{0}$

observation	PROPERTY DURESS $=1$	LTV_9\%	LTV 81\%.90\%	LTV 70\%-78\%	LTV below	total tax burden	parcel in SCEIP $=1$	conventional LOAN = 1	torstiz	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	SOLD DURING 2004 2007	Sold $2008-2012$	$\begin{aligned} & \text { PRICE ADJUST. To } \\ & 2012 \end{aligned}$	$\begin{gathered} \text { ZIP CODE } \\ \text { Z95403 } \end{gathered}$	ZIP CODE 95404	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
13391	S	0	0	0	1	1.10\%	Sterp-1	-	6441	-200	209-200	0	\$795152	迷	5004	542	,
13392	0	0	0	0	1	1.12\%	0	1	10454	0	0	1	S664 816	1	0	0	0
13393	0	0	0	0	1	1.09\%	0	1	6098	0	-	0	${ }_{\text {S241 }}$ S52	1	0	0	0
13394	0	0	0	0	1	1.10\%	0	1	7405	0	1	0	\$1130752	1	0	0	0
13395	0	0	0		1	1.15\%	0	1	8276	0	1	0	\$151287	1	0	0	0
13396	0	0	0	0	1	1.15\%	0	1	7841	0	0	0	5711797	1	0	0	0
13397	0	0	0	0	1	1.11\%	0	1	43560	0	0	0	\$1084226	1	0	0	0
13398	0	0	0	0	1	1.15\%	0	1	4792	1	0	0	\$115682	1	0	0	0
13399	0	0	0	0	1	1.10\%	0	1	7841	0	1	0	\$124727	1	0	0	0
13400	0	0	0	0	1	1.29\%	0	1	6970	0	0	0	\$286481	1	0	0	0
13401	0	0	0	0	1	${ }^{1.15 \%}$	0	1	7841 5827	1	0	0	${ }_{\text {S121 }} 1688$	1	0	0	0
13402		0	0		1	1.15\%	0	1	5227	1	0	0	\$113856	1	0	0	0
${ }^{13403}$	0	0	0	0	1	1.10\%	0	1	5663	0	0	0	\$604769	1	0	0	
13404	0	0	0	0	1	1.29\%	0	1	7841	1	0	0	\$141085	1	0	0	0
13405 13406 1	0	\bigcirc	0	0	1	- 1.11%	0	1	10019 8712	0	${ }_{0}^{1}$	0	$\$ 1466079$ $\$ 55953$	1	0	0	0
${ }^{13406}$	0	0	0	0	1	${ }^{1.24 \%}$	0	1	8712	0	0	1	\$559593	1	0	0	0
13407	0	0	0	0	1	1.11\%	0	1	${ }^{17860}$	1	0	0	\$157724	1	0	0	0
13408	0	0	0	0	1	1.28\%	0	1	11761	0	0	0	5443303	1	0	0	0
13409	0	0	0	0	1	1.08\%	0	1	6534	0	0	0	\$312 230	1	0	0	0
13410	0	0	0	0	1	2.03\%	0	1	8276	0	1	0	\$108428	1	0	0	0
${ }^{13411}$	0	0	0	0	1	-1.27\%	0	1	${ }_{6}^{10019}$	1	0	0	S225197	1	0	0	0
${ }^{13412}$	0	0	0	0	1	${ }^{1.35 \%}$	0	1	6534	1	0	0	- 577811	1	0	0	0
13413 13414	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{1}^{1}$	${ }^{1.1 .1 \%}$	\bigcirc	${ }_{1}^{1}$	6937 43560	\bigcirc	1	\bigcirc	¢	${ }_{1}^{1}$	\bigcirc	\bigcirc	\bigcirc
13415	0	0	0	0	1	1.15\%	0	1	4792	0	1	0	\$847086	1	0	0	0
13416	0	0	0	0	1	1.18\%	0	1	5227	0	0	0	\$345431	1	0	0	0
13417	0	0	0	0	1	1.10\%	0	1	20473	0	0	1	547651	1	0	0	0
13418	0	0	0	0	1	1.30\%	0	1	7405 8722	0	1	0	\$1005 980 $\$ 152005$	1	0	0	0
13419	0	0	0	0	1	1.10\%	0	1	8712	1	0	0	\$152045	1	0	0	0
13420 13421 1822	-	0	0	0	1	1.29\%	0	1	5663	1	0	0	\$522084	1	0	0	0
13421 13422	\bigcirc	0	0	\bigcirc	1	- 1.28%	\bigcirc	1	6970 9583	${ }_{0}^{1}$	0	0	5268759 $\$ 878757$	1	\bigcirc	0	0
${ }_{13}^{1323}$	0	0	0	0	1	1.29\%	0	1	6534	0	1	-	\$1154629	1	0	0	0
13424	0	0	0	0	1	${ }^{1.33 \%}$	0	1	${ }_{1}^{11326}$	1	0	0	$\$ 383941$ $\$ 140995$	1	0	0	0
${ }^{13425}$	0	0	0	0	1	1.09\%	0	1	4356	1	0	0	\$140995	1	0	0	0
13426 13427	\bigcirc	0	0	0	1	${ }^{1.311 \%}$	0	1	${ }^{11326}$	1	0	0	\$80942	1	0	0	0
13427 13428	0	${ }_{0}$	${ }_{0}$	${ }_{0}$	1	${ }^{1.09 \%}$	0	1	6970 26572	${ }_{0}^{1}$	${ }_{0}$	${ }_{0}$	\$562607	1	${ }_{0}$	\bigcirc	0
13429	0	0	0	0	1	1.13\%	0	1	12197	0	1	0	\$871 849	1	0	0	0
13430	0	0	0	0	1	${ }^{1.12 \%}$	0	1	5227	0	1	0	5684690 $\$ 5239$	1	0	0	0
13431	0	0	0	0	1	1.28\%	0	1	6534	0	0	0	\$532239	1	0	0	0
13432 1343 13	0	0	0	0	1	1.10\%	0	1	6534	0	0	0	\$454 818	1	0	0	0
13433 13434	0	\bigcirc	\bigcirc	0	1	1.18\%	\bigcirc	1	8640 6534	0	${ }_{0}$	\bigcirc	\$480938 $\$ 408760$	1	\bigcirc	\bigcirc	0
13435	0	0	0	0	1	1.32\%	0	1	9148	1	0	0	\$93239	1	0	0	0
${ }^{13336}$	0	0	0	0	1	1.19\%	0	1	${ }_{6} 653$	0	1	0	S692488 S1655	1	0	0	0
13437	0	0	0	0	1	0.99\%	\bigcirc	1	6098	1	0	0	\$116055	1	0	0	0
13438 13439	0	0	\bigcirc	0	1	${ }^{1.26 \%}$	\bigcirc	1	${ }_{14810} 1485$	0	0	0	\$5709378	1	0	0	0
13439 13440	\bigcirc	0	0	0	1	${ }_{\text {l }}^{1.1 .18 \%}$	\bigcirc	1	4356 5663	\bigcirc	${ }_{1}$	\bigcirc	S314916 S886 755	1	\bigcirc	\bigcirc	0
13441	0	0	0	0	1	1.34\%	0	1	10890	0	0	0	\$754 191	1	0	0	0
${ }^{13442}$	-	0	0	0	1	${ }^{1.15 \%}$	0	1	6098	0	0	0	\$263303	1	0	0	0
13443	0	0	0	0	1	1.12\%	0	1	${ }^{13068}$	0	0	1	\$643803	1	0	0	0
13444 13455 1845	0	0	0	0	1	1.18\%	-	1	10890	0	1	0	5791732	1	0	0	0
13445 13446	\bigcirc	\bigcirc	\bigcirc	0	1	${ }_{\text {1.15\% }}^{\text {1.15\% }}$	\bigcirc	1	6534 8712	0	\bigcirc	${ }_{1}^{0}$	\$254032 S409 970	${ }_{1}^{1}$	\bigcirc	\bigcirc	0
13447	0	0	0	0	1	1.27\%	0	1	46174	1	0	0	\$118058	1	0	0	0
13448	0	0	0	0	1	1.10\%	0	1	6534	1	0	0	${ }_{5138127}$	1	0	0	0
13449	0	0	0	0	1	1.12\%	0	1	6098	0	1	0	\$778270	1	0	0	0
13450 13451	0	0	0	0	1	1.09\%	0	1	7841	1	0	0	\$55899	1		0	0
13451 13452	0	0	\bigcirc	${ }_{0}$	1	- ${ }_{\text {1.20\% }}^{1.212 \%}$	\bigcirc	1	11326 4792	${ }_{0}^{1}$	\bigcirc	${ }_{1}^{0}$	S51521 $\$ 266088$ S	${ }_{1}^{1}$	\bigcirc	${ }_{0}$	0
13453	0	0	0	0	1	1.11\%	0	1	18295	0	0	1	\$515042	1	0	0	0
13454	0	0	0	0	1	1.11\%	0	1	16553	1	0	0	\$68726	1	0	0	0
13455	0	0		0	1	1.25\%	0	1	30056	1	0	0	\$126689	1	0	0	0
13456 13457 105	\bigcirc	0	0	0	1	1.09\%	0	1	3485 14375	0	1	0	5923703 $\$ 25276$		-	0	0
13457 13458	\bigcirc	\bigcirc	\bigcirc	0	1	${ }_{1}^{1.24 \%}$	0	1	14375 2652	${ }_{0}^{1}$	${ }_{1}^{1}$	${ }_{0}$	5225276 $\$ 788843$	1	\bigcirc	${ }_{0}$	0
13459	0		0	0	1	1.18\%	0	1	6970	1	0	0	\$150565	1	0	0	0
13460	0	0	0	0	1	${ }^{1.12 \%}$	0	1	8712	0	0	1	533607	1	0	0	0
13461	0		0	0	1	${ }^{1.35 \%}$	0	1	4792	-	1	0	5781389	1	0	0	0
13622 13463 1	0	0	0	0	1	1.25\%	0	1	7841	0	0	0	5724614	1		0	0
13463 13464	0	\bigcirc	\bigcirc	${ }_{0}$	1	- ${ }_{\text {1.1.3\% }}^{1.38 \%}$	0	1	3485 8712	\bigcirc	1	0	$\$ 696120$ $\$ 77391$	1	\bigcirc	\bigcirc	\bigcirc
13465		0	0	0	1	1.20\%	0	1	61420	0	1	0	\$1678369	1	0	0	0
${ }^{13466}$	0	0	0	0	1	${ }^{1.111 \%}$	0	1	${ }_{14375}$	0	0	0	\$846452	1		0	0
13467	0		0	0	1	1.15\%	0	1	5663	1	0	0	S222084	1	0	0	0
13468 13469	0	0	0	0	1	1.18\%		1	3485	0	0	0	${ }_{5488} 876$,	0	0	0
13469 13470	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1	${ }^{1.1 .18 \%}$	${ }_{0}$	1	6098 4792	${ }_{0}$	\bigcirc	${ }_{0}$	S394027 588708	1	${ }_{0}$	\bigcirc	0
13471	0	0	0	0	1	1.11\%		1	2038	1		0	\$187882	1	0		0
13472	0	0	0	0	1	${ }^{1.19 \%}$	0	1	12197	0	1	0	\$1066861	1	0	0	0
13473 1347	0	${ }_{0}$	\bigcirc	\bigcirc	1	${ }_{\text {1.1.15\% }}^{1.15 \%}$	\bigcirc	1	6970 4356	${ }_{1}$	${ }_{0}^{1}$	${ }_{0}^{0}$	$\$ 897408$ $\$ 126363$	${ }_{1}^{1}$	${ }_{0}$	\bigcirc	0
13475	-	0	0	0	1	1.43\%	0	1	1742	0	0	1	\$230857	1	0	0	0
13476	0	0	0	0	1	1.10\%	0	1	6098	0	0	1	\$506811	1	0	0	0
13477	0	0	0	0	1	${ }^{1.15 \%}$		1	7405 1835	-	0	0	S697666 $\$ 68377$	1	0	0	0
13478 13479	0	\bigcirc	\bigcirc	0	1	${ }_{\text {1.12\% }}^{1.09 \%}$	\bigcirc	1	18375 5663	0	\bigcirc	0	${ }_{\substack{\text { S613677 } \\ \text { S4368 }}}^{\text {S }}$	1	$\stackrel{0}{0}$	0	0
13480	0	0	0	0	1	1.09\%	-	1	5227	1	0	0	\$111061	1	0		0
13481	0	0	0	0	1	1.10\%	0	1	4792	0	0	0	\$388034	1	0	0	0
13482		0	0	0	1	1.34\%	0	1	17860	0	0	0	\$450 582 $\$ 47295$	1	0	0	
13483 13484	0	\bigcirc	0	0	1	1.20\%	\bigcirc	1	21344 10019	0	\bigcirc	\bigcirc	\$478 895 $\$ 429973$	1	\bigcirc	\bigcirc	\bigcirc
13485	0	0	0	0	1	1.10\%	0	1	6534	0	1	0	\$817261	1	0	0	
$\begin{array}{r}13886 \\ \hline 1387\end{array}$		0	0	0	1	1.11\%	0	1	13068 6098	0	0	0		1	0	0	0
13487 1388	0	\bigcirc	\bigcirc	${ }_{0}$	1	${ }^{1.1 .16 \%}$	${ }_{0}$	1	${ }_{6}^{6098}$	1	${ }_{0}$	\bigcirc	S32423 $\$ 22389$	1	${ }_{0}$	${ }_{0}$	${ }_{0}$
13489	0	0	0	0	1	1.15\%	0	1	6098	1	0	0	\$90518	1	0		0
13490	0	0	0	0	1	1.10\%	0	1	8276	1	0	0	\$136992	1	0	0	0
13491	0	0	0	0	1	1.11\%	0	1	10019	0	-	0	\$702840	1	0	0	
13492	0	0	0	0	1	1.15\%	0	1	7405	1	0	,	${ }_{\text {S }}^{5133643}$	1	0		-
13493 13494	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1	1.10% 1.34% 1	\bigcirc	1	6853 8712	\bigcirc	\bigcirc	${ }_{1}$	\$515601 $\$ 436000$	1	\bigcirc	\bigcirc	0
13495	0	0	0	0	1	1.16\%	0	1	8712	0	0	0	\$266084	1	0	0	0
13496	0	0	0	0	1	1.18\%	0	1	3920	0	-	1	5386551	1	0	0	0
13497 13498	0	\bigcirc	0	0	1	${ }_{\text {1.1.13\% }}^{1.15}$	0	1	7405 11326	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	($\begin{gathered}\text { S230944 } \\ \text { S145941 }\end{gathered}$	${ }_{1}^{1}$	\bigcirc	\bigcirc	\bigcirc
13499	0	0	0	0	1	1.15\%	0	1	6970	1	0	0	\$135 152	1	。	0	0
13500	0	0	0	0	1	1.30\%	0	1	7841	0	1	0	\$1145392	1	0	-	0
${ }^{13501}$	0	0	0	0	1	${ }^{1.09 \%}$	\bigcirc	1	${ }_{6}^{6098}$	-	1	0		1	0	0	
13502 13503	${ }_{0}$	0	\bigcirc	\bigcirc	1	- $1.1 .15 \%$	0	1	9148 4792	0	1	0		1	${ }_{0}$	${ }_{0}$	${ }_{0}$
13504		0		0	1	1.33\%	-	1	8712	1	0	0	\$99276	1			0
13505	0		0	0	1	1.18\%	0	1	7405		0	1	\$365 649	1	0	0	
13506 13507		0	0	0	1	1.28\%	0	1	7405 5027	1	0	0	\$235635	1	0	0	
13507 13508	0	\bigcirc	0	0	1	${ }^{1.1 .12 \%}$	0	1	5227 7405	1	\bigcirc	0	S212540 S403 840	1	\bigcirc	\bigcirc	0
${ }^{13509}$	0	\bigcirc	0	0	1	${ }^{1.1 .18 \%}$	0	1	5663	1	0	0	${ }_{\text {S }} 5121712$	1	0	0	
$\begin{array}{r}13510 \\ 13511 \\ \hline 1512\end{array}$	0	0	0	0	1	1.18\%	0	1	7841 5631	0	1	1	\$1016074	1	0	\bigcirc	\bigcirc
${ }_{13512}^{13511}$	\bigcirc	0	0	0	1	1.27% 1.31%	0	1	5663 7841	\bigcirc	${ }_{0}^{0}$	${ }_{1}^{1}$	5643803 S517969	1	\bigcirc	\bigcirc	\bigcirc
13513	0		0		1	1.37\%		1	4356	0	0	\bigcirc	\$308378	1	0	0	0
13514 13515 1515	0	0	0	0	1	1.11\%	\bigcirc	1	10454 32234	0	0	0	$\$ 1450950$ $\$ 225276$	1	\bigcirc	0	0
${ }^{13515}$		0	0		1	1.11\%	0	1	32234	1	0	-	\$225276	1	0	0	0
13516 13517	0	0	\bigcirc	\bigcirc	1	${ }^{1.1 .12 \%}$	0	1	6098 6534	1	0	0	5195735 5506688	1	\bigcirc	\bigcirc	\bigcirc
13518		0	0	0	1	1.09\%	0	1	6098	1	0	0	\$91635	1	0	0	
									2178 6098		0	${ }_{0}^{1}$	$\$ 287955$ $\$ 1196489$		\bigcirc	0	

observation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％－90\％	LTV 70\％－78\％	LTV below 70\%	total tax burden	parcel in SCEIP $=1$	CONVENTIONAL LOAN $=1$	torstze	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	$\begin{gathered} \text { SOLD DURING } \\ 2004 _2007 \end{gathered}$	Soto 2008－2012	PRICE ADJUSt. to 2012	ZIP CODE 295403	ZIP CODE 95404	ZIP CODE 95472	ZIP CODE 94928
13521	Sss	0	0	0	\％	1．10\％			10890	－200	${ }^{2004}$	0	\＄107767				
13522	0	0	0	0	1	1．15\％	0	1	4356		0	0	\＄239 198	1	0	0	0
13523	0	0	0	0	1	1．10\％	0	1	9148	1	0	0	\＄580 425	1	0	0	0
13524	0		0	0	1	1．16\％	0	1	6098	0	1	0	\＄1190609	1	0	0	0
13525	0	0		0	1	1．15\％	0	1	6098	1	0	0	\＄106549	1	0	0	0
13526	0	0	0	0	1	1．10\％	0	1	11326	1	0	0	\＄135914	1	0	0	0
13527	0	0	0	0	1	1．09\％	0	1	4356	0	1	0	5731480	1	0	0	0
13528	0	0	0	0	1	1．16\％	0	1	7841	0	，	1	5397781	1	0	0	0
13529	0			0	1	1．12\％	0	1	2178	0	0	0	5319274	1	0	0	0
13530	0			0	1	1．10\％	0	1	6098	0	0	0	5434582	1	0	0	0
${ }^{13531}$	0	0	0	0	1	${ }^{1.18 \%}$	0	1	${ }_{4}^{4356}$	0	0	1	5286170 $\$ 6622$	1	0	0	0
13532	0	0	0	0	1	1．18\％	0	1	5227	0	0	0	5466932	1	0	0	0
13533	0	0	－	0	1	1．25\％	0	1	7405	0	0	1	\＄563720	1	0	0	0
13534	0	－	－	0	1	1．13\％	0	1	6970	0	－	1	\＄198994	1	0		0
13535	0			0	1	1．32\％	0	1	7841	1	0	0	\＄101736	1	0	0	0
13536	0	0	0	0	1	1．18\％	0	1	5663	0		0	5416820	1	0	0	0
13537	0	0	0	0	1	1．18\％	0	1	5227	0	1	0	\＄951414	1	0	0	0
13538	0	0	0	0	1	1．18\％	0	1	4792	1	0	0	\＄202 510	1	0	0	0
13539	0	－	0	0	1	1．50\％	0	1	5663	0	0	1	S618000	1	0	0	0
13540	0		0	0	1	${ }^{1.1 .18 \%}$	0	1	7405	1	0	0	570165	1	0	0	0
13541	0	0		0	1	${ }^{1.15 \%}$	0	1	${ }_{6}^{6970}$	1	0	0	\＄170923	1	0	0	0
${ }^{13542}$	0	0	0	0	1	${ }^{1.111 \%}$	0	1	${ }^{11326}$	${ }^{1}$	1	0	\＄1278920	1	0	0	0
${ }^{13543}$	0	0	0	0	1	1．26\％	0	1	${ }^{13068}$	1	0	0	${ }_{5164552}$	1	0	0	0
13544	0	0	0	0	1	1．10\％	0	1	7405	0	0	0	$\begin{array}{r}5333764 \\ \$ 5379 \\ \hline\end{array}$	1	0	－	0
13545 13546	\bigcirc	\bigcirc	0	\bigcirc	1	－ $\begin{aligned} & 1.10 \% \\ & 1.18 \% \\ & 1.10 \%\end{aligned}$	\bigcirc	1	6534 5663	0	\bigcirc	0	$\$ 583779$ $\$ 437546$	1	\bigcirc	\bigcirc	\bigcirc
13546 13547	\bigcirc	\bigcirc	0	\bigcirc	1	${ }_{\text {l }}^{1.1 .12 \%}$	\bigcirc	1	5663 7405	0	0	0	\＄437546 $\$ 714582$	1	0	0	0
13548	0		。		1	1．18\％	0	1	4792	0	－	1	\＄251026	1	0	。	－
13549	0	0	0	0	1	1．16\％	0	1	5663	0	0	1	\＄341 396	1	0	0	0
13550	0	－	－	0	1	1．16\％	0	1	6000	0	0	0	\＄641251	1	0	0	0
13551	0	0	－	0	1	1．14\％	0	0	4792	1	0	0	587675	1	0	0	0
${ }^{13552}$	0	0		0	1	${ }^{1.1 .16 \%}$	0	1	8276 6534	0	1	0	\＄1179360	1	\bigcirc	\bigcirc	0
13533 1354 15	0	0	0	－	1	${ }^{1.10 \%}$	0	1	${ }^{6534}$	0	0	0	\＄872102	1	0	0	0
13554		0	0	0	1	${ }^{1.111 \%}$	0	1	10454 34848	1	0	0	S418195 $\$ 262703$	1	0	0	0
13555 13556	\bigcirc	${ }_{0}$	\bigcirc	\bigcirc	1	－${ }_{\text {1．12\％}}^{1.24 \%}$	${ }_{0}$	1	34848 5227	1	\bigcirc	\bigcirc	S262 703 S103 369	1	\bigcirc	0	${ }_{0}$
13557			0	－	1	1．15\％	0	1	5663	${ }_{0}$	1	0	\＄1136155	1	－	0	。
13558	0	0		0	1	1．32\％	0	1	5663	1	0		\＄162 942	1	0	0	0
13559	0	0	0	0	1	1．10\％	0	1	5663	0	0	0	\＄564 204	1	0	0	0
13560	－	0	0	0	1	1．35\％	0	1	10890	1	0	0	\＄146316	1	0	0	0
13561	0	0	0	0	1	1．16\％	0	1	8276	0	1	0	\＄1147735	1	0	0	－
13562 13563	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1	${ }_{\text {l }}^{1.27 \% \%}$	\bigcirc	1	99268 10880	\bigcirc	\bigcirc	${ }_{1}^{0}$	（ 5282772	1	\bigcirc	\bigcirc	0
13564	0	0	0		1	1．12\％	0	1	6098		1	0	\＄855473	1	。	。	0
13565	0	－	0	－	1	1．13\％	0	1	5663	1	0	0	\＄145 106	1	0	0	0
${ }^{13566}$	0	0	0	－	1	1．1．16\％	－	1	14375	0	0	0		1	0	0	－
13567 13568	\bigcirc	0	\bigcirc	\bigcirc	1	${ }_{\text {1．1．15\％}}^{1.15}$	0	1	4792 5663	${ }_{1}^{1}$	0	0	\＄143 184 $\$ 199999$	${ }_{1}^{1}$	\bigcirc	\bigcirc	${ }_{0}$
13569	0		－	0	1	1．18\％	－	1	3559	${ }_{0}$	0	0	\＄487351	1	－	0	0
13570	0	0	－		1	1．18\％		1	5227	0	0	0	\＄414517	1	。	0	0
13571	0	0	0	0	1	1．18\％	0	1	6534	0	0	1	\＄240985	1	0	0	0
13572	0	0	0	0	1	1．12\％	－	1	11761	0	0	0	\＄719 185	1	0	0	0
13573	0	0	0	0	1	1．18\％	0	1	4792	0	0	0	\＄251562	1	－	－	
13574 13575	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1	1.28% 1.35% 1，	\bigcirc	1	7841 9583	\bigcirc	\bigcirc	${ }_{0}^{1}$	S690625 656319	1	\bigcirc	\bigcirc	0
13576	0		0		1	1．10\％	0	1	14375	0	0	0	\＄708288	1	－	0	0
13577	0	0	－	0	1	1．10\％	0	1	6970	1	－	0	\＄121771	1	0	0	0
13578	0	0	0	0	1	1．16\％	0	1	9148	0	0	0	\＄500875	1	0	0	0
13579	0		0	0	1	1．13\％	0	1	8712	1	0	0	\＄148557	1	0	－	0
13580	0	－	0	0	1	1．13\％	0	1	14810	0	－			1	0	0	0
13581 13582	\bigcirc	\bigcirc	\bigcirc	0	1	1．30\％	\bigcirc	1	（10454	${ }_{0}^{1}$	\bigcirc	0	S104866 $\$ 413882$	1	0	\bigcirc	\bigcirc
13582 13583	\bigcirc	0	0	0	1	${ }^{1.141 \%}$	0	1	5028 5663	0	\bigcirc	${ }_{0}^{1}$	5413882 $\$ 67314$	1	\bigcirc	0	0
13584	0	0	0	0	1	1．10\％	0	1	10454	1	0	0	\＄289838	1		0	0
13585	0	0	0	0	1	0．66\％	0	1	5663	1	－	0	\＄139000	1	0		
13586	0	0	0	0	1	1．11\％	0	1	7841	1	0	0	\＄99664	1	0	0	0
13587 13588 1	0	0	0	\bigcirc	1	－ 1.08%	0	1	6534 5400	0	1	0	5855473 S279141	1	0	0	0
13588 13589	\bigcirc	0	0	\bigcirc	1	${ }_{\text {l }}^{1.134 \%}$	\bigcirc	1	5400 7405	0	${ }_{1}^{0}$	${ }_{0}^{1}$	（ $\begin{array}{r}\text { \＄279 } 141 \\ \$ 1066861\end{array}$	1	\bigcirc	\bigcirc	0
13590	0	0	0		1	1．18\％	0		4792	1	0	0	\＄87675	1	0	0	。
13591	0	0	0	0	1	1．27\％	0	，	7841	0	0	0	\＄384756	1	0		0
13592	0	0	0	0		${ }^{1.12 \%}$	0	1	6098		0	0	\＄131173	1	－	0	0
$\begin{array}{r}13593 \\ \hline 13594\end{array}$	0	0	0	0	1	${ }^{1.111 \%}$	0	1	9148 3965	\bigcirc	1	\bigcirc	\＄2124518 $\$ 362703$	1	0	\bigcirc	\bigcirc
13594 13595	0	0	0	${ }_{0}^{0}$	1	${ }_{\text {1．15\％}}^{1.12 \%}$	\bigcirc	1	3965 8276	${ }_{1}^{0}$	0	0	S3627 S103 197	1	\bigcirc	0	0
13596	0	0	0	0	1	1．18\％	0	1	6970	0	0	1	\＄306019	1	0	0	0
13597	0	0	0	0	1	1．33\％	0	1	5227	1		0	\＄179925	1	0	0	0
13598	－	0	0	0	1	1．11\％	0	1	17424	0	0	0	\＄1423595	1	0	0	0
13599 13600	0	0	0	0	1	1．11\％	0	1	13200 6098	0	0	0	（ 5654076	1	\bigcirc	0	0
13600 13601	0	\bigcirc	\bigcirc	0	1	－${ }_{\text {1．12\％}}^{1.28 \%}$	\bigcirc	1	6098 4356	0	${ }_{0}^{1}$	0	\＄1311699 $\$ 278102$	1	0	\bigcirc	0
13602	0	0	0	－	1	1．10\％	0	1	11326	1	0	0	\＄140 386	1	0		0
13603 13604	0	0	0	0	1	1．15\％	O	1	6098 4792	0	\bigcirc	0		1	\bigcirc	0	0
13604 13605	\bigcirc	0	\bigcirc	\bigcirc	1	1．38\％ 1.15% 1.15	0	1	4792 20038	${ }_{1}$	\bigcirc	0	\＄316005	1	\bigcirc	\bigcirc	\bigcirc
13606		0	0		1	1．18\％	0	1	6534	1	。	0	\＄121466	1	0		0
13607		0	0	0	1	1．14\％	0	1	5227	0	0	1	\＄33000	1	0	－	0
13608 13609	0	0	0	0	1	1．40\％	0	1	${ }^{4} 356$	1	0	0	\＄995267	1	0	0	\bigcirc
13609 13610	\bigcirc	\bigcirc	0	\bigcirc	1	1．1．9\％	0	1	7841 5663	1	0	0		1	\bigcirc	\bigcirc	\bigcirc
13611		0	0	0	1	1．18\％	0	1	3920	0	0	1	\＄266088	1	0		
13612		0	0	0	1	${ }^{1.111 \%}$	0	1	${ }^{13068}$	0	1	0	${ }_{\text {S1 }}^{\text {S185962 }}$	1	\bigcirc		0
13613 13614	\bigcirc	0	0	\bigcirc	1	1．15\％	0	1	8276 6534	1	0	0	S133948 $\$ 109737$	1	\bigcirc	0	\bigcirc
${ }_{13615}^{13614}$	\bigcirc	0	0	0	1	${ }_{1.21 \%}^{1.13 \%}$	0	1	6534 37026	${ }_{0}^{1}$	0	${ }_{0}$		1	0	\bigcirc	${ }_{0}$
${ }_{13616}^{1315}$	0	0	。	0	1	${ }^{1.15 \%}$	0	1	3 6		0	0	${ }_{\text {S423 }}$	1	0	0	0
13617 13618 13	\bigcirc	0	\bigcirc		1	${ }^{1.27 \%}$	\bigcirc	1	7841 5227	0	1		S $\$ 922569$ $\$ 18214$	1	\bigcirc	0	
13618 13619	\bigcirc	\bigcirc	0	\bigcirc	1	${ }_{\text {l }}^{1.1 .18 \%}$	\bigcirc	1	5227 5663	1	0	0	$\$ 118214$ $\$ 922599$	1	0	\bigcirc	0
13620	0	0	0	0	1	${ }^{1.15 \%}$	0		7841	1	0	0	\＄131019	1	0	0	0
13621	0	0	0	0	1	1．15\％	0	1	21780	0	0	0	5467470	1	0	0	0
13622 13623	\bigcirc	0	\bigcirc	\bigcirc	1	1．30\％	\bigcirc	1	6970 6098	0	1	0	5815984 $\$ 724614$	1	\bigcirc	\bigcirc	\bigcirc
${ }_{13624}^{1323}$	${ }_{0}$	0	0	0	1	${ }^{1.18 \%}$	0	1	3049		0	0	522614 $\$ 2874$	1	\bigcirc	\bigcirc	\bigcirc
13625	0	0	0	0	1	1．20\％	0	1	5227	，	0	1	${ }_{5}^{5688723}$	1	－		－
13626 13627	0	0	\bigcirc	0	1	${ }^{1.14 \%}$	0	${ }_{0}^{1}$	3485 4792	1	0	0	¢ 5889292	1	\bigcirc	\bigcirc	${ }_{0}$
13628	0		。	0	1	${ }_{1.11 \%}^{1.14 \%}$	0		11082	${ }_{0}$	0	0	\＄1000 352	1		0	0
13629	0	0	0	0	1	1．25\％	0	1	10250	0	0	0	\＄692551	1	0	0	0
13630 13631 13	\bigcirc	0	0	0	1	1．10\％	0	1	7757 563	0	0	0	$\$ 761806$ $\$ 66436$	1	0	0	0
13631 13632	0	0	0	\bigcirc	1	${ }_{1}^{1.27 \%}$	0	1	5663 4818	0	0	0	$\$ 664336$ $\$ 602776$	1	0	0	0
13633	0	0	0	0	1	1．25\％	0	1	15682	0		1	5692516	1	－	0	
13634 13635	0	0	\bigcirc	0	1	1．22\％	0	1	14810 7405	0	0	0	5742677 $\$ 461714$	1	\bigcirc	0	\bigcirc
13635 13636	0	${ }_{0}^{0}$	0	\bigcirc	1	${ }^{1.7 .78 \%}$	1	1	7405 1009	0	0	${ }_{0}^{1}$	\＄461714 $\$ 225848$	1	0	0	\bigcirc
13637	0	0	0	0	1	1．25\％	0	1	9583	1		，	\＄249402	1	0	0	0
13638	0	0	0		1	1．10\％	0	1	${ }_{5}^{6998}$	1		0	$\begin{array}{r}\text { S140856 } \\ \\ \hline 16693\end{array}$	1	0	0	0
13639 13640	\bigcirc	\bigcirc	0	0	1	${ }^{1.1 .16 \%}$	0	1	5663 13939	1	0	0	$\$ 166903$ $\$ 1168184$	1	0	${ }_{0}$	0
13641					1	1．15\％		1	4356	1			\＄112029	1	0	0	0
${ }_{13642}^{13643}$			－	，	1	1．10\％	，	1	8712 6542			0	\＄1333508	1	－	0	0
13643 13644	－	－	－	－	1	1．30\％	－	1	6534 5663	0	0	1	$\$ 550159$ $\$ 368460$	${ }_{1}^{1}$	0	0	0
13645	0	0	0	0	1	1．13\％	0	1	18295	1	0	0	\＄117897	1			0
13646 13647 1	\bigcirc	0	0	0	1	1．18\％	0	1	3920 10890	0	0	0	S211342 $\$ 471906$	1	0	0	\bigcirc
13647 13648	0	0	\bigcirc	\bigcirc	1	${ }^{1.1 .15 \%}$	0	1	10890 5663	\bigcirc	0	0	S471906 $\$ 30967$	1	\bigcirc	\bigcirc	\bigcirc
13649 13650	0		－	－	1	${ }_{\text {1．25\％}}^{1.17 \%}$	－	1	38768 28000	1	－	－	\＄285321 $\$ 609189$	1	0	0	\bigcirc

osservation	PRoperty DURESS $=1$	LT＿－90\％	LTV 81\％－90\％	LTv 70\％－78\％	Ltv below 7\%	totaltax burden	parcel in SCEIP $=1$	CONVENTIONAL LOAN＝ 1	torstze	$\begin{gathered} \text { SoLD } \\ \text { PRIOR_2000 } \end{gathered}$	SOLD DURING 20042007	Sold $2008-2012$	PRICE ADJUST．TO 2012	$\begin{gathered} \text { ZIP CODE } \\ \text { Z95403 } \end{gathered}$	ZIP CODE 95404	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	ZIP CODE
13781	buks	0	0	0	\％	1．70\％	－1	Lodr	18295	${ }_{0}$	${ }^{2004}$	0	\＄1330 133	2940			
13782	0	0	0	0	1	1．29\％	。	1	10454	0	0	1	S430 000	1	0	0	0
13783	0	0	0		1	1．18\％		1	5227	1	0	0	\＄62607	1	0	0	0
13784	0	0	0	0	1	1．33\％	0	1	6098	1	0	0	\＄62 607	1	0	0	0
13785	0	0	0	0	1	1．11\％	0	1	18295	0	0	0	\＄519 189	1	0	0	0
13786	0	0	0	0	1	1．10\％	0	1	7405	0	0	0	\＄375 369	1	0	0	0
13787	0	0	0	0	1	1．12\％	0	1	2975		1		\＄877518	1	0	0	0
13788	0	0		0	1	1．13\％	0	1	6534	1	0	0	\＄131512	1	0	0	0
13789	0	0	0	0	1	1．29\％	0	1	12197	0	0	0	5769630	1	0	0	0
13790	0	0		0	1	1．10\％	0	1	13068	1		0	\＄72668	1	0	0	0
13791	0	0	0	0	1	1．15\％	0	1	${ }_{6}^{6098}$	0	－	0	\＄500 176 $\$ 1723$	1	0	0	0
13792	0	0	0	0	1	1．15\％	0	1	5663	1	－	0	\＄132 121	1	0	0	0
13793	0	0	0	0	1	1．15\％	0	1	7841	0	0	0	523635	1	0	0	0
13794	0	0	0	0	1	1．15\％	0	1	6098	，	0	0	\＄231781	1	0	0	0
13795	0	0	0	0	1	1．10\％	0	1	7405	1	0	0	5285698	1	0	0	0
13796	0	0		0	1	1．15\％	0	1	21344	0	0	1	$\begin{array}{r}5481991 \\ \$ 823038 \\ \hline\end{array}$	1	0	0	0
13797	0	0	0	0	1	1．09\％	0	1	${ }_{5}^{456}$	1	0	0	\＄123038	1	0	0	0
13798	0	0	－	0	1	1．12\％	0	1	5663	0	1	0	\＄1387482	1	0	0	
13799	0	0	0	0	1	1．13\％	0	1	10019	1	0	0	\＄93463	1	0	0	0
13800	0	0	0	0	1	1．15\％	0	1	${ }^{2614}$	0	1	0	\＄945872	1	0	0	0
13801	0	0	0	0	1	1．10\％	0	1	7020	0	0	0	S799369 $\$ 86451$	1	0	0	0
13802	0	0	0	0	1	${ }^{1.10 \%}$	0	1	5663	0	1	0	5860051	1	0	0	－
$\begin{array}{r}13803 \\ 13804 \\ \hline\end{array}$	－	－	－	0	1	${ }_{\text {122\％}}^{1.27 \%}$	0	1	7841 5227	0	1	0	\＄1006439	1	\bigcirc	0	－
13804 13805	\bigcirc	${ }_{0}$	0	0	1	${ }_{\text {1．24\％}}$	${ }_{0}$	1	5227 13504	1	\bigcirc	0	\＄217874	1	${ }_{0}$	0	${ }_{0}$
13806	0	0	0	0	1	1．04\％	0	1	5663	1	0	0	\＄57688	1	0	0	0
13807	0	0	0	0	1	1．13\％	0	0	7841	0	0	0	5328707	1	0	0	0
13808	0	0		0	1	1．28\％	0	1	6970	1	0	0	\＄162 781	1	0	0	
13809	0	0	0	0	1	1．15\％	0	1	2614	0	0	1	5315787	1	0	0	0
13810 13811	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1	${ }_{\text {1．15\％}}^{1.29 \%}$	\bigcirc	1	6534 6098	\bigcirc	\bigcirc	1	5453660 $\$ 354677$	1	\bigcirc	0	\bigcirc
13812	0	－	0	0	1	1．16\％	0	1	6534	0	1	0	\＄1217441	1	。	0	0
13813	0	0	0	0	1	1．09\％	0	1	${ }^{4792}$	1	0	0	\＄111725	1	0	0	0
13814	0	0	0	0	1	1．27\％	0	1	13068	0	0	0	\＄705376	1	0	0	0
13815	0	0	0	0	1	1．31\％	0	1	${ }_{4}^{4356}$	0	1	0	\＄1031236	1	0	0	0
13816	0	0	0	0	1	1．12\％	0	1	2614	0	1		5812859	1	0	0	0
13817	0	0	0	0	1	${ }^{1.12 \%}$	0	1	7841	0	1	0	\＄653 497	1	0	0	0
13818 13819	\bigcirc	0	\bigcirc	\bigcirc	1	1.14% 1.30% 1	\bigcirc	1	3485 13504	0 1	\bigcirc	${ }_{0}^{1}$	S260385 S103 525	1	\bigcirc	\bigcirc	0
13820	0	0	0	0	1	1．12\％	0	1	18295	0	1		\＄2568716	1	0	－	0
13821	－	0	－	0	1	1．30\％	0	1	12197	0	0	0	5338400	1	0	0	0
13822	0	0	0	0	1	1．34\％	0	1	19166	0	1	0	579829	1	0	0	0
13823 13824 18	0	0	0	0	1	1．25\％	0	1	6534 8110	${ }_{0}^{1}$	\bigcirc	0	S188745 $\$ 67314$	1	\bigcirc	\bigcirc	\bigcirc
13824 13825	\bigcirc	0	\bigcirc	\bigcirc	1		0	1	8110 15682	\bigcirc	${ }_{1}^{0}$	\bigcirc	$\$ 673144$ $\$ 1687478$	1	\bigcirc	\bigcirc	0
13826	0	0	0	。	1	1．36\％		1	${ }_{9} 583$	1	0		\＄110811	1	－	0	0
13827	0	0	0	0	1	1．12\％	0	1	5227	\bigcirc	0	0	\＄210920	1	0	0	0
13828	1	0	0	0	1	1．12\％	0	1	4792	0	0	0	\＄370849	1	0	0	0
13829 1883 1829	0	0	0	0	1	${ }^{1.34 \%}$	0	1	10890 7841	1	0	\bigcirc	5111750 $\$ 667673$	1	\bigcirc	\bigcirc	0
13830 13831	\bigcirc	\bigcirc	\bigcirc	0	1	${ }^{1.09 \%}$ 1．11\％	0	1	7841 16117	0	0	${ }_{1}^{0}$	\＄667 673 $\$ 81304$	1	\bigcirc	\bigcirc	0
13832	0	－	0	0	1	1．11\％	－	1	12632	1	0	0	\＄362 464	1	0	0	0
13833	0	0	0	0	1	1．18\％	0	1	6098	1	0	0	\＄110 507	1	0	0	0
13834		0	0	0	1	1．15\％	0	1	7405	0	0	0	\＄417972	1	0	0	0
${ }^{13835}$	0	－	0	0	1	${ }^{1.14 \%}$	0	1	5227 3049	1	\bigcirc	0	\＄56793 $\$ 399988$	1	\bigcirc	\bigcirc	\bigcirc
13836 13837	\bigcirc	0	\bigcirc	\bigcirc	1	－${ }_{\text {1．1．3\％}}$	0	1	3049 9148	\bigcirc	\bigcirc	${ }_{1}$	5339978 $\$ 33940$	1	\bigcirc	0	0
13838	0		0	0	1	1．15\％	0	1	6970	0	0	0	\＄335620	1	0	0	0
13839	0	0	0	0	1	1．27\％	0	1	7405	1	0	0	\＄149745	1	0	0	0
13840	0	0	0	0	1	1．15\％	－	1	${ }^{6970}$	1	0	0	\＄112933	1	0	0	0
${ }_{1}^{13841}$	0	0	0	0	1	1．10\％	0	1	20473 6970	1	0	0	$\$ 84966$ $\$ 888281$ S	1	\bigcirc	\bigcirc	\bigcirc
13842 13843	\bigcirc	0	0	0	1	－${ }_{\text {1．1．2\％}}^{1.26 \%}$	0	1	6970 7405	${ }_{1}^{1}$	${ }_{0}^{1}$	\bigcirc	$\underset{\substack{\text { S868281 } \\ \$ 19537}}{\text { 312 }}$	1	\bigcirc	0	\bigcirc
13848	0	0	0	0	1	1．10\％	0	1	14810	0	1	0	\＄939343	1	0	0	0
13845	0	0	0	－	1	1．10\％	0	1	6534	1	0	0	\＄326350	1	0	0	0
13846	0	0	0	0	1	1．11\％	0	1	9148	0	0	0	5852064	1	0	0	0
13847 13848 18	0	0	0	\bigcirc	1	${ }^{1.09 \%}$	0	1	4356 6098	1	0	0	S111997	1	\bigcirc	\bigcirc	0
13848 13849	\bigcirc	0	0	\bigcirc	1	${ }_{\text {1．15\％}}^{1.12 \%}$	\bigcirc	1	6098 27878	${ }_{1}$	0	0	S241594 S174 598	1	\bigcirc	0	\bigcirc
13850	0	0	0		1	1．10\％	0	1	19166	1		0	\＄136546	1	0	0	0
13851 13852 1885	\bigcirc	0	0	0	1	1．15\％	0	1	${ }_{6} 6534$	1	0	0	\＄119713	1	0	0	\bigcirc
13852 1385	\bigcirc	\bigcirc	\bigcirc	0	1	1.18% 1.13% 1	\bigcirc	1	6534 3049	1	\bigcirc	0	\＄109 594 $\$ 76716$	1	\bigcirc	\bigcirc	\bigcirc
13854		0		0	1	${ }_{1.41 \%}$	0	1	5663	0	－	1	\＄364 490	1	。	0	0
13855	0	0	0	0	1	1．11\％	0	1	20473	0	1	0	\＄1617468	1	\bigcirc	0	\bigcirc
${ }_{1}^{13856}$	0	0	0	0	1	1．25\％	0	1	${ }_{8}^{8712}$	0	0	，	5389392	1	0	－	0
13857 13858	\bigcirc	\bigcirc	0	0	1	1．112\％	0	1	6098 9148	${ }_{0}^{1}$	\bigcirc	${ }_{1}^{0}$	${ }_{\substack{\text { S188207 } \\ \$ 1199815}}$	1	\bigcirc	0	\bigcirc
13859	0			0	1	1．10\％	0	1	9148	1	0		\＄321457	1	0	0	0
13860	0	0	0	0	1	${ }^{1.21 \%}$	0	1	${ }_{6}^{6098}$	1	0	0	S102896 $\mathbf{S 5 0 9 5 4}$	1	\bigcirc	0	－
13861 13862	\bigcirc	0	0	0	1	${ }_{\text {l }}^{1.25 \%}$	\bigcirc	1	8276 14810	0	0	1	5599564 $\$ 96404$	1	\bigcirc	0	0
${ }_{13863}^{13822}$	${ }_{0}$	${ }_{0}$	${ }_{0}$	${ }_{0}^{\circ}$	1	${ }_{1.27 \%}^{1.17 \%}$	${ }_{0}$	1	${ }_{5663}^{14810}$	${ }_{0}$	1	0	S $\$ 89695048$	1	\bigcirc	0	0
13864	0	0	0	0	1	1．15\％	0	1	4792	0	0	1	S246963	1	0	0	0
13865 13866	\bigcirc	0	0	\bigcirc	1	1．12\％	\bigcirc	1	4792 8712	0	\bigcirc	0	S213238 $\$ 57923$ 1823	1	0	\bigcirc	
13866 13867	\bigcirc	\bigcirc	0	0	1	${ }^{1.29 \%}$	\bigcirc	1	8712 10454	0	\bigcirc	1	S579 423 $\$ 116220$	1	0	\bigcirc	0
13868	0	0	0	0	1	${ }^{1.111 \%}$	0	1	23087	1	0		\＄78706	1	0	0	0
13869	0	0	0	\bigcirc	1	1．15\％	0	1	7841	\bigcirc	0	0	S236416 S400	1	－	－	0
$1 \begin{aligned} & 13870 \\ & 13871\end{aligned}$	\bigcirc	0	0	\bigcirc	1	1.15% 1.29% 1	0	1	4792 8276	\bigcirc	${ }_{1}$	0	5400700 $\$ 88005$	1	\bigcirc	\bigcirc	\bigcirc
13871 1372	0	${ }_{0}$	${ }_{0}$	${ }_{0}^{\circ}$	1	1．18\％	0	1	${ }_{5227}^{822}$	0	${ }_{0}^{1}$	1	${ }_{\text {¢ }}$	1	0	\bigcirc	0
11887	0	0	0	0	1	${ }^{1.12 \%}$	－	1	5663 1592	\bigcirc	1	0	\＄725241	1	0	0	0
13874	0	0	0	0	1	1．13\％	0	1	15682	0	0	1	\＄554013	1	0	－	0
13875 13876	\bigcirc	0	\bigcirc	\bigcirc	1	${ }_{\text {l }}^{1.115 \%}$	\bigcirc	1	4356 6534	1	${ }_{0}$	0	593032 $\$ 76022$	1	0	${ }_{0}$	${ }_{0}$
13877		0	0	0	1	1．11\％	0	1	12197	0	0	0	\＄477847	1	0	0	0
13878	0	0	\bigcirc	0	1	${ }^{1.15 \%}$	－	1	7405	1	0	0	\＄127859 $\$ 58561$	1	0	0	
13879 13880	0	0	0	0	1	1．1．5\％	0	1	5238 6970	0 1	\bigcirc	0	$\$ 538651$ $\$ 176161$	1	\bigcirc	\bigcirc	0
13880 1381	${ }_{0}$	${ }_{0}$	${ }_{0}^{\circ}$	${ }_{0}$	1	${ }^{1.10 \%}$	0	1	69890 1080	1	1	${ }_{0}$	\＄17610	1	\bigcirc	0	0
13882	0	0	0	0	1	1．18\％	0	1	4792	1	0	0	\＄114 180	1	0	0	0
13883 13884	0	0	0	0	1	${ }^{1.1 .18 \%}$	－	1	7405 7005	1	0	0	\＄170515	1	\bigcirc	0	
13884 13885	\bigcirc	0	\bigcirc	\bigcirc	1	${ }^{1.1 .16 \%}$	\bigcirc	1	7405 6098	\bigcirc	1	0	$\$ 917079$ $\$ 460575$	1	\bigcirc	\bigcirc	0
13886	0		－		1	1．11\％		1	11326	0	0	1	\＄848649	1	－	－	0
13887 1888 188	－	0	0	0	1	${ }^{1.12 \%}$		1	5663	0	1	0	¢1308371	1	0		0
13888 13889	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1	1．1．2\％	\bigcirc	1	10454 191166	0	1	0	¢ $\begin{gathered}\text { \＄1311659 } \\ \$ 106163\end{gathered}$	1	\bigcirc	\bigcirc	\bigcirc
13890	0	0	0	0	1	1．26\％	0	1	${ }_{7841}$	1	0	0	\＄259725	1	0	${ }_{0}$	\bigcirc
13891	－	0	0	0	1	1．15\％	－	1	5663	1	0	0	\＄203263	1	0	0	0
13892	0				1	1．12\％	－	1	6534	0	1	0	\＄1210051	1	－	－	
13893 13894	\bigcirc	\bigcirc	0	0	1	${ }^{1.111 \%}$	\bigcirc	1	19166 17424	1	\bigcirc	0	5150369 S414 054	1	\bigcirc	\bigcirc	0
13895	0	0	0	0	1	${ }_{1.37 \%}^{1.14}$		1	8712	1	－	0	S422594 $\$ 8229$	1	0	0	0
${ }^{13896}$	\bigcirc	0	0	0	1	1．19\％	0	1	10890	1	\bigcirc	－	\＄121374	1	0	0	0
13897 13898	0	0	0	0	1	1．10\％	0	1	6098 6970	0 1	\bigcirc	\bigcirc	5483604 $\$ 66631$	1	\bigcirc	0	0
13898 13999	0	\bigcirc	\bigcirc	\bigcirc	1	${ }^{1.1 .11 \%}$	0	1	6970 14375	1	0	0	${ }_{\text {S }}^{56605651}$	1	0	\bigcirc	\bigcirc
13990	0	0	0	0	1	${ }_{1}^{1.30 \%}$	。	1	${ }_{6534}^{1435}$	0	0	0	\＄443 303	1	0	0	
${ }^{13901}$	0	0	0	\bigcirc	1	1．1．16\％	\bigcirc	1	9148	1	\bigcirc	，	S161346 $\$ 129593$	1	\bigcirc	0	
13902 13903	0	0	0	0	1	${ }_{\text {1．36\％}}^{1.3} \mathbf{1}$	\bigcirc	1	6970 18295	1	0	0	\＄129 993 $\$ 45493$	1	\bigcirc	0	0
13904	0				1	1．18\％	0	1	2614	0		0	\＄389 186	1	0	0	0
13905 13906	－	0	0		1	1．12\％		1		\bigcirc				1		0	
13906 13907	\bigcirc	0	0	0	1	${ }^{1.25 \%}$	0	1	7405 6098	0	1	0	5887446 5441733	1	\bigcirc	\bigcirc	0
13908	0	0	。	－	1	${ }_{1}^{1.11 \%}$	0	1	1307	0	0	0	\＄622014	1	0	0	0
13909 13910				－	1	${ }_{\text {1．1．18\％}}^{1.18}$	－	1	4792 5663	1	0	－	S106069 S299594	1	\bigcirc	\bigcirc	

observation	PROPERTY DURESS $=1$	LT＿－90\％	LTV 81\％－90\％	LTV 70\％－78\％	$\begin{gathered} \text { LTV BELOW } \\ 70 \% \end{gathered}$	total tax burden	parcel in SCEIP $=1$	CONVENTIONAL LOAN＝ 1	Lorstze	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	SOLD DURING 2004 2007	Sold 2008－2012	PRICE ADJUSt．to 2012	ZIP CODE 295403	ZIP CODE 95404	$\begin{aligned} & \text { ZIP CODE } \\ & 95977 \end{aligned}$	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
13911	0	0	0	0	1	1．11\％		1	12197	－	－	0	\＄771463	1	－		0
13912	0	0	0	0	1	1．35\％	0	1	4356	1	。	0	\＄104207	1	0	0	0
13913	0	0	0	0	1	${ }_{1.16 \%}$	0	1	9583	1	。	0	${ }_{\text {S145 } 516}$	1	0	0	0
13914	0	－	0	。	1	1．24\％	0	1	17424	1	0	0	\＄149822	1	0	0	0
13915	0	0	0	0	1	1．09\％	0	1	5663	1	0	0	\＄120 553	1	0	0	0
13916	0	0	0	0	1	1．11\％	0	1	23087	0	1	0	\＄1715 624	1	0	0	0
13917	0	0		0	1	${ }^{2.15 \%}$	0	1	18731	1	0	0	\＄140074	1	0	0	0
13918	0	0	0	0	1	1．31\％	0	1	11761	1	0	0	\＄179569	1	0	0	0
13919	0	0	0	0	1	1．1．16\％	0	1	6970	0	0	0	5441318	1	0	0	0
13920	0	0		0	1	1．10\％	0	1	5663	0	1	0	5934788	1	0	0	0
13921	0	0	0		1	1．13\％	0	1	7405	0	0	0	${ }_{5250625}$	1	0	0	0
13922	0	0	0	0	1	${ }_{1.11 \%}^{1.15}$		1	45302	0	1	0	\＄2999961	1	0	0	0
13923	0		0	0	1	1．13\％	0	1	6806	0	0	0	5442463	1	0	0	0
13924	0	－	0	0	1	1．33\％	0	1	7405	1	0	0	\＄117058	1	0	0	0
13925	0	0	0	0	1	1．41\％	0	1	13504	0	0	0	5448876	1	0	0	0
13926	0	0	0	－	1	1．13\％	0	1	16988	0	1	0	\＄930956	1	0	0	0
13927	0	0	0	0	1	1．18\％	0	1	7841	0	0	0	\＄383429 S14	1	0	0	0
${ }^{13928}$	0	0	0	0	1	${ }^{1.313 \%}$	0	1	7841	1	0	0	S164 938 55420	1	0	0	0
13929	0	－	0	0	1	1．13\％	－	1	${ }_{4}^{4366}$	1	0	0	\＄55420	1	0	0	0
${ }^{13930}$	0	0	0	0	1	1．15\％	0	1	6098	1	1	0	\＄897408	1	0	0	0
${ }_{1}^{13931}$	0	0	0	0	1	${ }^{1.15 \%}$	0	1	5227 30492	1	0	0	S187454 $\$ 223375$	1	0	0	0
13932	0	0	0	－	1	1．13\％	0	1	30492 7326	\bigcirc	0	${ }_{0}^{1}$	S224375 $\$ 937666$	1	${ }_{0}$	0	${ }_{0}$
${ }_{13934}^{1393}$	0	0	0	0	1	1．12\％	\bigcirc	1	7326 6970	${ }_{1}$	${ }_{0}^{1}$	${ }_{0}$		${ }_{1}^{1}$	\bigcirc	\bigcirc	$\stackrel{0}{\circ}$
13935	0	－	0	0	1	1．14\％	0	0	4792	1	0	0	\＄86457	1	0	0	0
13936	0	－	－	0	1	1．14\％	0	0	4792	1	0	0	\＄86457	1	0	0	0
${ }^{13937}$	0	0	0	0	1	1．14\％	0	0	${ }_{4}^{4792}$	1	0	0	${ }_{586547}^{5867}$	1	0	0	0
13938 13939	\bigcirc	\bigcirc	\bigcirc	0	1	${ }^{1.14 \%}$	\bigcirc	0	6098 7881 7822	1	\bigcirc	\bigcirc	586457 $\$ 93189$	1	\bigcirc	0	\bigcirc
13939 13940	\bigcirc	${ }_{0}$	0	0	1	1.18% 1.07% 1，	${ }_{0}$	1	7841 52272	${ }_{0}^{1}$	${ }_{0}$	0	593189 5446311	1	0	0	${ }_{0}$
13941					1	1．56\％		1	6534	1	。		\＄67079	1	。	。	。
13942	0	0	0	0	1	1．24\％	0	1	20909	0	0	1	\＄376640	1	0	0	0
13943	0	0	0	0	1	1．13\％	0	1	6534	0	0	1	\＄225924	1	0	0	0
13944 13945	0	0	0	0	1	${ }_{\text {1．1．15\％}}$	0	1	7405 7841	${ }_{0}$	0	0	\＄2878959	1	0	\bigcirc	\bigcirc
${ }_{13946}^{13945}$	0	0	0	0	1	1．18\％	0	1	7405	1	0	0	${ }_{\text {S } 188207}$	1	0	0	。
13947	－	0	0	－	1	1．10\％	0	1	10564	0	1	0	\＄1048374	1	0	0	0
13948	0	0	0	0	1	1．12\％	0	1	268765	0	1	0	\＄1856644	1	0	0	0
13949	0	0	0	0	1	1．15\％	0	1	9583	0	0	1	S468220 $\$ 257277$	1	0	0	0
13950 13951	\bigcirc	\bigcirc	0	0	1	1．35\％	0	1	4356 4792	0	${ }_{1}$	0	\＄257277 $\$ 833039$	1	${ }_{0}^{0}$	0	0
13952			0	0	1	1．15\％	0	1	4356	0	0		\＄420 275	1	0	。	0
13953	0	0	0	0	1	1．15\％	0	1	4792	1	0	0	\＄99781	1	0	0	0
13954	0	0	0	0	1	1．32\％	0	1	7841	0	0	1	\＄430000	1	0	0	0
${ }^{13955}$	0	0	0	0	1	1．10\％	0	1	10019 6098	0	${ }_{0}^{1}$	0	5838699 $\$ 29900$	1	0	0	0
13956 13957	0	0	0	0	1	（1．31\％	0	1	6098 4992	\bigcirc	\bigcirc	1	\＄299000 $\$ 376539$	1	${ }_{0}^{0}$	0	\bigcirc
13958			0	0	1	1．10\％	－	1	6970	0	0	1	\＄438957	1	0	0	
13959	0	0	0	－	1	1．15\％	0	1	5663	0	0	1	\＄295000	1	0	0	0
13960	0	0	0	0	1	1．16\％	0	1	6970	1	0	0	\＄225848	1	0	0	0
${ }_{13961}^{13962}$	0	0	\bigcirc	\bigcirc	1	1．12\％	\bigcirc	1	3049 10454	\bigcirc	0	1	5390579 $\$ 916989$	1	\bigcirc	\bigcirc	0
13962 13963	0	0	0	0	1	${ }_{\text {1．15\％}}^{1.11 \%}$	\bigcirc	1	10454 7405	${ }_{1}$	\bigcirc	\bigcirc	$\$ 916989$ $\$ 18936$	1	0	0	${ }_{0}^{0}$
13964	0		0	0	1	1．11\％	0	1	10890	0	0	0	\＄975258	1	0	0	
13965	0	0	0	0	1	1．14\％	0	0	4792	1	0	0	\＄87371	1	0	0	0
13966 13967	${ }_{0}^{1}$	0	\bigcirc	0	1	1．15\％ 1.34% 1	\bigcirc	1	5227 7405	1	\bigcirc	0	$\$ 88460$ $\$ 156292$	1	\bigcirc	0	0
13967 13968	\bigcirc	0	0	0	1	1.34% 1.18%	\bigcirc	${ }_{0}^{1}$	7405 4792	1	0	0	S156292 $\$ 87675$	1	$\stackrel{0}{0}$	\bigcirc	0
13969	－	0	0	0	1	1．16\％	0	1	6098	0	1	0	\＄772031	1	0	－	－
13970	0	0	0	0	1	1．33\％	0	1	28750	0	0	0	5588723	1	0	0	0
13971	0	0	0	0	1	1．11\％	0	1	10454	1	0	0	\＄351309	1	0	0	0
13972	－	0	0	0	1	1．36\％	0	1	7841	1	0	0	\＄79600	1	0	0	0
13973 13974 1	0	0	0	0	1	1．10\％	0	1	6098 6534	1	0	1	$\$ 19629$ $\$ 437670$	1	0	0	0
13974 13975	0	0	\bigcirc	0	1	${ }^{1.1 .16 \%}$	\bigcirc	1	6534 3920	\bigcirc	0	${ }_{0}^{1}$	5437670 $\$ 378823$	1	－	\bigcirc	\bigcirc
13976	0	0	0	0	1	1．18\％	0	1	7841	0		0	\＄426032	1	0	0	0
13977	0	0	0	0	1	1．27\％	0	1	8325	0	0	0	5679726	1	0	0	0
13978	0	0	0	0	1	${ }^{1.177 \%}$	0	1	150282 8712	0	1	0	\＄3077 123 $\$ 149788$ S	1	0	\bigcirc	0
13979 13980	\bigcirc	\bigcirc	\bigcirc	0	1	${ }^{1.1 .16 \%}$	0	1	8712 14810	${ }_{0}^{1}$	\bigcirc	${ }_{0}$	5149778 S712957	${ }_{1}^{1}$	\bigcirc	\bigcirc	\bigcirc
13981	0	0	0	0	1	1．10\％	0	1	8276	0	0	0	\＄904164	1	0	0	0
13982	0	0	0	0	1	${ }^{1.31 \%}$	0	1	${ }^{91488}$	1	0	0	\＄196196	1	0	0	0
13983	0	0	0	0	1	1．10\％	0	1	5227	0	，	0	\＄1098696	1	0	0	0
13984	－	0	0	0	1	1．18\％	0	1	6098	1	0	0	\＄61489	1	0	0	0
13985 13986	0	0	0	0	1	1．18\％	0	1	7405 1089	0	\bigcirc	1	5180739 $\$ 40235$	1	0	\bigcirc	0
13986 13987	0	\bigcirc	0	0	1	${ }^{1.1 .16 \%}$	0	1	10890 6970	${ }_{1}$	0	0	S490 353 $\$ 127696$	1	0	。	\bigcirc
13988	0	0	0	0	1	1．18\％	0	1	5663	0	1		\＄953262	1	0	0	0
13989	0	0	0	0	1	1．09\％	0	1	6098	0	0	1	5438091	1		0	0
13990	0	0	0	0	1	1．18\％	0	1	5663	0	0		5347671	1	0	0	0
${ }^{13991}$	0	0	0	0	1	1．22\％	0	1	32234 6970	1	0	\bigcirc		1	0	\bigcirc	
13992 13993	0	0	0	0	1	${ }_{\text {l }}^{1.28 \%}$	${ }_{0}$	1	6970 8712	1	${ }_{0}$	0	\＄177822 $\$ 159520$	1	0	。	0
13994 1399	0	0	0	0	1	${ }^{\text {1．11\％}}$	0	1	${ }_{11761} 817$	${ }_{0}^{1}$	0	0	\＄1041392	1	0	0	0
13995	0	0	0	0	1	1．38\％	0	1	${ }^{3920}$	0	0	0	\＄389762	1	0	0	0
13996	0	0	0	0	1	1．12\％	0	1	6098	0	1	0	\＄1006439	1			0
13997 13998	0	0	0	0	1	1．35\％	0	1	21344 1653	1	0	0		1	0	\bigcirc	
13998 13999	\bigcirc	0	0	0	1	1．113\％	\bigcirc	1	16553 22651	\bigcirc	${ }_{0}^{1}$	${ }_{1}^{0}$	$\$ 898804$ $\$ 724783$	${ }_{1}^{1}$	0	。	\bigcirc
14000	0	0	0	0	1	1．17\％	0	1	22651	1	0	0	S173844	1	0	0	0
14001	\bigcirc	0	0	0	1	1．10\％	0	1	6970	1	0	0	S276287 $\$ 25652$	1	0		－
14002 14003	\bigcirc	\bigcirc	\bigcirc		1	1．10\％	\bigcirc	1		0	\bigcirc		S655 562 54110	1	\bigcirc	\bigcirc	
14003 14004	\bigcirc	0	0	0	1	1．10\％	\bigcirc	1	6970 3920	1	0	\bigcirc	S54 110 S666901	1	\bigcirc	0	\bigcirc
${ }_{1}^{14004}$	0	0	0	0	1	1．15\％	0	1	3908 6098 7	1	0	0	\＄103505	1	0	0	
14006 14007	0	0	0	0	1	1．18\％	0	1	7405 9148	0	1	0	$\$ 1219288$ $\$ 16058$	1	0	0	\bigcirc
14007 14008	\bigcirc	0	0	0	1	1．1．18\％	0	1	9148 6098	${ }_{0}^{1}$	0	0	\＄160568	${ }_{1}^{1}$	${ }_{0}^{0}$	\bigcirc	$\stackrel{0}{0}$
14009	0	0	0	0	1	1．19\％	0	1	17860	1	0	0	\＄149641	1	0		0
14010	0	0	0	0	1	1．13\％	0	1	8276	1	0	0	\＄142236	1	0	0	
14011	0	0	0	0	1	1．15\％	－	1	3049	0	1	0	${ }_{\text {S }} \mathbf{\$ 1 0 8 0 7 3 3}$	1	0	－	
${ }^{14012}$	0	0	0	0	1	1．13\％	0	1	${ }^{9148}$	0	1	0	${ }_{5856252}$	1		－	0
14013 14014	\bigcirc	0	0	0	1	－${ }_{\text {1．1．12\％}}^{1.27}$	\bigcirc	1	7405 10019	${ }_{0}^{1}$	${ }_{1}$	0	$\$ 180678$ $\$ 935795$ S	${ }_{1}^{1}$	${ }_{0}$	0	0
14015	0	0	0	0	1	1．15\％	0	1	${ }_{8712}^{1019}$	1	${ }_{0}$	0	\＄95128	1	O	－	0
${ }^{14016}$	0	0	0	0	1	1．11\％	0	1	${ }_{5}^{5633}$	0	0	1	\＄531853	1	0	0	0
${ }_{14018}^{14017}$	\bigcirc	0	\bigcirc	\bigcirc	${ }_{1}^{1}$	－	\bigcirc	1	6534 12632	0 1	\bigcirc	${ }_{0}^{1}$	$\$ 772330$ $\$ 301131$	${ }_{1}^{1}$	\bigcirc	\bigcirc	\bigcirc
14019	0	0	0	0	1	1．16\％		1	${ }_{8712}^{1632}$	1	。	0	\＄166591	1	0	${ }_{0}$	\bigcirc
14020		0	0	0	1	1．36\％	0	1	1925	0	0	0	\＄293617	1		0	0
14021	0	0	0	0	1	1．09\％	0	1	5663 39204	1	0	0	5106854 $\$ 771463$	1		0	
14022 14023	0	0	0	0	1	${ }^{1.1 .12 \%}$	0	1	39204 10454	0	0	0	S771463 $\$ 325000$	1	0	0	0
14024	0	0	0	0	1	1．32\％	0	1	7841	0		0	\＄801796	1	0	0	0
14025	0	0	0	0	1	1．10\％	0	1	${ }_{6}^{6098}$	1	0	0	\＄129072	1	0	0	0
14026 14027	0	0	0	0	1	1．30\％	0	1	7405 19602	0	0	0	\＄551476	1	0	0	0
14027 14028	0	0	0	0	1	（1．11\％\％	\bigcirc	1	19602 988	\bigcirc	0	1	S312247 $\$ 623838$	1	0	0	\bigcirc
14029	0	0	0	0	1	1．15\％	0	1	9583	1	0	0	$\$ 51874$ $\$ 35696$	1	0	－	0
14030 14031	0	0	\bigcirc	0	1	1．1．8\％\％	0	1	3485 9148 9	\bigcirc	0	${ }_{0}^{0}$	S356946 S512 300	${ }_{1}^{1}$	0	0	${ }_{0}^{0}$
14032	。	0	0	0	1	1．28\％	0	1	5663	0		0	${ }_{\text {S826 }}$	1	0	。	。
${ }_{1}^{14033}$	0	－	0	0	1	${ }^{1.30 \%}$	0	1	7405	0	1	0	\＄400050	1	0	0	
14034 14035	0	0	0	0	1	1.32% 1.10%	0	1	6970 9583	0	1	0	\＄1055 148	1	0	0	0
${ }_{14036}^{14035}$	0	0	0		1	1．28\％	0	1	${ }_{9} 9148$			0	¢419555	1	0	0	0
14037 14038		0	0	\bigcirc	1	1.14% 1.11%	\bigcirc	1	16117 46609	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	5126363 $\$ 66000$	${ }_{1}^{1}$	${ }_{0}$	${ }_{0}$	${ }_{0}$
144039 14049	\％				1	（1．29\％		1	118000 4356	0		1 1	（	1	\bigcirc	\bigcirc	0

\%	
遃	
京	

observation	PROPERTY DURESS $=1$	LT＿－90\％	LTV 81\％－90\％	LTv 70\％－78\％	$\begin{gathered} \text { LTV BELOW } \\ 70 \% \end{gathered}$	total tax burden	parcel in SCEIP $=1$	CONVENTIONAL LOAN＝ 1	Lorstze	$\begin{aligned} & \text { SOLD } \\ & \text { PRIOR_2000 } \end{aligned}$	$\begin{gathered} \text { SOLD DURING } \\ 2004 _2007 \end{gathered}$	Sold 2008－2012	PRICE ADJUSt．to 2012	ZIP CODE 295403	ZIP CODE 95404	$\begin{aligned} & \text { ZIP CODE } \\ & 95977 \end{aligned}$	$\begin{gathered} \text { ZIP COD } \\ 94928 \end{gathered}$
14171	${ }_{0}$	0	0	0	1	1．15\％		1	6534	－	－	0	S129024	1			
14172	0	0	0	0	1	1．32\％	0	1	7405	1	。	0	\＄141946	1	0	0	0
14173	0	0	0	0	1	1．18\％	0	1	8276	1	0	0	S101983	1	0	0	0
14174	0	0	0	0	1	1．27\％	0	1	5663	0	1	0	\＄1044971	1	0	0	。
14175	0	0	0	0	1	1．34\％	0	1	5663	0	0	1	\＄417887	1	0	0	0
14176	0	0	0		1	1．15\％	0	1	5663	0	1	0	\＄973 112	1	0	0	0
14177	0	0	0	0	1	1．18\％	0	1	8712	0	0	0	5330463	1	0	0	0
14178	0	0	0	0	1	1．18\％	0	1	4356	0	0	0	\＄424880	1	0	0	0
14179	0	0	0	0	1	1．15\％	0	1	3920	1	0	0	\＄173150	1	0	0	0
14180	0				1	1．16\％	0	1	${ }^{10454}$	1	0	0	\＄135914	1	0	0	0
14181	0		0	0	1	1．18\％		1	5663	1	0	0	${ }_{5} 5124511$	1	0	0	0
14182	0	0	0	0	1	1．12\％		1	10454	0	0	1	${ }_{5617525}$	1	0	0	0
14183	0	0	0	0	1	1．18\％	0	1	7841	0	1	0	\＄981897	1	0	0	0
14184	0	0	0	0	1	1．10\％	0	1	4356	0	0	1	${ }_{5381182}$	1	0	0	0
14185	0	0	0	0	1	1．15\％	0	1	7841	0	0	0	\＄270 720	1	0	0	0
14186	0	0	0	0	1	1．14\％	0	1	12632	0	0	1	\＄579 423	1	0	0	0
14187	0		0	0	1	1．12\％	0	1	5663	0	0	1	S325000 S12764	1	0	0	0
14188	0		0	0	1	1．18\％	0	1	4792	1	0	0	\＄127694	1	0	0	0
14189	0	0	0	0	1	1．18\％	0	1	5663	0	0	0	5337799	1	0	0	0
14190	0	0	0	0	1	0．58\％	0	1	6970	1	0	0	\＄88606	1	0	0	0
14191 14192	0	0	0	0	1	－ 1.15%	0	1	6098 6420	${ }_{0}^{1}$	0	0	S152865 S725376	1	\bigcirc	\bigcirc	\bigcirc
14192	0	0	0		1	${ }_{1}^{1.27 \%}$	0	1	6420 563	\bigcirc	0	0	\＄705376	1	0	\bigcirc	\bigcirc
${ }_{14194}^{1493}$	0	0	0	0	1	－${ }_{\text {1．1．0\％}}^{1.10 \%}$	\bigcirc	${ }_{1}^{1}$	5663 4356	${ }_{0}$	\bigcirc	${ }_{1}^{0}$	S654016 $\$ 345312$	1	${ }_{0}$	\bigcirc	\bigcirc
14195	0	0	0	0	1	1．10\％	0	1	6754	0	0	1	5660358	1	0	0	0
14196	0	0	0	0	1	1．12\％	0	1	5663	1	0	0	\＄164869	1	0	0	0
14197 14198 1	0	\bigcirc	\bigcirc	0	1	－ 1.22%	${ }_{0}^{1}$	1	30056 7405	0	0	0	$\$ 10588055$ $\$ 125547$	1	\bigcirc	0	\bigcirc
14198	0	0	0	0	1	${ }^{1.28 \%}$	0	1	7405	0	1	0		1	0	0	0
14199 14200	\bigcirc	${ }_{0}$	0	0	1	－	${ }_{0}$	1	6970 6098	${ }_{0}^{1}$	${ }_{0}$	${ }_{0}$	\＄54334 S609 189	1	${ }_{0}$	\bigcirc	${ }_{0}$
14201		0	0	0	1	1．13\％	0	1	11326	0	1		\＄8711849	1	0	0	。
14202	0	0	0	0	1	1．16\％	0	1	5227	0	1	0	\＄1088374	1	0	0	0
14203	0	0	0	0	1	1．24\％	0	1	10019	1	0	0	\＄221256	1	0	0	0
14204	0	－	0	0	1	1．15\％	0	1	${ }_{4}^{4356}$	0	1	0	\＄731480	1	0	0	0
14205	－	0	0	0	1	${ }^{1.15 \%}$	0	1	${ }_{5}^{5663}$	1	0	0	\＄82136	1	0	0	0
14206	0	0	0	0	1	${ }^{1.1 .15 \%}$	0	1	${ }_{6} 654$	0	0	0	\＄563660	1	0	0	\bigcirc
14207 14208	\bigcirc	0	0	0	1	（1．1．16\％	\bigcirc	1	7405 8276	${ }_{1}$	${ }_{0}^{1}$	\bigcirc	\＄1115 610 $\$ 251064$	1	\bigcirc	$\stackrel{0}{0}$	\bigcirc
14209	0	0	0	0	1	1．13\％	0	1	18295	0	0	1	\＄716962	1	0	0	0
14210	－	0	0	0	1	1．29\％	0	1	9583	0	1	0	\＄764233	1	0	0	0
14211	－	0	0	0	1	1．17\％	0	1	6098	1	0	O	${ }_{\text {S }}^{561463}$	1	0	0	0
14212	0	0	0	0	1	0．59\％	0	1	6970	1	0	0	570433	1	0	0	0
14213 14214	\bigcirc	0	0	0	1	${ }^{1.1 .12 \%}$	\bigcirc	1	6970 10890	\bigcirc	${ }_{1}$	\bigcirc	S366214 S141676	${ }_{1}^{1}$	\bigcirc	\bigcirc	0
14215	0	0	0	0	1	1．34\％	0	1	4792	1	0	0	\＄167504	1	0	0	0
14216	0	0	0	0	1	1．18\％	0	1	6098	0	0	1	\＄255043	1	0	0	0
14217	－	0	0	0	1	1．09\％	0	1	6098	0	0	1	\＄316049	1	0	0	0
14218	0	0	0	0	1	1．118\％	－	1	8712 7841	0	0	1	\＄277108	1	0	0	0
14219 14220	${ }_{0}$	0	0	0	1	－${ }_{\text {1．1．18\％}}^{108 \%}$	${ }_{0}$	1	7841 3485	${ }_{1}$	0	${ }_{0}$	5304096 $\$ 74280$	${ }_{1}^{1}$	${ }_{0}$	0	${ }_{0}$
14221	0	0	0	0	1	${ }^{1.15 \%}$	0	1	－ 6534	${ }_{0}$	0	0	S47280 $\$ 431213$	1	0	0	${ }_{0}$
14222	0	0	0	0	1	1．30\％	0	1	7405	1	－	0	\＄161200	1	0	0	0
14223	0	0	0	0	1	1．26\％	0	1	6098	0	0	0	\＄602776	1	0	0	
14224	0	0	0	0	1	1．32\％	0	1	6534	1	0		\＄184890	1	0	0	0
14225	0	0	0	0	1	1．30\％	0	1	${ }_{6}^{6534}$	0	1	0	\＄747856	1	0	0	0
14226 14227	\bigcirc	0	\bigcirc	\bigcirc	1	1．14\％ 1.10% 1	\bigcirc	1	12197 8276	0	0	${ }_{0}^{1}$	\＄320000	1	\bigcirc	\bigcirc	\bigcirc
${ }_{14228}^{1427}$	${ }_{0}$	0	${ }_{0}$	${ }_{0}$	1	${ }^{1.128 \%}$	${ }_{0}$	1	${ }_{697}$	1	${ }_{0}$	${ }_{0}$	\＄1596261	1	${ }_{0}^{\circ}$	${ }_{0}$	${ }_{0}^{0}$
14229			0	0	1	1．15\％	0	1	$\begin{array}{r}5663 \\ 4 \\ 4 \\ \hline 292\end{array}$	1	0	0	S134557 S15756	1	0	0	0
14230	0	0	0	0	1	1．09\％	0	1	${ }_{5}^{4792}$	1	0	0	\＄107560	1	0	0	\bigcirc
14231 14232	\bigcirc	0	0	0	1	－ 1.10%	\bigcirc	1	5227 6098	${ }_{0}^{1}$	\bigcirc	0	$\$ 19984$ $\$ 332765$	1	\bigcirc	0	0
14233		0	0	0	1	1．18\％	0	1	${ }_{6098} 6$	0	－	1	\＄553570	1			0
14234	0	0	0	0	1	1．10\％	0	1	6970	1	0	0	\＄179569	1	0	0	0
14235	0	0	0	0	1	1．16\％	0	1	6098	0	1	0	\＄777231	1	0	0	0
${ }^{14236}$	0	0	0	0	1	1．10\％	0	1	${ }_{6}^{6534}$	0	1	0	\＄1 199984	1	0	0	0
14237 14238	0	0	0	0	1	1．12\％	0	1	15682 5663	0	\bigcirc	\bigcirc	$\$ 1051535$ $\$ 174763$	${ }_{1}^{1}$	\bigcirc	\bigcirc	\bigcirc
14239	0	0	。	0	1	1．28\％	0	1	5693 697	1	。	0	\＄180942	1			。
14240	0	0	0	0	1	1．18\％	0	1	2614	0	－	1	${ }_{5339460}$	1	0	0	0
14241	0	0	0	0	1	${ }^{1.1 .10 \%}$	0	1	${ }_{6}^{6534}$	0	－	1	S366000 $\$ 1087486$	1	0	0	0
${ }^{14242}$	0	0	0	0	1	1．15\％	0	1	6098	0		0	\＄1087486	1	0	0	0
14223 1424 1	0	0	0	0	1	${ }^{1.1 .14 \%}$	\bigcirc	1	3049 7405	1	\bigcirc	${ }_{0}^{\circ}$	\＄101091 $\$ 149778$	${ }_{1}^{1}$	\bigcirc	0	\bigcirc
${ }_{14245}^{14244}$	0	0	－	0	1	1．15\％	0	1	3920	${ }_{0}$	－	0	${ }_{\text {S225 } 291}$	1	0		－
14246	0	0	0	0	1	1．11\％	0	1	19602	0	0	0	\＄1022351	1	0	0	0
14247	0	0	0	0	1	1．16\％	0	1	7841	1	0	0	${ }_{\$ 161651}$	1	0	0	0
14248	0	0	0	0	1	1．116\％	0	1	8276 4792	0	0	1	S260000 $\$ 388970$	1	0	0	\bigcirc
14249 14250	\bigcirc	0	0	0	1	1.38% 1.18% 18	\bigcirc	1	4792 4356	0	\bigcirc	1	$\$ 348970$ $\$ 325000$	1	\bigcirc	0	0
14251	0		0	0	1	1．32\％	0	1	5663	1			S195735	1			0
14252		0	0	0	1	1．10\％	0	1	9148	0		0	\＄355794	1	0	0	0
14253		0	0	0	1	1．1．18\％	0	1	6120 6 3	0	0	0	5542499 S20	1	0	0	
14254 14255 1	0	0	0	0	1	1．15\％	0	1	3485 5227	0	0	0	\＄220680	1	－	0	\bigcirc
14255 14256	\bigcirc	0	0	0	1	${ }^{1.1 .10 \%}$	0	1	5227 13504	\bigcirc	\bigcirc	0	S3888441 $\$ 569900$	${ }_{1}^{1}$	0	0	0
14257		0	0	0	1	1．15\％	0	1	6970	1	0		\＄95590	1	－	－	0
14258	0	0	0	0	1	1．26\％	0	1	8712	1		0	\＄176263	1	0	0	0
14259		0	0	0	1	1．11\％	0	1	19166	0	1	0	\＄517443	1	0	0	0
14260	0	0	0	0	1	0．95\％	0	1	6534	0	1	0	\＄1078 111	1	0	0	0
14261 14262	\bigcirc	0	0	\bigcirc	1	1．11\％	\bigcirc	1	14375 16988	\bigcirc	${ }_{1}^{1}$	0	¢1724977	${ }_{1}^{1}$	\bigcirc	\bigcirc	\bigcirc
14263		0	0	0	1	1．18\％	0	1	6970	0	1	0	\＄711217	1			0
14264	0	0	0	0	1	1．09\％	0	1	4792	0	1	0	\＄1123110	1		0	0
14265 14266	\bigcirc	0	0	0	1	${ }_{\text {1．1．3\％}}^{1.13 \%}$	\bigcirc	1	11326 7405	0 1	0	0	$\begin{array}{r}5430421 \\ \$ 99243 \\ \hline\end{array}$	1	\bigcirc	${ }_{0}^{0}$	\bigcirc
${ }_{14267}^{14266}$	${ }_{0}$	${ }_{0}$	${ }_{0}$	${ }_{0}$	1	1．20\％	${ }_{0}$	1	7485 58806	1	1	\bigcirc		1	0	0	${ }_{0}$
14268	0	0	0	0	1	1．18\％	0	1	8276	1	0	0	\＄100461	1	0	0	0
14269 14270 1	0	0	0	0	1	1．18\％	\bigcirc	1	4356 35284 1285	1	0	0	$\$ 85768$ $\$ 20025$	1	\bigcirc	0	
14270 14271	\bigcirc	0	0	0	1	${ }^{1.1 .25 \%}$	\bigcirc	1	35284 12632	${ }_{0}^{1}$	${ }_{1}$	0		1	\bigcirc	0	\bigcirc
14272		0	0	0	1	1．22\％	0	1	23958	1	0	0	\＄285980	1	0	0	
14273	0	0	0	0	1	1．26\％	0	1	9583	0	0	1	\＄637950	1	－	0	0
14274 14275	\bigcirc	0	\bigcirc	\bigcirc	1	1．16\％	\bigcirc	1	5663 6098	0	\bigcirc	\bigcirc	S365286 $\$ 135166$	1	\bigcirc	\bigcirc	0
14275 14276	\bigcirc	0	\bigcirc	0	1	${ }^{1.1 .14 \%}$	\bigcirc	1	${ }_{5663}^{6098}$	${ }_{0}$	${ }_{0}$	1	（$\$ 133166$ $\$ 253$ 78	1	${ }_{0}$	${ }_{0}$	$\stackrel{0}{0}$
14277	0	0	0	0	1	${ }^{1.1 .13 \%}$	0	1	9000	0	0	0	\＄4257911	1	0	0	
14278 14279	0	0	0	0	1	（123\％	0	1	6098 10454	0	0	1	S441548 88561	1	0	0	\bigcirc
14279 14280	\bigcirc	${ }_{0}$	\bigcirc	${ }_{0}$	1	${ }^{1.134 \%}$	\bigcirc	1	10454 6098	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	\＄85861 $\$ 239963$	${ }_{1}^{1}$	\bigcirc	\bigcirc	\bigcirc
14281	0	0	0	0	1	1．16\％	O	1	6098	0	1	0	\＄803224	1	0	0	0
${ }^{14282}$	0	0	0	0	1	1．12\％	0	1	${ }^{16988}$	0	O	0	S265621 $\$ 25858$	1	0	0	0
14283	0	0	0	0	1	1．13\％	0	1	${ }_{4}^{436}$	1	0	0	\＄52768	1	0	0	0
14284 14285	0	0	0		1	1．13\％		1	11761	0	0		\＄551476	1			0
14285 14286	0	0	0	0	1	${ }_{\text {1．1．12\％}}$	0	1	8712 4792	\bigcirc	${ }_{1}$	0	S216020 $\$ 778270$	${ }_{1}^{1}$	\bigcirc	\bigcirc	0
14287		0	0	0	1	1．8\％		1	${ }_{5} 227$	1	${ }_{0}$	\bigcirc	\＄49638	1	0	0	0
14288	0	－	0	－	1	1．18\％	－	1	4356	1	0	0	\＄170892	1	0	0	0
14289 14290	\bigcirc	\bigcirc	0	0 1	1	${ }_{\text {1．1．12\％}}^{1.12 \%}$	0	1	6098 5227	\bigcirc	\bigcirc	${ }_{0}^{1}$	5368723 $\$ 326902$	1	\bigcirc	\bigcirc	\bigcirc
14291 14290	${ }_{0}$	${ }_{0}$	${ }_{0}$	1	1	${ }^{1.12 \%}$	${ }_{0}$	1	5227 5663	\bigcirc	\bigcirc	\bigcirc	S326902 $\$ 337799$	1	$\stackrel{0}{0}$	\bigcirc	\bigcirc
14292	0	0	0	1	1	1．19\％	0	1	43560	0	0	1	\＄498612	1	0	。	。
14293 14294	0	0	0	1	1	1．13\％	0	1	6098 7405	0	1		S181464	1	0	0	
14294 14295	0	0	0	1	1	1．10\％	0	1	7405 8712	0	${ }_{0}^{1}$	0	S977 987 S225924	1	\bigcirc	\bigcirc	0
14296	0		0	1	1	${ }^{1.12 \%}$		1	5663	1		0	${ }_{592967}$	1	0	－	0
14297	0	0	0	1	1	1．18\％	0	1	3485	1	0	0	597985	1	0	0	0
14298		0	0	1	1	1．12\％	0	1	3920	0	0	1	5300651	1	0	0	0
									4356 6098		0		S103369 $\$ 124787$		0		

osservation	PRoperty DURESS $=1$	LT＿－90\％	LTV 81\％－90\％	LTv 70\％－78\％	Ltv below 7\%	totaltax burden	parcel in SCEIP $=1$	CONVENTIONAL LOAN＝ 1	torstze	$\begin{gathered} \text { SoLD } \\ \text { PRIOR_2000 } \end{gathered}$	SOLD DURING 20042007	Sold $2008-2012$	PRICE ADJUST．TO 2012	$\begin{gathered} \text { ZIP CODE } \\ \text { Z95403 } \end{gathered}$	ZIP CODE 95404	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	ZIP CODE 94928
14301	buks	0	0	1	\％	1．12\％	－1	Lodr	4356	${ }_{0}$	${ }^{2004}$	1	\＄374576	2940			
14302	0	0	0	1	1	1．18\％	。	1	4356	0	1	0	S647258	1	0	0	0
14303	0	0	0	1	1	1．15\％	0	1	4792		0	1	\＄292638	1	0	0	0
14304	0	0	0	1	1	1．18\％	0	1	4792	1		0	\＄108376	1	0	0	0
14305	0	0	0	1	1	1．12\％	0	1	4792	0	0	1	5409693	1	0	0	0
14306	0	0	0	1	1	1．12\％	0	1	5227	1	0	0	\＄173 150	1	0	0	0
14307	0	0	0	1	1	1．12\％	0	1	5227	0	0		\＄461701	1	0	0	0
14308	0	0	0	1	1	1．29\％	0	1	7405	0	0	1	5398630	1	0	0	0
14309	0	0	0	1	1	1．24\％	0	1	9590	0	0	0	578327	1	0	0	0
14310	0	0		1	1	1．14\％	0	1	70132	0	1	0	\＄2415454	1	0	0	0
14311	0	0	0	1	1	1．12\％	0	1	4356	1		0	\＄111557	1	0	0	0
14312	0	0	0	1	1	1．09\％	0	1	4792	0	0	0	\＄515 566	1	0	0	0
14313	0	0	0	1	1	1．12\％	0	1	5663		0	1	5323736	1	0	0	0
14314	0	0	0	1	1	1．18\％	0	1	6098	1	0	0	\＄99458	1	0	0	0
14315	0	0	0	1	1	1．12\％	0	1	9583	1	0	0	\＄210791	1	0	0	0
14316	0	0		1	1	1．18\％	0	1	4792	1	0	0	\＄85768	1	0	0	0
14317	0	0	0	1	1	1．12\％	0	1	${ }_{6} 634$	0	0	0	\＄199331	1	0	0	0
14318	0	0	0	1	1	1．11\％	0	1	10019	0	1	0	\＄2062473	1	0	0	
14319	0	0	0	1	1	1．10\％	0	1	9148	1	0	0	5161858	1	0	0	0
14320	0	0	0	1	1	${ }^{1.12 \%}$	0	1	19166	0	1	0	\＄2388358	1	0	0	0
${ }_{1}^{14321}$	0	0	0	1	1	${ }^{1.15 \%}$	0	1	6098	0	0	1	\＄479926	1	0	0	－
${ }^{14322}$	\bigcirc	\bigcirc	。	1	1	1．1．16\％	0	1	10890 3049	0	0	1	$\begin{array}{r}\$ 599981 \\ \$ 172706 \\ \hline\end{array}$	1	\bigcirc	0	0
14323 14324	\bigcirc	0	\bigcirc	1	1	－${ }_{\text {1．1．3\％}}$	0	1	3049 2614	0	${ }_{1}$	${ }_{0}^{1}$	$\$ 172706$ $\$ 886755$	1	。	0	\bigcirc
14325	0			1	1	1．15\％	0	1	5663	1	${ }_{0}$	0	\＄188207	1	0	0	0
14326	0	0	0	1	1	1．34\％	0	1	14414	0	0	1	\＄790 122	1	0	0	0
${ }^{14327}$	0	0	0	1	1	1．09\％	0	1	3485	0	0	0	5326902	1	0	0	0
14328	0	0		1	1	1．12\％	0	1	4309	0	0	1	5368723	1	0	0	0
14329	0	0	0	1	0	1．15\％	0	1	4356	0	0	0	\＄2391566	1	0	0	0
14330	0	0	0	1		1．10\％	0	1	4792		0	0	5238271	1	0	0	0
14331	0	0	0	1	0	1．116\％	0	1	8712	1	0	0	S160352 $\$ 57882$	1	0	0	0
14332 1433	\bigcirc	0	\bigcirc	1	0	${ }_{\text {l }}^{1.1 .15 \%}$	0	1	3049 3920	0	\bigcirc	0	$\$ 74889$ $\$ 428356$	1	\bigcirc	0	0
14334	0		0	1	0	1．15\％	0	1	4792		1	0	\＄1049 327	1	。	0	0
14335	0	0	0	1	0	1．84\％	1	1	38333	0	\bigcirc	0	\＄582976	1	0	0	0
14336	0	0	0	1	0	1．09\％	0	1	4564	0	0		5557889	1	0	0	0
${ }_{1}^{14337}$	0	0	0	1	0	${ }^{1.1 .15 \%}$	0	1	4356 43560	\bigcirc	0	0		1	\bigcirc	\bigcirc	\bigcirc
14338 14339	\bigcirc	\bigcirc	0	1	\bigcirc	－${ }_{\text {1．1．3\％}}^{1.11 \%}$	0	1 1	43560 7841	\bigcirc	0	\bigcirc	$\underset{\substack{\text { \＄1314 } \\ \$ 32495 \\ \$ 493}}{ }$	1	\bigcirc	\bigcirc	0
14340	－	－	0	1	0	1．15\％	0	1	4792	1	0		594960	1	0	0	0
14341	0	0	－	1	－	1．15\％	0	1	6970	1	0	0	595267	1	0	0	0
14342		0	0	1	0	1．32\％	0	1	5663	1	0	0	592121	1	0	0	0
11343	0	0	0	1	0	1．18\％	0	1	8276	O	0	0	5235953 $\$ 75055$	1	0	0	0
14344 14345	\bigcirc	0	\bigcirc	1	0	${ }_{\text {l }}^{1.18 \%}$ 1．24\％	0	1	4792 7405	\bigcirc	1	0	${ }_{\text {S }}^{5708085}$	1	\bigcirc	\bigcirc	0
14346	0		－	1	0	${ }_{1.14 \%}^{1.14 \%}$		${ }_{0}$	4792	1	。		\＄86457	1	。	0	－
14347	0	0	0	1	0	1．18\％	\bigcirc	1	5663	0	0		5361578	1	0	0	0
14348	0	0	0	1	0	1．15\％	0	1	6534	0	0	0	\＄369944	1	0	0	
14349 14350	0	0	\bigcirc	1	0	${ }^{1.10 \%}$	0	1	8712 5663	\bigcirc	\bigcirc	\bigcirc	S545 064 $\$ 370489$	1	\bigcirc	\bigcirc	\bigcirc
${ }_{14351}^{1430}$	0	0	${ }_{0}$	1	${ }_{0}$	${ }_{1}^{1.141 \%}$	${ }_{0}$	1	5663 1859	\bigcirc	\bigcirc	\bigcirc	S370489 $\$ 43651$	1	\bigcirc	\bigcirc	0
${ }^{14352}$	0	0	0	1	0	1．116\％	0	1	${ }^{11761}$	1	0	0	\＄117378	1	0	0	0
14353	0	0	0	1	0	${ }^{1.12 \%}$	0	1	${ }^{42} 689$	0	1	0	\＄1434176	1	\bigcirc	0	0
14354 14355	\bigcirc	0	\bigcirc	1	\bigcirc	1．1．2\％	\bigcirc	1	47922 7620	1	\bigcirc	${ }_{1}^{0}$	572668 S901324	1	\bigcirc	\bigcirc	\bigcirc
14356	0	0	－	1	0	1．09\％	0	1	5663	0	1	0	\＄834364	1	。	－	0
${ }^{14357}$	0	0	0	1	0	1．09\％	0	1	7405 435	1	0	0	${ }_{\text {S } 51712}$	1	0	0	0
114358	0		0	1	0	1．09\％		1	4356	1	0		\＄1128531	1	0	－	0
14359 14360	0	0	\bigcirc	1	${ }_{0}$	${ }^{1.10 \%}$ 1．09\％	\bigcirc	1	8712 6534	${ }_{1}^{1}$	0	0	\＄656 319 $\$ 8028$	1	0	\bigcirc	0
14361	0	0	0	1	0	1．10\％	－	1	6098	0	0	0	\＄410487	1	0	0	0
14362	0	－	0	1	\bigcirc	${ }^{1.31 \%}$	0	1	${ }_{6}^{6098}$	0	1	0	$\begin{array}{r}5733039 \\ \$ 321354 \\ \hline\end{array}$	1	\bigcirc	0	\bigcirc
14363 14364	\bigcirc	\bigcirc	${ }_{0}$	1	\bigcirc	1.13% 1.19%	0	1	7841 10890	${ }_{1}$	\bigcirc	0	S321454 $\$ 110312$	1	\bigcirc	${ }_{0}$	0
14365	0		0	1	－	2．57\％	1	1	14810	1	0	0	\＄64172	1	。	0	0
14366	0	0	0	1	0	1．08\％	0	1	1158	0	0	0	S294976	1	0	0	0
14367 14368	0	0	0	1	\bigcirc	${ }^{1.14 \%}$	0	1	5663 5663	1	0	\bigcirc	（562830	1	\bigcirc	0	0
14368 14369	0	0	0	1	\bigcirc	${ }^{1.1 .16 \%}$	0	1	5663 7841	${ }_{0}$	${ }_{0}^{1}$	1	\＄1088 123 $\$ 280$ 145	1	\bigcirc	0	0
14370		0	0	1	0	2．40\％	1	1	7405	0	1		5840656	1	0	0	－
14371	0	0	0	1	0	1．15\％		1	4792	0	0	1	\＄5271466	1	0	0	0
14372 14373	\bigcirc	0	\bigcirc	1	\bigcirc	－	\bigcirc	1	3049 6098	\bigcirc	1	\bigcirc	S545880 S65 S	1	\bigcirc	\bigcirc	\bigcirc
14374				1	－	1．18\％	0	1	4356	1	0	0	\＄110 628	1	。	0	0
14375	0	0	0	1	0	1．10\％	0	1	15000	0	0	0	S897752 $\$ 13683$	1	\bigcirc	0	\bigcirc
${ }^{14376}$	0	0	0	1	0	1．15\％	0	1	6098 5663	1	0	0	S136383 S94982	1	0	0	0
14377 14378	\bigcirc	\bigcirc	0	1	\bigcirc	1．1．12\％	0	1	5663 5227	${ }_{1}$	${ }_{0}^{1}$	0	S949832 $\mathbf{S 1 1 9 4 4}$	1	\bigcirc	0	\bigcirc
14379	0	－		1	0	0．92\％	0		4356	0	0	1	S678919	1	0	0	0
14380	0	0		1	0	${ }^{1.116 \%}$	0	1	6000	0	0	0		1	0	0	0
14381 14382	0	0	0	1	0	${ }_{\text {1．1．5\％}}^{1.18 \%}$	\bigcirc	1	6534 6534	0	\bigcirc	0	$\begin{array}{r}5483604 \\ 592204 \\ \hline\end{array}$	1	\bigcirc		0
${ }_{14383}^{14322}$	${ }_{0}$	${ }_{0}$	${ }_{0}$	1	${ }_{0}$	${ }^{1.10 \%}$	${ }_{0}$	1	6534 10019	${ }_{0}$	1	1		1	\bigcirc	0	0
14384	0	0	0	1	0	1．15\％	0	1	5227	0	0	1	5335000	1		0	0
14385 14386	\bigcirc	0	0	1	0	1．12\％	1	1	6534 5227	0	\bigcirc	1		1	0	\bigcirc	
14386 14387	\bigcirc	\bigcirc	0	1	\bigcirc	1．88\％	1	1	5227 8276	1	\bigcirc	\bigcirc	$\$ 145397$ $\$ 360651$	1	\bigcirc	\bigcirc	0
14388	0	0	0	1	0	1．15\％	0	1	${ }_{5} 227$	1	0	0	\＄159976	1	0	－	
14389	\bigcirc	0	0	1	0	1．12\％	0	1	${ }_{4} 2078$	0	0	0	\＄755 394	1		0	0
14390 14391	\bigcirc	\bigcirc	\bigcirc	1	\bigcirc	1.30% 137% 1	\bigcirc	1	13068 5663	1	\bigcirc	0	\＄105090	1	\bigcirc	\bigcirc	\bigcirc
14392	0	0	${ }_{0}$	1	0	1．10\％		1	${ }_{5227}$	${ }_{0}^{1}$	${ }_{0}^{0}$	1		1	0	0	0
14393	0	0	0	1	0	1．15\％	1	1	7405	0	1	0	\＄923703	1	0	0	0
14394 14395	\bigcirc	0	0	1	0	1．31\％	0	1	10454 8712	1	0	0	S207 027 $\$ 112208$	1	\bigcirc	\bigcirc	\bigcirc
14396	0	0	0	1	0	1．19\％	0	1	8712 563	1	\bigcirc	${ }_{0}$	\＄552898	1	${ }_{0}$	0	0
14397			0	1	0	1．10\％	0	1	6970	0	0	0	\＄401000	1	0	0	0
14398	0	0	\bigcirc	1	0	1．24\％	0	1	32670 8712	0	1	0	${ }_{\substack{\text { S1 } \\ \$ 120727 \\ \text { S65 } \\ \text { S }}}$	1	0	－	0
14399 14400	\bigcirc	0	0	1	\bigcirc	1．38\％	0	1	8712 2178	\bigcirc	1	0	$\$ 665066$ $\$ 603863$	1	\bigcirc	${ }_{0}$	0
14401	0	0	0	1	0	${ }^{1.27 \%}$		1	8712	1	0	0	\＄174702	1		0	0
14402 14403	\bigcirc	0	\bigcirc	1	\bigcirc	－ 1.24%	\bigcirc	1	11761 6534	\bigcirc	\bigcirc	1	S659 276 $\mathbf{S 4 1 5 0 4 1}$	1	\bigcirc	\bigcirc	\bigcirc
${ }_{14404}^{1403}$	0	0	0	1	${ }_{0}$	${ }^{1.12 \%}$	${ }_{0}$	1	${ }_{2614}^{653}$	${ }_{0}$	${ }_{0}$	1	5415041 $\$ 27307$	1	${ }_{0}^{\circ}$	${ }_{0}$	0
14405	0	0	0	1	0	1．11\％	－	1	11761	0	1	0	\＄903042	1	0	0	0
14406	0		0	1	0	1．10\％	0	1	6098	0	1	0	\＄1138002	1			0
14407 14008	\bigcirc	0	0	1	\bigcirc	${ }_{\text {1．13\％}}^{1.30 \%}$	0	1	9148 7405	1	\bigcirc	0	\＄148185 $\$ 91937$	1	\bigcirc	\bigcirc	0
14409	0	0	0	1	0	1．15\％	－	1	5663	1	0	0	\＄113557	1	0	0	0
14410	0	0	0	1	0	${ }^{1.118 \%}$	0	1	2614 563	0	0	0	S318185 $\$ 979726$	1	0	－	0
14411 14412	\bigcirc	0	0	1	0	1.10% 1.30% 1.0	\bigcirc	1	5663 6534 658	0	${ }_{0}^{1}$	0	$\$ 979126$ $\$ 305023$	1	\bigcirc	0	0
144412 14413	0	\bigcirc	${ }_{0}$	1	${ }_{0}$	（1．18\％	${ }_{0}$	1	6534 8276	${ }_{0}$	${ }_{0}$	0	5305023 $\$ 37862$	1	0	${ }_{0}$	\bigcirc
14414	0	0	0	1	0	1．15\％		1	6098	0	0	1	\＄361217	1	0	0	
${ }^{14415}$	0	0	0	1	\bigcirc	1．15\％	0	1	$\begin{array}{r}24394 \\ \hline 698\end{array}$	1	0	－	${ }_{\text {S }}^{5120027}$	1	\bigcirc	0	
14416 14417	0	0	0	1	\bigcirc	${ }_{\text {1．1．18\％}}^{1.18}$	0	1	6098 5663	1	\bigcirc	0	$\$ 139075$ $\$ 133948$	1	0	0	0
14418	0	0	0	1	0	1．15\％	0	1	6970	0	0		\＄399910	1			0
14419 14420	0	0	0	1	\bigcirc	1.18% 1.08% 1	${ }_{0}$	1	${ }_{6}^{12632}$	1	\bigcirc	0	S173 455 $\$ 67050$	1	\bigcirc	${ }_{0}$	0
14421		0	0	1		1．18\％	0	1	2614	0	0		\＄337 158	1	0	0	0
${ }^{14422}$	－		0	1	0	${ }^{1.211 \%}$	0	1	47045	0	\bigcirc	，	$\begin{array}{r}\text { S598231 } \\ \mathbf{S 2 3 9} 515 \\ \hline\end{array}$	1	－	0	
14423 14424	－	－	0	1	0	1.15% 1.09%	0	1	4356 4792	0	0	0	$\$ 239156$ $\$ 8895$	1	－	0	0
14425	0			1		1．27\％	0	1	7841	0			5343035	1	0	0	0
14426 14427 1	0	\bigcirc	0	1	\bigcirc	1．18\％	\bigcirc	1	6098 5663	1	0	0	$\$ 123271$ $\$ 1108444$	1	0	0	0
14427 1428	\bigcirc	0	0	1	\bigcirc	1．1．3\％	0	1	5663 6534	1	${ }_{0}^{1}$	0		${ }_{1}^{1}$	${ }_{0}^{\circ}$	\bigcirc	\bigcirc
14429 14430			0	1	－	${ }_{\text {1．1．10\％}}^{1.1}$	－	1	8823 6970	0	0	－	5859277 $\$ 310586$	1	\bigcirc	－	\bigcirc

observation	PROPERTY DURESS $=1$	LTV＿90\％	LTV 81\％－90\％	LTv 70\％．78\％	Ltv below 70\％	total tax burden	parcel in SCEIP $=1$	CONVENTIONAL LOAN＝ 1	Lot SIIE	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	sold during 2004＿2007	Sold 2008－2012	PRICE ADJUST．TO 2012	$\begin{gathered} \text { ZIP CODE } \\ \text { Z95403 } \end{gathered}$	$\begin{aligned} & \text { ZIP CODE } \\ & 95404 \end{aligned}$	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	ZIP CODE 94928
14431	S	0	0	1	0	1．29\％	Stars	－1	6970	－	2004－207	0	${ }_{\text {\＄10 }} \mathbf{2 0 6 8 7 3 6}$	${ }^{29543}$	${ }^{95404}$	9542	9498
14432	0	0	0	1	0	1．15\％	0	1	3920	0	0	0	5437546	1	0	0	0
${ }^{14433}$	0	0	0	1	0	1．30\％	0	1	14810	1	0	0	\＄100841	1	0	0	0
14434	0	0	0	1	0	1．18\％	0	1	5227	0	0	0	547288	1	0		0
14435	0	0	0	1	0	1．15\％	0	1	8712	1	0		\＄112 397	1	0	0	0
14436	0	0	0	1	0	1．30\％	0	1	6534	0	0	0	\＄319857	1	0	0	0
14437	0	0	0	1	0	1．15\％	0	1	7405	1	0	0	\＄169386	1	0	0	0
14438	0	0	0	1	0	1．28\％	0	1	${ }_{6970}$	1	0	0	\＄161200	1	0	0	0
14439	1	0	0	1	0	1．11\％	0	1	${ }^{33106}$	0	1	0	\＄1406232	1	0	0	
14440	0	\bigcirc	0	1	0	${ }^{1.27 \%}$	0	1	5227	0	0	0	\＄472089	1	0	\bigcirc	0
14441	0	－	0	1	0	1．12\％	0	1	57935	0	1	1	\＄2019758	1	0	0	0
${ }^{14442}$	\bigcirc	\bigcirc	\bigcirc	1	\bigcirc	1．41\％	0	1	1997 26136	0	\bigcirc	${ }_{0}^{1}$	S275 079 $\$ 504818$	1	\bigcirc	\bigcirc	\bigcirc
14443 1444	${ }_{0}$	0	0	1	0	（1．34\％	${ }_{0}$	1	${ }_{5}^{2627}$	0	0	1	\＄504818	1	0	\bigcirc	0
14445	0	－	0	1	0	1．11\％	0		8712	0	0	0	\＄740978	1	0	－	0
14446	0	0	0	1	0	1．15\％	0	1	6098	1	0	0	\＄124206	1	0	0	0
14447	0	0	0	1	0	1．11\％	0	1	13939	0	1		\＄1526906	1	0	－	0
14448	0	0	0	1	0	1．33\％	0	1	13504	1	0	0	\＄88767	1	0		0
14449	0	0	0	1	0	1．10\％	0	1	${ }^{13939}$	0	0	0	\＄351380	1	0	0	0
14450	0	0	0	1	0	1．37\％	0	1	18731	1	0	0	\＄271016	1	0	0	0
14451	0	0	0	1	0	1．16\％	0	1	8712	0	0	0	\＄607906	1	0	0	－
14452	0	0	0	1	0	1．10\％	0	1	6098	0	0	0	\＄633291	1	0	0	0
14453 14454	0	\bigcirc	\bigcirc	1	\bigcirc	1．1．0\％	0	1	6534 5227	${ }_{0}^{1}$	\bigcirc	\bigcirc	5129077 $\$ 328160$	1	\bigcirc	\bigcirc	\bigcirc
14455	0	0	0	1	－	${ }_{1.34 \%}$	0	1	4356	0		0	\＄521979	1	－	0	0
14456	0	0	0	1	0	1．18\％	0	1	2766	0	0	0	5381126	1	0	0	0
14457	0	0	0	1	0	1．10\％	0	1	7841	0	1	0	\＄1428731	1	0	0	0
14458	0	0	0	1	0	1．12\％	0	1	5663	1	0	0	\＄121043	1	0	0	0
14459	0	0	0	1	0	1．29\％	0	1	5663	1	0	0	\＄229612	1	0	0	0
14460	0	0	0	1	0	1．11\％	0	1	14810	1	0	0	\＄136393	1	0	0	0
14461	0	0	0	1	0	0．56\％	0	1	${ }^{4} 356$	1	0	0	\＄85210	1	0	0	0
14462	0	0	0	1	0	1．20\％	0	1	36590	1	0	0	\＄459224	1	0	0	0
14463	0	0	0	1	0	1．1．18\％	0	1	${ }^{4356}$	1	\bigcirc	0	¢ 565954	1	0	0	${ }_{0}$
14464 14465	\bigcirc	\bigcirc	\bigcirc	1	${ }_{0}$	（1．10\％	${ }_{0}$	1	12197 4792	${ }_{1}$	0	${ }_{0}^{1}$	\＄567319 $\$ 116291$	1	0	\bigcirc	${ }_{0}$
14466	0	0	0	1	0	1．10\％	0	1	9148	0	0	1	\＄348970	1	0	0	－
14467	0	0	0	1	0	1．10\％	0	1	5227	1	0	0	\＄244669	1	0	0	0
14468	0	0	0	1	0	1．11\％	0	1	14375	0	0	1	\＄492852	1	0	0	0
14469	0	0	0	1	0	1．13\％	0	1	8276	1	0	0	\＄99249	1	0	0	0
14470	0	0	0	1	0	1．34\％	0	1	11326	\bigcirc	0	0	\＄662 276	1	0		0
14471 14472	\bigcirc	\bigcirc	\bigcirc	1	\bigcirc	1.10% 1.10%	\bigcirc	1	6098 6970	0	${ }_{0}$	${ }_{1}$	\＄442 152 $\$ 818215$	1	0	\bigcirc	\bigcirc
14473	0	0	0	1	0	1．10\％	0	1	7841	0	1		\＄703562	1	0	0	0
14474	0	0	0	1	0	1．10\％	0	1	7841	0		0	5468744	1	－	－	0
14475	－	0	0	1	0	1．11\％	0	1	15246	0	0	1	\＄753079	1	0	0	0
14476	0	0	0	1	0	1．15\％	0	1	5000	0	0	0	5493763	1	0	0	
14477 14478	\bigcirc	\bigcirc	\bigcirc	1	\bigcirc	1．1．15\％ 1.18% 1	\bigcirc	1	4356 7405	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	$\$ 179925$ $\$ 300246$	1	\bigcirc	\bigcirc	\bigcirc
14479	0	0	0	1	0	${ }^{1.28 \%}$	0	1	7841	0	0	1	\＄659 20	1	0	0	0
14480	0	0	0	1	0	1．29\％	0	1	13068	0	0	0	\＄519413	1		0	0
14481	0	0	0	1	0	1．15\％	0	1	${ }^{3920}$	1	0	0	\＄152477	1	0	0	0
14882		0	0	1	0	1．15\％	0	1	5663		0		\＄286881	1	0		0
14483 14484	\bigcirc	\bigcirc	0	1	\bigcirc	${ }_{\text {l }}^{1.15 \%}$	\bigcirc	1	19166 6970	${ }_{1}$	${ }_{0}^{1}$	0		1	\bigcirc	\bigcirc	${ }_{0}$
14485	0	0	0	1	0	1．10\％	0	1	8712	0	0		\＄419 123	1	0	0	0
14486	0	0	0	1	0	1．18\％	0	1	${ }^{4356}$	0		1	\＄362871	1	0	0	0
14487	0	0	0	1		1．15\％	0	1	5663	1	0	0	\＄111725	1	0		0
14488	0	0	0	1		1．12\％	0	1	5272	0	0	1	\＄439798	1			
14489 14490	\bigcirc	\bigcirc	\bigcirc	1	\bigcirc	${ }^{1.09 \%}$	\bigcirc	1	9593 15948	0	\bigcirc	\bigcirc	571520 5820802	${ }_{1}^{1}$	\bigcirc	\bigcirc	\bigcirc
14491	0	0	0	1	0	${ }_{1}^{1.12 \%}$	0	1	7832	0	0	0	¢	1	0	0	0
14492	0	0	0	1	0	1．21\％	0	1	49658	0	1	0	\＄1091761	1	0	0	0
14493	0	0	0	1	0	1．18\％	0	1	$\begin{array}{r}4356 \\ \hline 1232\end{array}$	0	0	0	${ }_{\$ 381386}$	1	0	0	0
14494	0	0	0	1	0	${ }^{1.111 \%}$		1	12632	0	0	1	\＄700 000	1	0	－	\bigcirc
14495 14496	0	\bigcirc	0	1	0	－${ }_{\text {1．18\％}}^{1.18 \%}$	\bigcirc	1	2887 2614	\bigcirc	${ }_{1}^{0}$	\bigcirc	5448876 $\$ 587089$	1	\bigcirc	\bigcirc	\bigcirc
14497	0	0	0	1	0	1．37\％	0	1	2178	0	0	1	\＄313536	1	0	0	0
14498	0	0	0	1	0	1．13\％	0	1	12197	0	0	0	5403179	1	0	0	0
14499	0	0	0	1	0	1．15\％	0	1	${ }_{6} 6970$	1	0	0	\＄125916	1	0	0	
14500	0	0	0	1	0	1．10\％	0	1	6534	0	0	0	\＄499061	1	0	0	0
14501 14502	\bigcirc	\％	\％	1	\bigcirc	${ }^{1.1 .11 \%}$	\bigcirc	1	${ }_{8712}^{11326}$	\bigcirc	0	\bigcirc	S449 061 $\$ 408760$	1	${ }_{0}$	\bigcirc	\bigcirc
${ }_{14503}^{14502}$	0	0	0	1	0	1．15\％	0	1	${ }_{6534}$	1	0	。	\＄133385	1	－	－	0
14504	0	0	0	1	0	1．13\％	0	1	7405	1	0	0	\＄161858	1		0	
${ }^{14505}$	0	0	0	1	0	${ }^{1.15 \%}$	0	1	${ }_{4}^{4356}$	0	0	1	\＄386751	1	0	0	0
14506 14507	－	0	0	1	0	1．15\％	0	1	6098 7841	0	0	0		1	0	0	\bigcirc
${ }_{14508}^{14507}$	0	${ }_{0}^{0}$	${ }_{0}$	1	\bigcirc	${ }^{1.111 \%}$	${ }_{0}$	1	7841 19602	${ }_{1}^{0}$	\bigcirc	${ }_{0}^{1}$	\＄562 299 $\$ 143081$	1	0	\bigcirc	\bigcirc
14509	0	0	0	1	。	1．18\％	0	1	${ }_{6} 634$	1	0	0	\＄143081	1	0		0
14510		0	0	1	0	1．12\％	0	1	7405	0	0	1	\＄252332	1	0		0
${ }^{14511}$			0	1	0	1.13% 1.16%	0	0	7841 9883	1	0	0	$\$ 78784$ $\$ 159104$	1	0	0	\bigcirc
${ }_{14513}^{14512}$	\bigcirc	0	\bigcirc	1	${ }_{0}$		${ }_{0}$	1	9583 7405	1	0	\bigcirc	\＄	1	\bigcirc	\bigcirc	\bigcirc
${ }_{14514}^{14512}$	0	0	0	1	0	${ }^{1.15 \%}$	0	1	7405	1	0	0	${ }_{\text {\＄126 }}$	1	0	0	0
${ }_{1}^{14515}$	0	\bigcirc	0	1	\bigcirc	${ }^{1.12 \%}$	0	1	4356 6180 1050	1	\bigcirc	0	\＄22084	1	0	\bigcirc	0
14516 14517	0	0	0	1	\bigcirc	－${ }_{\text {1．1．19\％}}$	\bigcirc	1	6180 10454	${ }_{1}^{1}$	\bigcirc	0	S636 121 $\$ 119172$	1	0	0	\bigcirc
14518	0	0	0	1	0	1．34\％	0	1	6970	1	0	0	\＄127064	1	0	－	0
14519		0	0	1	0	1．10\％	0	1	6723	0	0		\＄480938	1	0	0	0
14520		0	0	1	0	1．29\％	0	1	6970			1	5402657	1	0	0	0
${ }^{14521}$		0	0	1	0	1．10\％	0	1	6970 6098	1	0	0		1	0	0	0
${ }_{14523}^{14522}$	0	0	\bigcirc	1	\bigcirc	${ }^{1.1 .18 \%}$	0	1	6098 12197	0	\bigcirc	${ }_{0}^{1}$	\＄300 832 $\$ 496011$	1	\bigcirc	\bigcirc	\bigcirc
14524	0	0	0	1	0	1．10\％	0	，	11326	1			\＄ 72668	1		－	0
${ }^{14525}$	0	0	0	1	0	${ }^{1.115 \%}$	0	1	${ }_{6} 6970$	O		0		1	0	0	0
14526 14527	\bigcirc	0	0	1	\bigcirc	1.12% 1.12% 1	\bigcirc	1	6970 4356	0	\bigcirc	0	\＄294361 $\$ 246615$	1	\bigcirc	0	\bigcirc
14528	0	0	。	1		${ }_{1.32 \%}^{1.122 \%}$	0	1	8712	1	0	0	S246615 $\$ 9323$	1	\bigcirc	\bigcirc	${ }_{0}$
14529	0	0	0	1	0	1．18\％	0	1	5663	0	1	，	5807903	1	0	－	－
14530 14531	0	0	0	1	0	${ }^{1.1 .18 \%}$	0	1	4356 5297	1	－		\＄60 594 $\$ 113856$	1	0	0	\bigcirc
${ }_{14532}^{14531}$	\bigcirc	0	0	${ }_{1}^{1}$	\bigcirc	${ }^{1.09 \%}$	\bigcirc	1	5227 4792	1	\bigcirc	0	（113856	1	\bigcirc	0	0
14533	0	0	0	1		1．18\％	0	1	4792	0		1	\＄400 328	1	0		0
14534	0	0	0	1	0	1．15\％	0	1	9148 8276	1	－	0	\＄108677 $\$ 147293$	1	0		－
${ }_{115536}^{14535}$	0			1	\bigcirc	1．10\％	0	1	8276 20909	1	\bigcirc	0	\＄147293	1	0	0	\bigcirc
${ }_{14537}^{1436}$	\bigcirc	0	0			1．15\％	${ }_{0}$	1	${ }_{3986}^{2909}$	1		1	\＄219397	1	\bigcirc	\bigcirc	\bigcirc
${ }_{14538}^{1437}$	0	0	0	1	0	${ }^{\text {1．1．18\％}}$	0	1	3968 5663	1	0	${ }_{0}$	${ }_{\text {S11875 }}$	1	0	0	0
14539	0	0	0	1	0	${ }^{1.28 \%}$	0	1	6970 4792	0	0		5416704 $\$ 57688$	1	\bigcirc	0	
14540 14541	\bigcirc	\bigcirc	\bigcirc	${ }_{1}^{1}$	\bigcirc	${ }^{1.1 .12 \%}$	\bigcirc	1	4792 5663	${ }_{0}^{1}$	0	1 1	S57 688 $\$ 189629$	${ }_{1}^{1}$	\bigcirc	0	0
14542		0			0	${ }^{1.131 \%}$	0	1	7841		0	1	\＄406415	1	0		
14543	0	0	0	1	0	1．15\％		1	6534		0	0	\＄72668	1	0		0
14544 14545	\bigcirc	\bigcirc	\bigcirc	1	0	－ 1.18%	\bigcirc	1	4356 5633	0	\bigcirc	0	S $\$ 92192$ $\$ 175000$	1	0	\bigcirc	0
${ }_{14546}^{1545}$	0	0	${ }_{0}$	1	0	${ }^{1.1 .18 \%}$	\bigcirc	1	5663 6970	0	0	1	S175000 $\$ 109795$	1	\bigcirc	\bigcirc	\bigcirc
14547	0	0	0	1	0	1．10\％	－	1	3920	0	0	0	\＄312904	1	0	－	0
14548	0	0	0	1	0	1．24\％	0	1	8712	0	1		\＄1183781	1	0	0	0
14549 14550	\bigcirc	\bigcirc	0	1	0	${ }_{\text {1．15\％}}^{1.18 \%}$	0	1	6098 12197	${ }_{1}^{0}$	0	1	523995 $\$ 57688$	1	${ }_{0}$	\bigcirc	0
${ }_{14551}^{14590}$	0	0	0	1	0	1．09\％	0	1	${ }_{6534}^{1919}$	1			\＄102251	1	0	0	0
${ }^{14552}$	0	0	0	1	0	${ }^{1.111 \%}$		1	${ }_{1}^{11761}$	1	0	－	S5471 188 $\$ 56122$	1	0		0
${ }_{14554}^{1453}$	0	0	\bigcirc	1	\bigcirc	${ }_{\text {1．1．18\％}}^{1.09 \%}$	0	1	4356 4792	1	0	0	$\$ 56122$ $\$ 203263$	1	0	\bigcirc	0
${ }_{14555}^{1454}$	0	0	${ }_{0}$	1	${ }_{0}$	1．10\％	${ }_{0}$	1	${ }_{10019}$	1	0	0	S203263 $\$ 73821$	1	${ }_{0}$	${ }_{0}$	${ }_{0}$
14556	0	0	0	1	0	1．27\％	0	1	10890	1	0	0	\＄216148	1	0	0	0
14557 14558	0	\bigcirc	\bigcirc	1	0	${ }^{1.15 \%}$	0	1	4792 9583	1	0	0	\＄96943	1	0	\bigcirc	\bigcirc
14558 14559 14560	0	0 0 0	－	1	0	1．37\％ $\begin{aligned} & 1.12 \% \\ & 1.10 \%\end{aligned}$	\bigcirc	1	9583 4600 4712	1	0	0	（ $\begin{aligned} & \text { S84743 } \\ & \$ 513001 \\ & \text { S822 }\end{aligned}$	1	\bigcirc	0	0

observation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％．90\％	LTV 70\％．78\％	$\begin{gathered} \text { LTV BELOW } \\ 70 \% \end{gathered}$	total tax burden	PARCEL IN SCEIP $=1$	CONVENTIONAL LOAN＝ 1	Lot size	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	sold during 2004＿2007	Sold 2008－2012	PRICE ADJUST．TO 2012	$\begin{aligned} & \text { ZIP CODE } \\ & \text { Z95403 } \end{aligned}$	$\begin{aligned} & \text { ZIP CODE } \\ & 95404 \end{aligned}$	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
14561	S	0	0	1	0	1．18\％	0	－1	7841	－	－	1	\＄314073	1	0	0	O
14562	0	0	0	1	0	1．13\％	0	1	7841	1	0	0	\＄112840	1	0	0	0
14563	0	0	0	1	0	1．10\％	0	1	38333	1	0	0	\＄125484	1	0	0	0
14564	0	0	0	1	0	1．17\％	0	1	38768	1	0	0	\＄100 575	1	0	0	0
14565	0	0	0	1	0	1．13\％	0	1	8276	0	0	1	\＄214750	1	0	0	0
14566	0	0	0	1	0	1．11\％	0	1	26572	1	0	0	\＄113062	1	0	0	0
14567	0	0	0	1	\bigcirc	${ }^{1.12 \%}$	0	1	5663	${ }^{0}$	1	0	${ }_{\$ 588771}$	1	0	0	0
14568	0	0	0	1	0	1．09\％	0	1	${ }_{6} 6534$	1	0	0	${ }_{583813}$	1	0	0	0
14569		0	0	1	0	1．09\％	0	1	36155	0	1	0	\＄1029375	1	0	0	0
14570	0	0	0	1	0	1．11\％	0	1	14810	0	1	0	\＄1265 608	1	0	0	0
14571	0	0	0	1	0	1．29\％	0	1	10890	0	0	0	5692551	1	0	0	0
14572	0	0	0	1	0	1．12\％	0	1	6098	0	0	1	\＄279762	1	0	－	0
14573	0	0	0	1	0	1．12\％	0	1	5663	0	0	1	526374	1	0	0	0
14574	0	0	0	1	0	1．31\％	0	1	${ }^{11326}$	1	0	0	\＄148241	1	0	0	\bigcirc
14575		0	0	1	0	1．11\％	0	1	${ }_{41382}$	0	0	1	\＄566404	1	0	0	0
14576	0	0	0	1	0	1．13\％	0	1	6098	0	0	1	\＄259862	1	0	0	0
14577	0	0	0	1	0	1．21\％	0	1	72310	0	0	1	\＄1108026	1	0	0	0
14578	0	0	0	1	0	1．13\％	0	1	9148	0	0	1	\＄257 701	1	0	0	0
14579 14580	0	0	0	1	\bigcirc	1．13\％	0	1	11326 7841	\bigcirc	0	1	\＄284 162 $\$ 351165$	1	0	0	0
14580 14581	0	\bigcirc	0	1	\bigcirc	1．18\％		1	7841 9148	0	0	0	${ }_{5351}^{165}$	1	0	\bigcirc	\bigcirc
${ }_{14582}^{14581}$	0	0		1	－	1．18\％	0	1	6098	${ }_{0}$	。		\＄5268866	1	\bigcirc	\bigcirc	\bigcirc
14583	0	0	0	1	0	1．14\％	0	1	7841	0	0	1	526688	1	0	0	0
14584	0	0	0	1	0	${ }^{1.15 \%}$	－	1	7841	1	0	0	\＄104306	1	0	0	0
14585	0	0	0	1	0	${ }^{1.16 \%}$	0	1	7841 8826	0	0	1	S342500 $\$ 322863$	1	0	0	0
14586 14587	0	0	0	1	\bigcirc	1．1．18\％	0	1	8276 8712	\bigcirc	\bigcirc	1	5332863 $\$ 268488$	1	0	0	\bigcirc
14588			。	1	0	1．18\％		1	${ }_{9} 148$	0	。	1	¢533601	1	。	。	－
14589	0	0	－	1	0	1．18\％	0	1	9583	0	0	1	\＄277028	1	0	0	0
14590	0	0	0	1	0	1．13\％	0	1	8276	0	1	0	\＄923703	1	0	0	0
14591	0	0	0	1	0	${ }^{1.113 \%}$	0	1	12632	0	0	1	\＄377045	1	0	0	0
14592 14593	\bigcirc	\bigcirc	\bigcirc	1	\bigcirc	－${ }_{\text {1．1．15\％}}$	0	1	8276 9583	${ }_{0}$	${ }_{0}$	0	$\$ 322402$ $\$ 268866$	1	\bigcirc	\bigcirc	\bigcirc
14594	0		0	1	0	1．08\％	0	1	6098	1	0	0	\＄54110	1	0	0	0
14595	0	0	0	1	0	1．15\％	0	1	5227	0	0	1	\＄332408	1	0	0	0
14596 14597	${ }_{0}^{1}$	0	\bigcirc	1	\bigcirc	1.13% 1.18% 1	0	1	8276 5663	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	\＄516065	1	\bigcirc	\bigcirc	\bigcirc
14598	0	0	0	1	。	1．18\％	0	1	6098	－	－	0	\＄397246	1	0	0	0
14599	0	0	0	1	0	1．18\％	0	1	6534	0	0	1	\＄499 993	1	0	0	0
14600	0	0	0	1	0	1．18\％	0	1	3485	0	0	1	\＄275079	1	0	0	0
14601	0	－	0	1	0	1．18\％	0	1	3920	0	0	1	\＄257 701	1	0	0	0
14602	0	0	0	1	0	1．18\％	0	1	3920	0	0	1	\＄304343	1	0	0	0
14603 14604	\bigcirc	\bigcirc	\bigcirc	1	\bigcirc	1．1．18\％	\bigcirc	1	4356 4356	1	\bigcirc	${ }_{1}$	S64619 S25 282	1	\bigcirc	\bigcirc	\bigcirc
14604 14605	0	\bigcirc	\bigcirc	1	0	1.38% 1.38%	0	1	4356 4356	\bigcirc	0	1	\＄295 282 $\$ 321052$	1	0	\bigcirc	0
14606	0		0	1	0	1．43\％	0	1	4792	1	0	0	\＄104821	1	0	－	0
14607	0	0	0	1	0	1．18\％	0	1	5663	1	0	0	\＄64395	1	0	0	0
14608 14609	\bigcirc	\bigcirc	\bigcirc	1	\bigcirc	1．1．5\％	0	1	－5663	\bigcirc	1	0	\＄5694048	1	\bigcirc	\bigcirc	\bigcirc
14610	－	0	。	1	0	${ }_{1} 1.12 \%$	。	1	5663	－	0	${ }_{0}$	${ }_{\text {S }}$ \＄326323	1	0	0	0
14611	0	0	0	1	0	1．34\％	0	1	5663	1	0	0	\＄110 074	1	0	0	0
14612	0	0	0	1	0	1．15\％	0	1	6300	0	0	0	\＄551476	1	0	0	0
14613	0	0	0	1	0	1．35\％	0	1	6970	1	0	0	\＄135914	1		0	0
14614	0	0	0	1	0	1．39\％	0	1	7405 8276	1	0	0	S143037 $\$ 556434$	1	0	0	\bigcirc
14615 14616	\bigcirc	\bigcirc	\bigcirc	1	0	1．1．3\％	0	1	8276 4792	1 1	1	0	\＄756434 $\$ 131684$	1	\bigcirc	0	0
14617	0		－	1	0	1．14\％	0	1	4792	0	0	1	\＄291693	1	0	0	0
14618	0		0	1	0	1．09\％	0	1	4792	0	0	0	\＄278 137	1	0	0	0
14619	\bigcirc	\bigcirc	0	1	0	${ }^{1.12 \%}$	0	1	${ }_{5633}^{5693}$	0	1	0	\＄62523	1	0	－	0
14420 14621	0	\bigcirc	\bigcirc	1	\bigcirc	1．1．15\％	\bigcirc	1	6098 6970	1	${ }_{0}$	\bigcirc	5117692 $\$ 77386$	1	\bigcirc	\bigcirc	\bigcirc
14622	0			1	\bigcirc	${ }_{\text {1．39\％}}$		1	6970	1	0	${ }_{0}$	¢121688	1	0	0	0
14623	0	0	0		0	1．50\％	0	1	7841	1	0	0	\＄199999\％	1	－	0	0
14624	0	0	0	1	0	1．11\％	0	1	10019	，	1	0	\＄1505070	1	0	0	0
14625	0	0	0	1	0	${ }^{1.31 \%}$	0	1	${ }^{11326}$	1	0	0	S97935 S77902	1	0	0	0
14626 14627	\bigcirc	\bigcirc	\bigcirc	1	\bigcirc	－${ }_{\text {124\％}}^{1.24 \%}$	\bigcirc	1	13068 4500	\bigcirc	\bigcirc	1	S779002 $\$ 323544$	1	\bigcirc	\bigcirc	\bigcirc
14627 14628	0	0	0	1	\bigcirc	－${ }_{\text {1．1．2\％}}^{1.18 \%}$	0	1	4500 4792	0	$\stackrel{0}{0}$	${ }_{0}^{1}$	S323544 $\$ 346516$	1	0	0	0
14629	0	0	0	1	0	1．18\％	0	1	6098	0	1	0	5997600	1		0	0
14630	0	0	0	1	0	1．18\％	0	1	6098	0	1	0	\＄1225754	1		0	0
${ }_{11631}^{14632}$	0	0	－	1	0	1．18\％	0	1	6508	－	0	0	\＄4911988	1	0	－	0
14632 14633	0	\bigcirc	\bigcirc	1	\bigcirc	（1．18\％	0	1	6534 6534	0	${ }_{1}^{0}$	${ }_{0}$	S217935 $\$ 676892$	1	\bigcirc	\bigcirc	\bigcirc
14634	0	\bigcirc	0	1	0	${ }_{1}^{1.12 \%}$	－	1	6934 6970	0	1	1	${ }_{\text {S }}$ \＄322126	1	0	\bigcirc	0
14635	0	0	0	1	0	1．28\％	0	1	6970	0	0	1	${ }_{5} 5240000$	1	－	0	0
${ }_{1}^{14636}$	\bigcirc	0	0	1	0	1．12\％	0	1	8276	1	0	0	\＄142 236	1			0
14637 14638	\bigcirc	0	0	1	\bigcirc	1．1．27\％	0	1	${ }_{5}^{9583}$	0	${ }_{0}^{\circ}$	1	\＄499295 $\$ 368723$	1	0	0	0
14639	0	0	0	1	0	1．29\％	－	1	5663	0	0	1	\＄429 501	1	0		0
14640	0	0	0	1	0	1．26\％	0	1	5663	0	1	0	\＄112036	1	\bigcirc	\bigcirc	0
14641 14642		\bigcirc	0	1	0	1．13\％	0	1	6970 7405		0	0	\＄460575	1	0	0	\bigcirc
14642 14643	0	${ }_{0}$	${ }_{0}$	1	\bigcirc	${ }^{1.127 \%}$	${ }_{0}$	1	7405 7405	1	\bigcirc	\bigcirc		1	${ }_{0}$	\bigcirc	\bigcirc
14644	0	0	0	1	0	1．15\％	0	1	8712	0	0	1	\＄354338	1	0	0	0
14645 11646	\bigcirc	0	0	1	0	1．16\％	\bigcirc	1	9148 33106	1	\bigcirc	1	$\$ 15724$ $\$ 779688$	1	0	\bigcirc	
14646 14647	0	\bigcirc	\bigcirc	1	\bigcirc	－${ }_{\text {1．1．18\％}}$	\bigcirc	1	33106 4992	\bigcirc	\bigcirc	1	S779 688 $\mathbf{\$ 4 5 0 6 2}$	1	\bigcirc	\bigcirc	0
14648	－		0	1	0	${ }^{1.31 \%}$	0	1	5227	O	0	1	\＄445 607	1	0	\bigcirc	0
14649	0	0	0	1	0	1．18\％	－	1	5663	0	1	0	\＄556434	1	0	0	0
14650 14651	0	0	\bigcirc	1	\bigcirc	－ $\begin{aligned} & 1.31 \% \\ & 110 \%\end{aligned}$	\bigcirc	1	5663 7405	1	\bigcirc	1	S415 546 $\$ 223501$	1	0	\bigcirc	\bigcirc
${ }_{14652}^{1461}$		${ }_{0}$	\bigcirc	1	\bigcirc	${ }^{1.126 \%}$	0	1	7405 11326	1	${ }_{0}^{0}$	0	\＄194705	1	0	\bigcirc	0
14653	－	0	0	1	0	${ }^{1.118 \%}$	－	1	6000		0	1	\＄307256	1	0	\bigcirc	－
14654	1	0	0	1	0	1．15\％	0	1	6057	0	0	1	\＄269000	1	0	0	0
14655 14656	\bigcirc	\bigcirc	\bigcirc	1	0	${ }^{1.1 .16 \%}$	0	1	6098 6534	${ }_{0}$	0	0	5370849 $\$ 880634$	1	\bigcirc	\bigcirc	\bigcirc
14657	0	0	0	1	0	1．18\％	0		7841	0	0	1	\＄326888	1	0	0	0
14658	0	0	0	1	0	1．18\％	0	1	6098	0	0	1	$\$ 583539$ $\$ 50096$	1	0	\bigcirc	
14659 14660	${ }_{0}$	\bigcirc	\bigcirc	1	\bigcirc	${ }_{\text {1．1．18\％}}^{1.18}$	0	1	6970 7841	\bigcirc	0	${ }_{0}^{1}$	\＄500996	1	\bigcirc	\bigcirc	\bigcirc
${ }_{14661}^{1460}$	${ }_{0}$	${ }_{0}$	\bigcirc	1	${ }_{0}$	${ }_{\text {1．15\％}}^{1.156}$	${ }_{0}$	1	7841 4792	0	${ }_{0}$	0	\＄518147 $\$ 31600$	1	\bigcirc	${ }_{0}$	0
14662	0	0	0	1	0	1．18\％	0	1	6098	0	0	1	\＄443210	1	0	0	0
14663 14664	0	0	\bigcirc	1	\bigcirc	1．15\％	\bigcirc	1	8276 2178	0	0	1	$\$ 375000$ $\$ 20582$	1	\bigcirc	\bigcirc	
14664 14665	0	\bigcirc	\bigcirc	1	\bigcirc	${ }_{\text {1．1．19\％}}^{1.1}$	0	1	2178 6098 18	${ }_{1}$	0	${ }_{0}^{1}$	\＄205 842 $\$ 188207$	1	0	0	0
14666	1	0	0	1	0	${ }^{1.12 \%}$	0	，	12634	0	1	0	\＄2062473	1	0	0	
${ }_{14668}^{1467}$	\bigcirc	\bigcirc	：	1	\bigcirc	${ }_{\text {1．1．18\％}}^{1.15}$	\bigcirc	1	2614 3049	0	1	${ }_{0}^{1}$		1	\bigcirc	0	\bigcirc
14668 14669	0	\bigcirc	\bigcirc	1	0	${ }^{1.1 .18 \%}$	\bigcirc	${ }_{1}^{1}$	3049 3049	\bigcirc	${ }_{0}^{1}$	${ }_{1}^{0}$	（ $\begin{gathered}\text { \＄1 } 108444 \\ \$ 421398\end{gathered}$	1	\bigcirc	\bigcirc	\bigcirc
14670		0	0	1	0	1．18\％		1	${ }_{3363}$		0	1	${ }_{\text {S313 }}$	1	0	－	0
14671	－	0	\bigcirc	1	0	1．12\％	0	1	${ }^{12197}$	0	1	0	\＄964504	1	\bigcirc	\bigcirc	\bigcirc
14672	0	0	－	1	\bigcirc	1．15\％	1	1	${ }^{2614}$	0	0	1	\＄256047	1	0	0	${ }_{0}$
14673 14674	0	0	\bigcirc	1	\bigcirc	1．1．3\％\％	${ }_{0}^{1}$	1	13504 1742	\bigcirc	0	1	5913030 $\$ 399460$	1	0	0	\bigcirc
14675	0	0	0	1	0	1．12\％		1	4792	0	1	0	\＄670 959	1	0	0	0
14676	0	0	0	1	0	1．18\％	0	1	6098 4356	－	0	1	S299167 S 6923	1		\bigcirc	0
14677 1467	0	－	\bigcirc	1	\bigcirc	－ 1.10%		1	4356 5227	0	，	1	S602834 S43856	1	0	0	0
14678 14679	0	\bigcirc	0	1	\bigcirc	${ }^{1.12 \% \%}$	\bigcirc	1		0	\bigcirc	${ }_{0}^{1}$	\＄443856	1	\bigcirc	\bigcirc	\bigcirc
14680	0	0	0	1	0	1．15\％	0	1	4792	1	0	0	\＄149060	1	0	0	0
14681 14682	0	0	0	1	\bigcirc	${ }^{1.10 \%}$	0	1	（ $\begin{array}{r}6970 \\ 3485\end{array}$	0	1	0	\＄772563	1	\bigcirc	0	
14682 14683	0	0	0	1	\bigcirc	－${ }_{\text {1．212\％}}^{1.12 \%}$	0	1	3485 6098	0	1	0	S664 414 $\$ 91839$	1	\bigcirc	\bigcirc	0
14684	0	0	0	1	\bigcirc	${ }^{1.12 \%}$	－	1	4792	0	0	1	${ }_{\text {S }} 5330959$	1	0	－	\bigcirc
14685	0	0	0	1	0	1．18\％		1	4892		0	1	\＄295000	1	0	0	0
14686 14687	0	\bigcirc	\bigcirc	1	\bigcirc	${ }^{1.12 \%}$	\bigcirc	1	6970 53143	0	\bigcirc	${ }_{1}^{1}$	S617 408 $\$ 171518$	1	0	0	\bigcirc
${ }_{14688}^{1467}$	${ }_{0}$	$\stackrel{0}{0}$	${ }_{0}$	1	${ }_{0}$	${ }^{1.1 .0 \% \%}$	0	1	53183 4356	1	${ }_{0}$	0	\＄563255	1	0	${ }_{0}$	${ }_{0}^{\circ}$
						${ }_{1}^{1.12 \% \%}$			$\xrightarrow{30492} 5$			－	$\begin{array}{r}\text { S131921 } \\ \text { S200 } \\ \hline 02\end{array}$		0	0	${ }_{0}$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline observation \& PROPERTY \& LTV_90\% \& LTV 81\%.90\% \& LTV 70\%-78\% \& LtV below \& total tax \& parcel in \& CONVENTIONAL \& Lot size \& sold \& sold during \& Sold 2008-2012 \& PRICE Adust. To \& ZIP CODE \& ZIP CODE \& 21P CODE \& ZIP CODE \\
\hline 14821 \& DURESS \(=1\) \& 0 \& 0 \& 1 \& \({ }_{0}^{70 \%}\) \& \({ }^{\text {BURDEN }}\) \& \({ }_{\substack{\text { SCEIP } \\ 0}}^{\text {a }}\) \& LOAN \({ }_{1}\) \& 7841 \& - \& 2004-2007 \& 0 \& \({ }_{5863860}^{2012}\) \& 295403 \& \({ }_{\substack{95404 \\ 0}}\) \& \({ }_{0}^{95472}\) \& \({ }_{\substack{9998 \\ 0}}\) \\
\hline 14822 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1.10\% \& - \& 1 \& 47480 \& 0 \& 1 \& 0 \& \$1059008 \& 1 \& 0 \& 0 \& 0 \\
\hline 14823 \& 0 \& 0 \& 0 \& 1 \& \& 1.18\% \& 0 \& 1 \& 7841 \& - \& 1 \& 0 \& \$685470 \& , \& \& \& 0 \\
\hline 14824 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1.09\% \& 0 \& 1 \& 5663 \& 0 \& 1 \& 0 \& S653 497 \& 1 \& 0 \& 0 \& 0 \\
\hline 14825 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1.15\% \& 0 \& 1 \& 7405 \& 1 \& 0 \& 0 \& \$210791 \& 1 \& 0 \& 0 \& 0 \\
\hline 14826 \& 0 \& \& \& 1 \& 0 \& 1.18\% \& 0 \& 1 \& 5227 \& 0 \& 0 \& 1 \& \$300651 \& 1 \& 0 \& 0 \& 0 \\
\hline 14827 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1.12\% \& 0 \& 1 \& 4792 \& 1 \& 0 \& 0 \& \$62 607 \& 1 \& 0 \& 0 \& 0 \\
\hline 14828 \& 0 \& 0 \& 0 \& 1 \& 0 \& \({ }^{1.18 \%}\) \& 0 \& 1 \& 4792 \& 0 \& 0 \& 1 \& \$306019 \& \& - \& - \& 0 \\
\hline 14829 \& 0 \& 0 \& \& 1 \& \& 1.25\% \& 0 \& 1 \& 8276 \& 0 \& 0 \& 1 \& \$569 089 \& 1 \& 0 \& 0 \& 0 \\
\hline 14830 \& 0 \& 0 \& \& 1 \& \& 1.10\% \& 0 \& 1 \& 5663 \& 0 \& 0 \& 1 \& \$569089 \& 1 \& 0 \& 0 \& 0 \\
\hline 14831 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1.11\% \& 0 \& 1 \& 10890 \& 1 \& 0 \& 0 \& 5229612 \& 1 \& 0 \& 0 \& 0 \\
\hline 14832 \& 0 \& \& 0 \& \& 0 \& 1.10\% \& 0 \& 1 \& 22651 \& 1 \& 0 \& 0 \& \$156 292 \& 1 \& 0 \& 0 \& 0 \\
\hline 14833 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1.14\% \& 0 \& 1 \& 7405 \& 0 \& 0 \& 1 \& \$235000 \& 1 \& 0 \& 0 \& 0 \\
\hline 14834 \& 0 \& - \& 0 \& 1 \& 0 \& 1.12\% \& 0 \& 0 \& 6534 \& 0 \& 0 \& 1 \& \$245000 \& 1 \& 0 \& 0 \& 0 \\
\hline 14835 \& 0 \& 0 \& \& 1 \& \& 1.95\% \& 1 \& 1 \& 15682 \& 0 \& 0 \& 1 \& \({ }_{5635000}\) \& 1 \& 0 \& 0 \& 0 \\
\hline 14836 \& 0 \& 0 \& \& 1 \& \& 1.12\% \& 0 \& 1 \& 2178 \& 0 \& 0 \& 1 \& \$374576 \& 1 \& 0 \& 0 \& 0 \\
\hline 14837 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1.15\% \& 0 \& 1 \& 4356 \& 0 \& 0 \& 0 \& \$368460 \& 1 \& 0 \& 0 \& 0 \\
\hline 14838 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1.21\% \& 0 \& 1 \& 49223 \& 0 \& 0 \& 0 \& \$528460 \& 1 \& 0 \& 0 \& 0 \\
\hline 14839
14840 \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \& \(\bigcirc\) \& \({ }_{1.16 \%}^{1.22 \%}\) \& \(\bigcirc\) \& 1 \& 13504
7405 \& \(\bigcirc\) \& 0 \& \({ }_{0}^{1}\) \& 5643178
S605 341 \& 1 \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \\
\hline 14841 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1.12\% \& 0 \& 1 \& 9148 \& 0 \& 0 \& 。 \& \$525679 \& 1 \& - \& 0 \& 0 \\
\hline 14842 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1.16\% \& 0 \& 1 \& 8712 \& 1 \& 0 \& 0 \& \$150369 \& 1 \& 0 \& 0 \& 0 \\
\hline 14843 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1.25\% \& 0 \& 1 \& 5663 \& 0 \& 0 \& 0 \& 5388464 \& 1 \& 0 \& 0 \& 0 \\
\hline \(\begin{array}{r}14844 \\ \hline 1885\end{array}\) \& 0 \& - \& - \& 1 \& 0 \& 1.18\% \& 0 \& 1 \& 3920 \& 0 \& 0 \& 1 \& \({ }_{\text {ckis }}^{5237973}\) \& 1 \& 0 \& 0 \& 0 \\
\hline 14845
14846 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \& \(\bigcirc\) \& \(1.30 \%\)
\(1.31 \%\) \& \(\bigcirc\) \& 1 \& 6098
4356 \& \(\bigcirc\) \& \({ }_{0}^{1}\) \& \({ }_{1}^{1}\) \& \(\$ 1107357\)
\(\$ 365000\) \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \\
\hline 14847 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1.25\% \& 0 \& 1 \& 7841 \& 0 \& 0 \& 0 \& 5352307 \& 1 \& 0 \& 0 \& 0 \\
\hline 14848 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1.18\% \& 0 \& 1 \& 7841 \& 0 \& 1 \& 0 \& \$1053022 \& 1 \& 0 \& 0 \& 0 \\
\hline 14849 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1.10\% \& 0 \& 1 \& 7405 \& 1 \& 0 \& 0 \& \$171644 \& 1 \& 0 \& 0 \& 0 \\
\hline 14850 \& - \& - \& 0 \& 1 \& 0 \& \({ }^{1.110 \%}\) \& 0 \& 1 \& 5663 \& 0 \& 0 \& 1 \& \$510032 \& 1 \& 0 \& 0 \& 0 \\
\hline 14851
14852 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \& \(\bigcirc\) \& \({ }^{1.1 .15 \%}\) 1.9\%\% \& \(\bigcirc\) \& 1 \& 3979
4792 \& \({ }_{1}\) \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }_{554781}^{548731}\) \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& 0 \\
\hline 14853 \& 0 \& \& 0 \& 1 \& 0 \& 1.20\% \& 0 \& 1 \& 21344 \& 0 \& 0 \& 1 \& \$526748 \& 1 \& - \& 0 \& 0 \\
\hline 14854 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1.30\% \& 0 \& 1 \& \({ }^{13939}\) \& 1 \& 0 \& 0 \& \$144907 \& 1 \& 0 \& 0 \& 0 \\
\hline 14855 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.12\% \& 0 \& 1 \& 6098 \& 0 \& 1 \& 0 \& \$840570 \& 1 \& 0 \& 0 \& 0 \\
\hline 14856
14857 \& 0 \& 0 \& 0 \& 0 \& 0 \& \({ }^{1.111 \%}\) \& 0 \& 1 \& 21780
38788 \& 0 \& 1 \& 0 \& \$233969 \& 1 \& 0 \& 0 \& 0 \\
\hline 14857
14858 \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& 0 \& \({ }^{1.111 \%}\) 1.15\% \& \(\bigcirc\) \& 1 \& 38768
6534 \& 0
1 \& 1 \& \(\bigcirc\) \& \begin{tabular}{l}
S1 190609 \\
S159 \\
\hline
\end{tabular} \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& 0 \\
\hline 14859 \& 0 \& \& 0 \& 0 \& 0 \& 1.11\% \& 0 \& 1 \& 12632 \& 1 \& 0 \& 0 \& \$251759 \& 1 \& 0 \& 0 \& 0 \\
\hline 14860 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.10\% \& 0 \& 1 \& 6098
5633 \& 0 \& 0 \& 0 \& \({ }_{\text {\$365 }} 5941\) \& 1 \& 0 \& 0 \& 0 \\
\hline 14861 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.27\% \& 0 \& 1 \& 5663 \& 0 \& 0 \& 0 \& \$523904 \& 1 \& 0 \& 0 \& 0 \\
\hline 14862
1483 \& \(\bigcirc\) \& 0 \& 0 \& 0 \& 0 \& 1.14\%\% \& 0 \& 1 \& 5663
5633 \& 1 \& 0 \& 0 \& \$81578 \& 1 \& 0 \& 0 \& 0 \\
\hline 14883
14864 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }_{0}\) \& \({ }_{0}\) \& \({ }^{1.1 .16 \%}\) 1.3\% \& 0 \& 1 \& 5663
7405 \& 1 \& 1 \& \(\bigcirc\) \& \({ }_{\text {S }}^{55911111}\) \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \\
\hline 14865 \& 0 \& \& 0 \& 0 \& 0 \& 1.11\% \& 0 \& 1 \& 21344 \& 1 \& 0 \& 0 \& \$173951 \& 1 \& 0 \& 0 \& 0 \\
\hline 14866 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.09\% \& 0 \& 1 \& 5227 \& 1 \& - \& 0 \& \$144320 \& 1 \& 0 \& \& 0 \\
\hline 14867 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.116\% \& \(\bigcirc\) \& 1 \& 5663 \& 1 \& 0 \& 0 \& \$156296 \& 1 \& 0 \& 0 \& 0 \\
\hline 14868
1489 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.11\% \& 0 \& 1 \& 14375 \& 1 \& 0 \& 0 \& \$199875 \& 1 \& 0 \& 0 \& 0 \\
\hline 14889
14870 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& 0 \& 0 \& \(1.34 \%\)
\(1.18 \%\) \& \(\bigcirc\) \& 1 \& 5663
6970 \& \({ }_{0}^{1}\) \& \({ }_{0}\) \& \({ }_{1}\) \& \(\$ 105325\)
S509 190 \& 1 \& \(\bigcirc\) \& 0 \& 0 \\
\hline 14871 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.11\% \& 0 \& 1 \& 12632 \& 0 \& 1 \& 0 \& \$1019237 \& 1 \& 0 \& 0 \& 0 \\
\hline 14872 \& 0 \& 0 \& - \& 0 \& 0 \& 1.10\% \& 0 \& 1 \& \({ }^{8276}\) \& 1 \& 0 \& 0 \& \$17730 \& 1 \& 0 \& 0 \& 0 \\
\hline 14873 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.18\% \& 0 \& 1 \& 9148 \& 0 \& 1 \& 0 \& \$803 224 \& 1 \& 0 \& 0 \& 0 \\
\hline 14874
14875 \& \& 0 \& 0 \& 0 \& 0 \& 1.16\% \& 0 \& 1 \& 10842 \& 0 \& 0 \& 0 \& \$564301 \& 1 \& 0 \& 0 \& 0 \\
\hline 14875
14876 \& \(\bigcirc\) \& 0 \& \({ }_{0}\) \& \({ }_{0}\) \& \({ }_{0}\) \& \({ }^{1.1 .14 \%}\) \& 0 \& \({ }_{0}^{1}\) \& \begin{tabular}{l}
5663 \\
3407 \\
\hline
\end{tabular} \& 0 \& \({ }_{0}\) \& \({ }_{0}^{1}\) \& S340000
\(\$ 418096\) \& 1 \& \(\bigcirc\) \& 0 \& 0 \\
\hline 14877 \& 0 \& 0 \& 0 \& O \& 0 \& 1.15\% \& \& 1 \& 4792 \& 0 \& 1 \& 0 \& \$880634 \& 1 \& 0 \& 0 \& 0 \\
\hline 14878 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.12\% \& \& 1 \& 12130 \& 0 \& 0 \& 0 \& \$904 164 \& 1 \& 0 \& 0 \& 0 \\
\hline 14879 \& \& 0 \& 0 \& 0 \& 0 \& 1.18\% \& 0 \& 1 \& 4682 \& 0 \& 1 \& 0 \& 5655057 \& 1 \& 0 \& 0 \& 0 \\
\hline 14880
14881 \& 0 \& 0 \& 0 \& 0 \& 0 \& \({ }^{1.19 \%}\) \& 0 \& 1 \& 9148 \& 1 \& 0 \& 0 \& \$67526 \& 1 \& 0 \& 0 \& \(\bigcirc\) \\
\hline 14881
14882 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }^{1.1 .17 \%}\) \& \(\bigcirc\) \& 1 \& \({ }_{5663}^{2038}\) \& 0 \& \({ }_{0}^{1}\) \& \({ }_{0}\) \& \$1259931
\(\$ 139075\) \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& 0 \\
\hline 14883 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.18\% \& 0 \& 1 \& 11326 \& 1 \& 0 \& 0 \& \$188215 \& 1 \& 0 \& 0 \& 0 \\
\hline 14884 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.12\% \& 0 \& 1 \& 4995 \& 0 \& 1 \& 0 \& 5696387 \& 1 \& 0 \& 0 \& 0 \\
\hline 14885 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.14\% \& 0 \& 1 \& 5227 \& 1 \& 0 \& 0 \& \$102014 \& 1 \& 0 \& 0 \& 0 \\
\hline 14886
14887 \& \(\bigcirc\) \& 0 \& 0 \& 0 \& 0 \& \({ }^{1.12 \%}\) \& \& 1 \& 45738 \& 0 \& 1 \& 0 \& \$3421830 \& 1 \& \& O \& \(\bigcirc\) \\
\hline 14887
14888 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \& \({ }_{\text {1.1.15\% }}^{\text {1.1. }}\) \& \(\bigcirc\) \& 1 \& 10890
7405 \& 1 \& \({ }_{0}\) \& \({ }_{0}\) \& \(\$ 165622\)
S137266 \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \\
\hline 14889 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.12\% \& - \& 1 \& 19166 \& 0 \& 0 \& 1 \& \$445000 \& 1 \& 0 \& 0 \& 0 \\
\hline 14890 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.34\% \& 0 \& 1 \& 9148 \& 1 \& 0 \& 0 \& \$145498 \& 1 \& 0 \& 0 \& 0 \\
\hline 14891 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.15\% \& 0 \& 1 \& 3920 \& 1 \& 0 \& \(\bigcirc\) \& \$110 203 \& 1 \& 0 \& 0 \& 0 \\
\hline 148929
14893 \& 0 \& 0 \& 0 \& 0 \& 0 \& \({ }^{1.1 .18 \%}\) \& 0 \& 1 \& 6970 \& 1 \& 0 \& 0 \& \$119944 \& 1 \& \& 0 \& \(\bigcirc\) \\
\hline 14893
14894 \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }^{1.1 .15 \%}\) \& \(\bigcirc\) \& 1 \& 3920
13068 \& \({ }_{0}\) \& \({ }_{0}^{1}\) \& 0 \& \({ }_{\text {S }}^{56365939}\) \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \\
\hline 14895 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.18\% \& 0 \& \& 5663 \& 1 \& 0 \& \& \$111750 \& 1 \& 0 \& 0 \& 0 \\
\hline 14896 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.10\% \& \& 1 \& 9148 \& 0 \& 1 \& 0 \& \$1132460 \& 1 \& \& 0 \& 0 \\
\hline 14897 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.35\% \& 0 \& 1 \& 6098 \& 1 \& 0 \& 0 \& \({ }_{580} 8047\) \& 1 \& 0 \& 0 \& 0 \\
\hline 14898
14899 \& \& 0 \& 0 \& 0 \& 0 \& 1.13\% \& 0 \& , \& 8276 \& 1 \& 0 \& 0 \& \$55004 \& 1 \& \& \& \(\bigcirc\) \\
\hline 14899
14900 \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& 1.1.3\%\% \& \(\bigcirc\) \& 1 \& \({ }_{6}^{6970}\) \& 1 \& 0 \& \({ }_{0}^{1}\) \& \$5109000 \& 1 \& \({ }_{0}^{0}\) \& \(\bigcirc\) \& \(\bigcirc\) \\
\hline 14901 \& 0 \& O \& 0 \& 0 \& 0 \& 1.11\% \& 0 \& 1 \& 43560 \& 1 \& \& 0 \& \$480 181 \& 1 \& 0 \& 0 \& 0 \\
\hline 14902 \& 0 \& 0 \& 0 \& 0 \& 0 \& \({ }^{1.1 .3 \%}\) \& 0 \& 1 \& \({ }_{4}^{4366}\) \& 1 \& 0 \& 0 \& \$54110 \& 1 \& O \& 0 \& - \\
\hline 14903
14904 \& \(\bigcirc\) \& \({ }_{0}\) \& \(\bigcirc\) \& \(\bigcirc\) \& 0 \& \& \(\bigcirc\) \& 1 \& 6970
4356 \& 1 \& \(\bigcirc\) \& \({ }_{0}\) \& \$55004
\(\$ 55004\) \& 1 \& 0 \& 0 \& 0 \\
\hline 14905 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.12\% \& 0 \& 1 \& 6098 \& 0 \& 0 \& 1 \& \({ }_{\text {S689746 }}\) \& 1 \& 0 \& 0 \& - \\
\hline 14906 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.18\% \& 0 \& 1 \& 3485 \& \& 0 \& 1 \& \$254115 \& 1 \& 0 \& 0 \& 0 \\
\hline 14907 \& \(\bigcirc\) \& 0 \& 0 \& 0 \& 0 \& \({ }^{1.12 \%}\) \& 0 \& 1 \& 6970 \& 0 \& \& 0 \& 542383 \& 1 \& 0 \& 0 \& \\
\hline 14908
14909 \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& 0 \& 0 \& - \({ }_{\text {1.1.14\% }}\) \& \(\bigcirc\) \& 1 \& 6098
4792 \& \({ }_{1}^{0}\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\$ 429638\)
\(\$ 60594\) \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \\
\hline 14910 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.18\% \& 0 \& 1 \& 3920 \& 1 \& 0 \& 0 \& \$67050 \& 1 \& 0 \& 0 \& 0 \\
\hline 14911 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.13\% \& 0 \& 1 \& 6534 \& 1 \& 0 \& 0 \& \$62 159 \& 1 \& 0 \& 0 \& 0 \\
\hline \({ }_{14913}^{14912}\) \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }^{1.09 \%}\) \& \(\bigcirc\) \& 1 \& 7405
4792 \& \({ }_{1}^{1}\) \& \(\bigcirc\) \& \(\bigcirc\) \& 5304019
\(\$ 8040\) \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \\
\hline 14914 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.15\% \& 0 \& 1 \& 5227 \& 1 \& 0 \& 0 \& 570880 \& 1 \& 0 \& 0 \& 0 \\
\hline 14915 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.15\% \& 0 \& 1 \& 4792 \& 1 \& 0 \& 0 \& 57103 \& 1 \& 0 \& 0 \& \\
\hline 14916 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& 0 \& 0 \& 1.87\% \& 1 \& 1 \& 7405
4792 \& 1 \& \(\bigcirc\) \& 0 \& 572822
59076 \& 1 \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \\
\hline \({ }_{14918}^{14917}\) \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }^{1.1 .15 \%}\) \& \(\bigcirc\) \& 1 \& 4792
6534 \& \({ }_{0}^{1}\) \& \({ }_{1}\) \& 0 \& 591076
\(\$ 738988\) \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \\
\hline 14919 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.36\% \& 0 \& 1 \& 5663 \& 1 \& 0 \& 0 \& \$77364 \& 1 \& 0 \& 0 \& 0 \\
\hline 14920 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.15\% \& 0 \& 1 \& 5227 \& 1 \& 0 \& 0 \& 598061 \& 1 \& 0 \& 0 \& \\
\hline 14921
14922 \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \& 0 \& 0 \& \(1.34 \%\)
\(1.18 \%\)
1 \& 0 \& 1 \& 8276
6534 \& 1 \& \(\bigcirc\) \& 0 \& \$82283
\(\$ 62607\) \& 1 \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \\
\hline 14923 \& \& 0 \& - \& 0 \& 0 \& 1.33\% \& 0 \& 1 \& 6098 \& \& 0 \& 0 \& \$431789 \& 1 \& 0 \& 0 \& 0 \\
\hline 14924 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.18\% \& 0 \& 1 \& 6126 \& \& 0 \& 0 \& \$118548 \& 1 \& 0 \& 0 \& \\
\hline 14925 \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& 0 \& 1.10\% \& \(\bigcirc\) \& 1 \& 5663
19166 \& 1 \& \(\bigcirc\) \& 0 \& \$1198522 \& 1 \& \(\bigcirc\) \& 0 \& \\
\hline 14926
14927 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& 0 \& \({ }^{1.1 .11 \%}\) \& \(\bigcirc\) \& 1 \& 19166
66647 \& 1 \& 0 \& \(\bigcirc\) \& \& 1 \& \(\bigcirc\) \& 0 \& 0 \\
\hline 14928 \& 0 \& \& \& 0 \& 0 \& \({ }_{1}^{1.10 \%}\) \& 0 \& 1 \& 10019 \& \& 1 \& 0 \& \$830312 \& 1 \& 0 \& 0 \& 0 \\
\hline 14929
14930 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.31\% \& 0 \& 1 \& 10019 \& \& 0 \& 0 \& \$89215 \& 1 \& 0 \& 0 \& \(\bigcirc\) \\
\hline 14930
14931 \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \& 1.1.13\% \& \(\bigcirc\) \& 1 \& 6970
6098 \& \(\bigcirc\) \& 0 \& 0 \& S575 719
\(\$ 193812\) \& 1 \& 0 \& 0 \& \(\bigcirc\) \\
\hline 14932 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.15\% \& \& 1 \& 7405 \& 1 \& 0 \& 0 \& \$ 71774 \& 1 \& 0 \& 0 \& 0 \\
\hline 14933 \& 0 \& 0 \& - \& 0 \& 0 \& 1.12\% \& 0 \& 1 \& 7405 \& , \& 0 \& 1 \& \$971 557 \& 1 \& 0 \& 0 \& 0 \\
\hline 14934
14935 \& \& \(\bigcirc\) \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \& 1.08\% \& 0 \& 1 \& \({ }_{1236} 12\) \& 1 \& 0 \& - \& \& 1 \& 0 \& \(\bigcirc\) \& \({ }_{0}\) \\
\hline 14935
14936 \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& 1.34\% \& 0 \& 1 \& 12911
8712 \& \({ }_{1}^{1}\) \& 0 \& \(\bigcirc\) \& \$877232
\(\$ 12989\) \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \\
\hline 14937 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.27\% \& 0 \& 1 \& 7841 \& 0 \& 0 \& 0 \& \$518685 \& 1 \& 0 \& 0 \& 0 \\
\hline 14938 \& 0 \& 0 \& - \& - \& - \& 1.18\% \& 0 \& 1 \& 4792 \& 1 \& 0 \& 0 \& \$55452 \& 1 \& 0 \& 0 \& \\
\hline 14939
14940 \& 0 \& 0 \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \& - \({ }_{\text {1.20\% }}\) \& \(\bigcirc\) \& \({ }_{1}^{1}\) \& 6534
6970 \& 1 \& 0 \& 0 \& S79864
\(\$ 24833\) \& 1 \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \\
\hline 14941 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1.15\% \& 0 \& 1 \& 6970 \& 1 \& 0 \& 0 \& \$120858 \& 1 \& 0 \& \& 0 \\
\hline 14942 \& 0 \& \& 0 \& 0 \& 0 \& 1.15\% \& \& 1 \& 7405 \& 1 \& 0 \& 0 \& \$122075 \& 1 \& 0 \& 0 \& 0 \\
\hline 14943
14944 \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& 1.32\% \& 0 \& 1 \& 4356
6098 \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& S248469
561936 \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \\
\hline 14944
14945 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }^{1.14 \%}\) 1.18\% \& 0 \& 1 \& 6098
6970 \& 1 \& 0 \& \(\bigcirc\) \& S61936
\(\$ 6280\) \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \\
\hline \({ }^{14946}\) \& 0 \& 0 \& 0 \& 0 \& \& \({ }^{1.15 \%}\) \& 0 \& 1 \& \({ }_{6} 970\) \& 1 \& 0 \& 0 \& \$88460 \& 1 \& \& 0 \& 0 \\
\hline 14947
14948 \& 0 \& \(\bigcirc\) \& 0 \& 0 \& 0 \& 1.15\% \& \& 1 \& 5663 \& 1 \& 0 \& 0 \& \$116596 \& 1 \& 0 \& 0 \& 0 \\
\hline 14948
14949 \& \(\bigcirc\) \& 0 \& 0 \& 0 \& 0 \& \({ }^{1.1 .10 \%}\) \& 0 \& 1 \& 3920

9280 \& 1 \& 0 \& 0 \& \$203844 \& 1 \& 0 \& 0 \& \bigcirc

\hline ${ }_{14950}^{14949}$ \& 0 \& 0 \& 0 \& 。 \& 0 \& 1.34\% \& 0 \& 1 \& 25700 \& 0 \& 0 \& ${ }_{0}$ \& \$580 779 \& 1 \& 0 \& 0 \& 0

\hline
\end{tabular}

osservation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％．90\％	LTV 70\％．78\％	$\begin{gathered} \text { LTV beLow } \\ 70 \% \end{gathered}$	total tax burden	PARCEL in SCEIP $=1$	conventional LOAN $=1$	tor size	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	SOLD DURING 2004＿2007	SOLD 2008－2012	PRICE ADJUST．TO 2012	$\begin{aligned} & \text { ZIP CODE } \\ & \text { Z95403 } \end{aligned}$	$\begin{aligned} & \text { ZIP CODE } \\ & 95404 \end{aligned}$	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	$\begin{gathered} \text { ZIP COD } \\ 94928 \end{gathered}$
14951	0	0	0	0	0	1．14\％	0	1	4792	${ }_{1}$	${ }^{-1}$	0	570433	1	0	0	O
14952	0	0	0	0	0	1．12\％	0		58370		0		5528731	1	0	0	0
14953	0	0	0	0	0	1．12\％	0	1	7405		0		5732314	1	0	0	0
14954	0	0	0	0	0	1．19\％	0	1	7841	1	0	0	554110	1	0	0	0
14955	0	0	0	0	0	1．19\％	0	1	9583	0	0	0	\＄246530	1	0	0	0
14956	0	0	－	0	0	1．28\％	0	1	14561	1	0	0	\＄112916	1	0	0	0
14957	0	0	0	0	0	${ }^{1.15 \%}$	0	1	5663	0	0	0	\＄368310	1	0	0	0
14958	0	0	0	0	0	1．116\％	0	1	10890	1	0	0	\＄139075	1	0	0	0
14959	0	0		0	0	1．18\％	0	1	6098	1	0		\＄120378	1	0	0	0
14960	0	0	0	0	0	1．37\％	1	1	7841	0	0	0	5417972	1	0	0	0
14961	0	0	0	0	0	1．1．6\％	0	1	7841	1	0	0	\＄142472	1	0	0	0
14962	0	0	O	0	0	1．10\％	0	1	7841	1		0	\＄282686	1	0	0	0
14963	0	0	0	0	0	1．18\％	0	1	4792	1	0	0	568197	1	0	0	0
14964	0	0	0	0	0	1．18\％	0	1	7841	1	0	0	\＄127283	1	0	0	0
14965	0			0	0	1．18\％	0	1	4500	0	0	1	S249860 $\$ 26996$	1	0	0	0
14966	0	0	0	0	0	1．09\％	0	1	6534	1	0	0	\＄126946	1	0	0	0
14967	0	0	0	0	0	1．09\％	0	1	8712	1		0	\＄46731	1	0	0	0
14968	0	0	0	0	0	1．09\％	0	1	4792	1	0	0	\＄130715	1	0	0	0
14969	0	0	0	0	0	1．36\％	0	1	6098	1	0	0	\＄75799	1	0	0	0
14970	0	0	0	0	\bigcirc	1．18\％	0	1	3910	0	0	1	S306556 $\$ 152301$	1	0	0	0
14971	0	0	0	0	0	${ }^{1.34 \%}$	0	1	5227 5227	1	0	0	S152301 $\$ 51824$	1	0	0	
14972	0	0		0	0	1．08\％	0	1	5227	1	0	0	\＄51874	1	0	0	0
14973 14974	\bigcirc	\bigcirc	\bigcirc	0	0	${ }_{\text {l }}^{1.1 .13 \%}$	\bigcirc	1	5227 8712	${ }_{0}^{1}$	0	${ }_{1}^{0}$	S S5234841	1	\bigcirc	\bigcirc	\bigcirc
14975	0		0	0	0	1．09\％	0	1	6098	1	0	0	\＄53216	1	0	0	0
14976	0	0	0	0	0	1．25\％	0	1	11761	1	0	0	5272147	1	0	0	0
14977		0	0	0	0	1．32\％	0	1	7405	0	0	0	5401000	1	0	0	0
14978	0	0	0	0	0	1．09\％	0	1	14810	0	1	0	\＄772031	1	0	0	0
14979	0	0	0	0	0	1．18\％	0	1	2614	0	1	0	\＄929246	1	0	0	0
14980	0	0	0	0	0	1．34\％	0	1	10019	1	0	0	539974	1	0	0	0
14981 14982	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	0	1	5227 6098	1	\bigcirc	\bigcirc	${ }_{\text {S }}^{561712}$	1	\bigcirc	\bigcirc	\bigcirc
14982 14983	${ }_{0}$	\bigcirc	\bigcirc	\bigcirc	${ }_{0}$	－1．15\％	0	1	6098 6970	1	0	\bigcirc	$\$ 65737$ $\$ 99500$	1	\bigcirc	\bigcirc	0
14984	0	0	－	0	0	1．15\％	0	1	5227	1	0	0	\＄71551	1	0	0	0
14985	0	0	0	0	0	1．15\％	0	1	4356	1	0	0	\＄92 194	1	0	0	0
14986	0	0	0	0	0	1．15\％	0	1	8276	0	0	0	5380550	1	0	0	0
14987	0	0	0	0	0	${ }_{\text {1．13\％}}^{1.15 \%}$	0	1	3049 7841	1	0	0	\＄100 126	1	0	0	0
14988 14989	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{0}$	${ }_{\text {l }}^{\text {1．25\％}}$	0	1	7841 7405	${ }_{0}^{1}$	${ }_{0}$	${ }_{1}$	$\$ 221801$ $\$ 408522$	1	\bigcirc	\bigcirc	0
14990	0	0		。	。	1．15\％	0	1	6534	1	0	${ }_{0}$	¢132 497	1	。	。	0
14991	0	0	0	－	0	1．15\％	0	1	8276	1	0	0	\＄112309	1	0	0	0
14992	0	0	0	0	0	1．29\％	0	1	6970		0	0	\＄412986	1	0	0	0
14993 14994	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	${ }_{\text {1．11\％}}^{1.15}$	0	1	39640 8276	\bigcirc	0	1	S852072 $\$ 540794$	1	\bigcirc	\bigcirc	\bigcirc
14994 14995	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－${ }_{\text {1．1．18\％}}$	\bigcirc	1	8276 7405	${ }_{1}$	${ }_{0}$	${ }_{0}^{1}$	\＄540 794 $\$ 124815$	1	\bigcirc	\bigcirc	0
14996	－	0	－	0	0	1．31\％	0	1	5663	1	0	0	\＄93686	1	0	0	0
14997	0	0	0	0	0	1．34\％	0	1	4792	0	1	0	5708085	1	0	0	
14998 14999	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	（1．18\％	\bigcirc	1	8276 7841	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	S138210 $\$ 373025$	1	\bigcirc	\bigcirc	0
15000	0	0	。	0	。	1．15\％	0	1	5663	0	0	1	\＄413 395	1	。	－	0
15001	0	0	0	0	0	1．12\％	0	1	5663	0	0	1	\＄195801	1	0	0	0
15002	0	0	0	0	0	1．18\％	0	1	3485	0	0	1	\＄246006	1	0	0	0
15003	0	0	0	0	0	1．13\％	0	1	7405	0	1	0	\＄921856	1	0	0	0
15004	0	0	0	0	0	1．13\％	0	1	14810	1	0	1	\＄491242	1	0	0	0
15005 15006	0	\bigcirc	\bigcirc	0	\bigcirc	${ }_{\text {l }}^{1.1 .18 \%}$	\bigcirc	1	7405 5663	1	\bigcirc	0	\＄59 476 $\$ 62607$	1	0	0	\bigcirc
15007	0	0	－		－	1．11\％	0	1	10019	0	0	1	\＄314073	1	。	0	
15008	0	0	0	0	0	1．19\％	0	1	5227	1	0	0	\＄53216	1	0	0	－
15009	0	0	0	0	0	1．18\％	0	1	6534	0	0	0	\＄222509	1	0	0	0
15010 15011 15012	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－${ }_{\text {1．1．15\％}}$	\bigcirc	1	6970 6970	1	\bigcirc	${ }_{1}^{0}$	\＄86606 $\$ 33300$	1	\bigcirc	\bigcirc	\bigcirc
15012	0	0			0	${ }^{1.14 \%}$	\bigcirc	1	5227	1	0	${ }_{0}$	\＄56793	1	－	－	－
15013	0	0	0	0	0	1．36\％	0	1	5663	1	0	0	572445	1	0	0	0
15014	0	0	0	0	0	1．09\％	0	1	6534	1	0	0	\＄107467	1	0	0	
15015	0	0	0	0	0	1．36\％	0	1	9148	0	0	0	5403003	1	0	0	－
15016	0	0	0	0		1．28\％	0	1	7405	1	0	0	\＄263 489	1	0	0	0
15017	0	0	0	\bigcirc	\bigcirc	1．18\％	\bigcirc	1	6534 6970	0	\bigcirc	\bigcirc	${ }_{5414517}$	1	0	0	0
15018 15019	0	0	\bigcirc	\bigcirc	0	${ }_{\text {l }}^{1.121 \%}$	0	1	6970 5663	0	\bigcirc	${ }_{1}^{0}$	${ }_{\substack{\text { S317 } \\ \$ 300}}$	1	\bigcirc	$\stackrel{0}{0}$	0
15020	0	0	0			1．12\％	0	1	5663	0	0	1	\＄322126	1	－	－	0
15021	0	0	0	0	－	${ }^{1.1 .10 \%}$	0	1	7841	0	0	0	\＄647684	1	0	0	0
15022 15023	0	0	\bigcirc	\bigcirc	\bigcirc	1.15% 1.18% 1	\bigcirc	1	3485 5663	1	\bigcirc	\bigcirc	\＄132017	1	\bigcirc	\bigcirc	\bigcirc
15024			0			${ }_{1.38 \%}^{1.15 \%}$	－	1	4792	${ }_{0}$	。	1	\＄349077	1	－	－	－
15025	0	0	0	0	0	1．15\％	0	1	9148	1	0	0	\＄165 622	1	0	0	
15026	－	0	0	0	0	1．15\％	0	1	6534	1	0	0	\＄133948	1	0	0	0
15027	0	0	0	0	0	1．10\％	0	1	6970	1	0	0	\＄139707	1	0	0	0
15028	0	－	0	0	－	1．14\％	0	1	4792	1	0	0	\＄119713	1	0	0	0
15029 15030	0	0	0	0	0	－${ }_{\text {1．12\％}}^{1.10 \%}$	0	1	10890 7841	1	0	0	\＄306598 $\$ 156292$	1	0	0	\bigcirc
15031	0	0	0	0	0	1．33\％	0	1	7841	1	0	0	\＄158287	1	0	0	0
15032	0	0	0	0	0	1．16\％	0	1	8712	0	1	0	\＄720 489	1	0	0	0
${ }_{1}^{15033}$	－	0	0	0	0	1．09\％	0	1	${ }^{4792}$	1	0	0	${ }_{5123540}$	1	0	－	0
15034 15035	${ }_{1}$	\bigcirc	\bigcirc	\bigcirc	0	${ }^{1.1 .12 \%}$	0	1	3485 4800	0	\bigcirc	0	S214334 S525954	1	\bigcirc	\bigcirc	\bigcirc
15036	1	0		O	O	${ }_{1.11 \%}^{1.12 \%}$	0	1	${ }_{11326}^{480}$	0	0	1		1	0	－	0
15037	－	0	0	0	0	1．27\％	0	1	7155	0	0	1	S48000 $\$ 50255$	1	0	0	0
15038 15039	0	0	0	0	0	${ }^{1.27 \%}$	0	1	7405 5027	0	0	1	\＄585275	1	0	0	\bigcirc
15039 15040	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	${ }_{\text {l }}^{1.12 \% \%}$	0	1	5227 35719	0	${ }_{1}^{0}$	${ }_{0}^{1}$	\＄554013 $\$ 1264671$	1	\bigcirc	\bigcirc	\bigcirc
15041	0	0	0	0	0	1．10\％	0		5663	1	0	0	\＄182229	1	0	0	0
15042	0			0	0	${ }^{1.1 .18 \%}$	0	1	6970	0	1	0	\＄651669	1	0	0	0
15043 15044	0	0	0	\bigcirc	0	－ $1.1 .5 \%$	0	1	4356 4356	0	0	0	\＄225396	1	0	0	\bigcirc
15044 15045	${ }_{0}^{1}$	${ }_{0}$	0	0	0	${ }_{\text {1．12\％}}^{\text {1．15\％}}$	0	1	4356 3920	\bigcirc	\bigcirc	\bigcirc	\＄267938 $\$ 326902$	1	\bigcirc	\bigcirc	\bigcirc
${ }_{15046}^{1545}$	0	0			0	${ }^{1.25 \%}$	0	1	18295	1	0	0	${ }_{\text {S283816 }}$	1	0	－	0
15047 15048 1505	\bigcirc	0	\bigcirc	\bigcirc	0	1．18\％	0	1	5227 17860	0	\bigcirc	0	$\$ 348996$ $\$ 301131$	1	0	\bigcirc	
15048 15049	\bigcirc	0	0	0	\bigcirc	${ }_{\text {1．18\％}}^{1.25 \%}$	0	1	17860 2614	${ }_{0}^{1}$	0	0	${ }_{\substack{\text { \＄301 } \\ \$ 384580}}$	1	0	\bigcirc	\bigcirc
15050	－	0	，	0	0	1．18\％	0	1	6098		1	0	\＄721281	1	0	0	0
15051	0		0	－	0	1．10\％		1	6970		0	1	\＄398889	1	0	0	0
15052	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	${ }_{1}^{1.24 \%}$	0	1	16988 11326	0	${ }_{0}^{1}$	\bigcirc		1	\bigcirc	\bigcirc	\bigcirc
15054 15054	0	0	${ }_{0}^{\circ}$	${ }_{0}$	0	${ }^{1.12 \%}$	0	1	${ }_{4792}^{1326}$	${ }_{0}$	${ }_{1}$	0	S33872 $\$ 85573$	1	0	\bigcirc	\bigcirc
15055	－	0	－	0	－	1．25\％	0	1	18731	－	0	0	\＄656 319	1	0	－	0
15056	－	0	－	0		1．10\％	0	1	7405	0	0	0	\＄656319	1	0	0	0
15057 15058	0	0	\bigcirc	0	${ }_{0}$	－${ }_{\text {1．12\％}}$	0	1	20038 8506	${ }_{0}$	0	0	5679348 577349	1	\bigcirc	0	${ }_{0}$
15059			0	0	0	1．11\％	0	1	12632	0	1	0	\＄1642426	1	0	0	
15060	0	0	0	0	0	1．1．16\％	－	1	${ }_{6}^{6098}$	0	1	0	\＄1218547	1	0	－	
15061 15062	0	0	\bigcirc	0	0	1．1．8\％	0	1	6970 4366	\bigcirc	${ }_{0}^{1}$	0	5701775 544818	1	${ }_{0}$	\bigcirc	\bigcirc
15063	0		0	0	0	1．30\％		1	6534			0	\＄430 10	1	0	0	0
15064	0	0	0			1．14\％	0	1	16988		0	1	\＄200 000	1	0	0	0
15065 15066	0	0	\bigcirc	\bigcirc	\bigcirc	－${ }_{\text {1．1．8\％}}$	0	1	77101 7841	1	0	\bigcirc	$\begin{array}{r}\text { S119 } \\ \text { S282 } \\ \hline 102\end{array}$	1	\bigcirc	\bigcirc	。
15067		0			0	1．09\％	0	1	－ 78712	0	0	0	\＄282102 $\$ 326902$	1	\bigcirc	$\stackrel{0}{0}$	$\stackrel{0}{0}$
15068	0	0		0	0	1．18\％	0	1	84942	0	1	1	\＄401642	1	0		0
15069 15070	${ }_{1}$	0	\bigcirc	\bigcirc	0	－	0	1	9583 16988	0	1	0	S623833 $\$ 154329$	1	\bigcirc	${ }_{0}$	${ }_{0}$
15071	0	0	0			1．14\％		1	34848	1		。	\＄136018	1	0	0	
15072	0	0	0	0	0	1．14\％	0	1	39640 24394	1	，	，	\＄154629	1	0	0	0
15073 15074	0	0	0	\bigcirc	0	1．11\％${ }_{1}^{1.09 \%}$	0	1	24394 5663	1	\bigcirc	${ }_{1}$	\＄100016 S421 398	1	0	\bigcirc	\bigcirc
15074 15075	${ }_{0}$	0	0	0	0	1．10\％	0	1	5663 6534	\bigcirc	0	1	\＄421398 $\$ 26303$	1	\bigcirc	0	\bigcirc
15076		0	0	0	0	1．10\％	0	1	8276	1	0	0	\＄118 118	1	0	0	0
15077 15078	\bigcirc	0	\bigcirc	0	0	1．12\％	0	1	8712 6970	0	\bigcirc	1	586606 $\$ 368419$	1	0	\bigcirc	0
15078 15079 15080	\bigcirc	0	0	0	0		0 0 0	1	6970 8712 5663	0	0	$\stackrel{1}{0}$	\＄368419 \＄47611 \＄128 359	1	－	0	0

observation	PROPERTY DURESS $=1$	LT＿－90\％	LTV 81\％－90\％	LTV 70\％－78\％	$\begin{aligned} & \text { LTV below } \\ & \text { 70\% } \end{aligned}$	total tax burden	parcel in SCEIP $=1$	conventional LOAN $=1$	Lorsize	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	$\begin{aligned} & \text { SOLD DURING } \\ & \text { 2004_2007 } \end{aligned}$	SOLD 2008 －2012	PRICE ADJUSt．TO 2012	ZIP CODE 295403	ZIP CODE 95404	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
15211	0	0	0	0	\％	1．07\％		1	8276	－	－	0	\＄420275	1	－		0
15212	0	0	0	0	0	1．12\％	0	1	8276	0	1	0	5670653	1	0	0	0
15213	0	0	0	0	0	1．16\％	0	1	8400	0	。	0	${ }_{5442} 463$	1	0	0	0
15214	0	0	0	0	0	1．16\％	0	1	8712	0	0	1	\＄396215	1	0	0	0
15215	0	0	0		0	1．18\％	0	1	8712	0	1	0	\＄1104361	1	0	0	0
15216	0	0	0	0	0	1．19\％	0	1	9148	1	0	0	58803	1	0	0	0
15217	0	0	0	0	0	1．18\％	0	1	9148	0	0	0	\＄240 125	1	0	0	0
15218	0	0	0	0	0	1．16\％	0	1	9148	0	0	1	5443210	1	0	0	0
15219	0	0	0	0	0	1．10\％	0	1	9148	0	1	0	\＄1143735	1	0	0	0
15220	0	0	0	0	0	1．16\％	0	1	10019	0	0	1	5408026	1	0	0	0
15221	0	0	0	0	0	${ }^{1.1 .18 \%}$	0	1	10454	0	0	0	\＄4685600	1	0	0	0
15222	0	0	0	0	0	1．19\％		1	10890	1	0	0	S111892	1	0	0	0
15223	0		0	0	0	1．18\％	0	1	${ }^{11326}$	0	0	1	\＄375813	1	0	0	0
15224	0	0	0	0		1．18\％	0	1	5663	1	0	0	\＄87445	1	0	0	0
15225	0	0	0	0	0	1．18\％	0	1	6098	0	0	0	S332351	1	0	0	0
15226	0	0	0		0	1．15\％	0	1	6098	0	1	0	\＄6784511	1	0	0	0
15227	0	0	0	0	0	1．18\％	0		6534 6534	，	0	1	5288087 $\$ 28454$	1	0	0	0
15228 15298	0	0	0	0	0	1．15\％	0	1	6534	0	0	1	\＄284544	1	0	0	0
15229	0		0	0	0	1．18\％	0	1	6970	1	0	0	\＄86006	1	0	0	0
15230	0	0	0	0		1．09\％	0	1	7405	0	1	0	\＄1003 112	1	0	0	0
15231	0	0	0	0	0	1．18\％	0	1	7841	0	0	1	5396215 $\$ 96512$	1	0	0	0
15323	0	0	0		0	1．18\％	0	1	7841 8276	0	1	\bigcirc	\＄965612	${ }_{1}^{1}$	0	0	0
15233 15234	\bigcirc	0	\bigcirc	0	0	${ }_{\text {1．15\％}}^{1.18 \%}$	0	1	8276 8276	${ }_{0}^{1}$	$\stackrel{0}{0}$	${ }_{1}$	$\begin{array}{r}\text { S1079 } \\ \$ 288641 \\ \hline\end{array}$	${ }_{1}^{1}$	0	0	\bigcirc
15235	0	－	0	0	0	1．45\％	0	1	8712	1	0	0	\＄59029	1	0	0	0
15236	0	－	0	0	0	1．1．16\％		1	9148	0	1	0	5778636	1	0	0	0
15237	0	0	0	0	0	1．10\％	0	1	9148	0	1	0	S976 862	1	0	0	0
15388 15239	0		0		0	1．09\％	0	1	9583 9583	1	0	0	${ }_{\substack{\text { S } \\ \$ 35458201}}$	1	\bigcirc	0	\bigcirc
15239 15240	\bigcirc	${ }_{0}$	0	0	${ }_{0}$	－ 1.10%	${ }_{0}$	1	9583 10890	${ }_{0}$	${ }_{0}$	1	\＄343601	1	0	0	\bigcirc
15241			0			1．10\％	0	1	13939	1	0		\＄191971	1	0	0	－
15242	0	0	0	0	0	1．10\％	0	1	14810	0	1	0	\＄979 126	1	0	0	0
15243	0	0	0	0	0	1．24\％	0	1	43560	1	0	0	\＄152966	1	0	0	0
15244 15245	\bigcirc	0	0	0	\bigcirc	${ }_{\text {1．1．19\％}}$	0	1	43996 6534	\bigcirc	0	1		1	\bigcirc	\bigcirc	\bigcirc
15246	0	0	0	0	0	1．10\％	0	1	${ }_{8276}$	1	${ }_{0}$	0	${ }_{\text {S146 }}^{501}$	1	0	0	。
15247	－	－	0	0	0	1．12\％	－	1	8712	0	0	1	\＄357018	1	0	0	0
15248	0	0	0	0	0	1．18\％		1	5663	0	1	0	\＄584872	1	0	0	0
15249	0	0	0	0	0	1．15\％	0	1	${ }_{6} 698$	0	1	0	\＄569275	1	0	0	0
15250 15251	\bigcirc	\bigcirc	0	0	\bigcirc	－${ }_{\text {1．1．13\％}}^{1.18}$	0	1	6534 9148	0	0	${ }_{1}^{0}$	\＄584872 $\$ 236969$	${ }_{1}^{1}$	${ }_{0}^{0}$	0	0
15252			0	0	0	1．15\％	0	1	6098	0			\＄696 120	1	0	－	0
15253	0	0	0	－	0	1．12\％	0	1	6098	0	0	0	5378823	1	0	0	0
15254	0	0	0	0	0	1．15\％	0	1	6098	0	0	0	\＄217874	1		0	0
15255 15256	0	0	0	0	0	1．18\％	0	1	6098 6534	\bigcirc	0	1		1	0	0	0
15256 15257	\bigcirc	0	0	0	\bigcirc	${ }_{\text {1．1．12\％}}^{1.1}$	0	1	6534 6534	${ }_{1}^{0}$	。	\bigcirc	\＄335644 $\$ 110628$	${ }_{1}^{1}$	${ }_{0}^{0}$	0	${ }_{0}^{0}$
15258			0	0	0	1．13\％	O	1	6970	1	0		544272	1	0	0	
15259	0	0	0	0	0	1．15\％	0	1	6970	1	0	0	\＄137014	1	0	0	0
15260	0	0	0	0	0	1．09\％	0	1	7405	1	0	0	\＄97985	1	0	0	0
15261 15262	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	1．18\％	\bigcirc	1	7405 7405	1	\bigcirc	\bigcirc	S164416 $\$ 103090$	1	\bigcirc	\bigcirc	\bigcirc
15262 15263	0	0	0	0	0	${ }^{1.12 \%}$	0	${ }_{1}^{1}$	7405 7841	${ }_{0}^{1}$	\bigcirc	0	\＄103090	${ }_{1}^{1}$	\bigcirc	0	${ }_{0}^{0}$
15264	0		0	0	0	1．18\％	0	1	8276	0	1		\＄679346	1	0	0	
15265	0	0	0	0	0	1．18\％	0	1	6098	0	0	1	\＄400 328	1	0	0	0
15266	0	0	0	0	0	1．15\％	0	1	6534	0	0	1	5339460	1	0	0	0
15267 15268	0	0	0	0	\bigcirc	1．18\％	0	1	7405 8276	0	－	1	$\$ 35117$ $\$ 332765$	1	－	0	0
15268 15269	\bigcirc	0	0	0	0	${ }^{1.1 .18 \%}$	0	1	8276 8712	\bigcirc	${ }_{1}$	\bigcirc	\＄332765 $\$ 818821$	1	－	0	${ }_{0}^{0}$
15270	0	0	0	0	0	1．18\％	0	1	6098	1	0	0	\＄145295	1	0	0	
15271	0	0	0	0	0	1．15\％	0	1	6534	0	1	0	\＄877518	1	0	0	0
15272	－	0	0	0	0	1．19\％	0	1	8276 8276	0	－	1	S292638 S1832	1	0	－	0
15273 15274 15	0	0	0	0	0	1．15\％	0	1	8276 8276	1	0	0	S148307 S154329	1	0	0	0
15274 15275	0	\bigcirc	\bigcirc	0	0	（1．13\％	\bigcirc	1	8276 8712	${ }_{0}^{1}$	1	\bigcirc	5154329 $\$ 678451$	1	0	。	\bigcirc
15276	0	0	0	0	0	1．09\％	0	1	8712	1		0	\＄116949	1	0	0	0
15277	0	0	0	0	0	1．19\％	0	1	9583	0	0	0	\＄368460	1	0	0	0
15278	0	0	0	0	0	1．15\％	0	1	11761 24394	\bigcirc	0	0	（ $\begin{array}{r}\text { S325813 } \\ \$ 1068366\end{array}$	1	0	0	0
15279 15280	0	${ }_{0}$	0	0	\bigcirc	${ }^{1.124 \%}$	0	1	24394 1742	\bigcirc	1	1	$\$ 1068366$ $\$ 236226$	1	0	0	0
15281 15282 1	0	0	0	0	0	${ }^{1.15 \%}$	0	1	4356 4365	0	0	1	\＄5279176	1	0	0	0
15282 15283	0	0	0	0	0	1．15\％	0	1	${ }_{5}^{356}$	0		0	${ }_{5369036}$	1	0	0	\bigcirc
15283 15284	0	0	0	0	\bigcirc	1.15% 1.09%	0	1	5663 6098	${ }_{0}^{1}$	${ }_{1}^{0}$	$\stackrel{0}{0}$	$\$ 103990$ $\$ 884051$	${ }_{1}^{1}$	$\stackrel{0}{0}$	\bigcirc	$\stackrel{0}{0}$
${ }_{15285}^{1584}$	0	0	－	0	0	1．19\％	0	1	6098	0	1		\＄545880	1	0	－	－
15286	0	0	0	0	0	1．13\％	0	1	6098	0	0	0	5318730	1	0	0	0
15287	0	0	0	0	0	1．18\％	0	1	6534	0	0	1	\＄116049	1	0	0	0
15288 15289	0	0	0	0	0	1．118\％	0	1	6534 7405	1	\bigcirc	\bigcirc	5158094 58505	1	0	0	0
15289 15290	\bigcirc	0	0	0	0	${ }^{1.1 .19 \%}$	\bigcirc	1	7405 7405	${ }_{0}^{1}$	\bigcirc	${ }_{1} 1$	\＄78 505 $\$ 22993$	${ }_{1}^{1}$	\bigcirc	\bigcirc	${ }_{0}^{0}$
15291	0		0	0	0	1．15\％		1	7841	0	0	1		1	O	－	－
15292	0	0	0	0	0	1．15\％	0	1	8276	0		0	5887408 $\$ 92388$	1	0	0	0
15293		0	0	0	0	1．1．16\％	0	1	11326	0	1	0	S9226238 $\$ 282547$	1	\bigcirc	0	
15294 15295	0	0	0	0	0	1．1．18\％	0	1	${ }^{4792}$	0	0	1	5282547	1	0	0	\bigcirc
15295 15296	\bigcirc	${ }_{0}$	\bigcirc	\bigcirc	${ }_{0}$	${ }^{1.1 .18 \%}$	${ }_{0}$	1	5227 5227	${ }_{0}^{1}$	\bigcirc	${ }_{1}^{0}$	\＄107467 $\$ 26688$	1	$\stackrel{0}{0}$	\bigcirc	\bigcirc
15297	0	0	0	0	0	1．15\％		1	6970	0	1	1	\＄694048	1			－
15298	0	0	0	0	0	1．15\％	0	1	7405	0		0		1	0	0	0
15299	0	0	0	0	0	1．15\％	0	1	8276	0	0	0	${ }_{5}^{5288335}$	1		0	0
15300 15301	\bigcirc	0	0	0	0	1．13\％	1	1	37462 3049	0	0	1	S226312 \＄17400	1	0	0	0
15301 15302	\bigcirc	0	0	\bigcirc	\bigcirc	（1．18\％	0	1	3049 3485	\bigcirc	0	1	S174000 $\$ 23085$	1	\bigcirc	\bigcirc	\bigcirc
15303	0	0	0	0	0	1．12\％	0	1	3485	0	1	0	\＄914466	1		0	0
15304	0	0	0	0	0	1．38\％	0	1	3485	0	0	1	S321314 $\$ 527165$	1	0	0	0
15355 15306	\bigcirc	0	0	0	\bigcirc	${ }^{1.09 \%}$	\bigcirc	1	3734 3920	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	S527 165 $\$ 268488$	1	${ }_{0}$	${ }^{\circ}$	${ }_{0}$
15306 15307	\bigcirc	${ }_{0}$	0	0	${ }_{0}$	${ }^{1.14 \% \%}$	${ }_{0}$	1	3920 3920	${ }_{0}$	0	1	\＄268438	1	0	0	${ }_{0}$
15308	0	0	0	0	0	1．35\％	0	1	3920	0	－	1	\＄230000	1	0	0	
15309 15310	0	0	0	0	\bigcirc	1．18\％	\bigcirc	1	4356 4356	1	0	0		1	\bigcirc	0	
15310 15311	\bigcirc	0	0	0	\bigcirc	1．18\％	\bigcirc	1	4356 4356	\bigcirc	\bigcirc	1	$\$ 263156$ $\$ 3570018$	1	\bigcirc	0	${ }_{0}^{0}$
15312		0	0	0	0	1．14\％	0	1	4356	1		0	\＄88841	1	0		
15313 15314	0	0	0	0	0	1．18\％	0	1	4356	0	1		\＄723682	1	0		0
15314 15315	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	1．39\％	\bigcirc	1	4356 4356	1	\bigcirc	0	$\$ 124701$ $\$ 356568$	1	\bigcirc	\bigcirc	
15315 15316	\bigcirc	0	0	0	\bigcirc	1．38\％	\bigcirc	1	4356 4356	${ }_{1}^{0}$	0	${ }_{0}^{1}$	$\$ 355676$ $\$ 99488$	1	$\stackrel{0}{0}$	0	\bigcirc
${ }_{1}^{15317}$	0	0	0	0	0	（1．38\％	0	1	4356	0		1	\＄$\$ 327498$	1		0	
15318 15319	0	0	0	0	0	1．37\％	0	1	4356 4500	1	0	0	S176914 $\mathbf{S} 8852727$	1	0	0	\bigcirc
15319 15320	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	${ }^{\text {1．1．18\％}}$	\bigcirc	${ }_{1}^{1}$	4500 4500	${ }_{0}$	\bigcirc	${ }_{0}$	$\$ 485427$ $\$ 468113$	1	${ }_{0}$	0	0
15321		0	0	0	0	1．33\％	O	1	4600	0	0	1	\＄356457	1	0	0	0
15322	0	0	0	0	0	1．18\％	0	1	4792	0	－	1	533367	1	0	0	0
15323	0	0	0	0	0	1．42\％	0	1	4792	1	0	0	\＄99178	1	0	0	0
${ }^{15324}$	0	0	0	0	0	1．15\％	0	1	4792	0		0	\＄315461	1			－
15325 15326	0	\bigcirc	0	0	\bigcirc	－ 1.38%	0	1	4792 5227 5	\bigcirc	\bigcirc	1	531273 $\$ 306019$	1	\bigcirc	\bigcirc	\bigcirc
15327	0	0	0	0	0	1．35\％		1	5227 5227	0	－	${ }_{0}$	S3039 5855	1	0	0	0
15328	0	－	0	－	0	1．18\％	－	1	5227	0	1	0	5645798	1	0	0	0
15329 1533	0	0	\bigcirc	0	\bigcirc	－ $1.1 .15 \%$	0	1	5227 5227	1	0	\bigcirc	S12969 S120 132	1	0	0	\bigcirc
15331	0	0	0	${ }_{0}$	${ }_{0}$	1．18\％	${ }_{0}$	1	5227 5427	1	${ }_{0}$	${ }_{0}$	S120132 $\$ 522620$	1	0	\bigcirc	\bigcirc
15332	0	0	0	0	0	1．18\％	0	1	${ }_{5663}$	0	。	0	\＄337799	1	0	。	。
15333 1534	1	－	0	0	0	1．15\％	0	1	5663 563	0	1	，	S246006 $\$ 532221$	1	0	0	
15334 1535	1	0	0	0	\bigcirc	1．19\％	0	1	5663 5663	\bigcirc	1	，	5633221 $\$ 32074$	1	\bigcirc	\bigcirc	0
${ }_{1}^{15336}$	0	0	0		0	1．15\％		1	${ }_{5663}$		1	${ }_{0}$	¢ 5662855	1	0	0	0
15337	0	0	0	0	0	1．09\％	0	1	5663	1	0	0	5143655	1	0	0	0
15338	0	0	0	0	0	1．10\％	0	1	5663	0	0	1	\＄251026	1	0	0	0
													$\underset{\$ 1}{\$ 1219288}$		0		

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline observation \& PROPERTY DURESS \(=1\) \& LTV＿9\％ \& LTV 81\％－90\％ \& LTV 70\％－78\％ \& LTV BELOW \& total tax bURDEN \& parcel in SCEIP \(=1\) \& CONVENTIONAL LOAN＝ 1 \& Lot SILE \& \[
\begin{aligned}
\& \text { SOLD } \\
\& \text { PRIOR_2000 }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { SOLD DURING } \\
\& 2004 \text { _2007 }
\end{aligned}
\] \& Sold 2008 －2012 \& \begin{tabular}{l}
PRICE ADJUST．TO \\
2012
\end{tabular} \& \[
\begin{aligned}
\& \text { ZIP CODE } \\
\& \text { Z95403 }
\end{aligned}
\] \& ZIP CODE
\[
95404
\] \& \[
\begin{aligned}
\& \text { ZIP CODE } \\
\& 954472
\end{aligned}
\] \& \[
\begin{gathered}
\text { ZIP CODE } \\
94928
\end{gathered}
\] \\
\hline 15341 \& 0 \& 0 \& 0 \& 0 \& \％ \& 1．10\％ \& \({ }_{0}\) \& 1 \& 6060 \& － \& － \& 0 \& \＄487351 \& 1 \& \& \& \\
\hline 15342 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．15\％ \& 。 \& 1 \& 6098 \& 0 \& 。 \& 1 \& \＄230 000 \& 1 \& 0 \& 0 \& 0 \\
\hline 15343 \& 0 \& 0 \& \& 0 \& 0 \& 1．09\％ \& 0 \& 1 \& 6098 \& 1 \& 。 \& 0 \& \＄129356 \& 1 \& 0 \& 0 \& 0 \\
\hline 15344 \& 0 \& 0 \& － \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 6098 \& 1 \& ， \& 0 \& \＄207027 \& 1 \& 0 \& 0 \& 0 \\
\hline 15345 \& 0 \& 0 \& 0 \& \& 0 \& 1．10\％ \& 0 \& 1 \& 6098 \& \& 1 \& \& \＄1154629 \& 1 \& 0 \& 0 \& 0 \\
\hline 15346 \& 0 \& \& 0 \& \& 0 \& 1．38\％ \& 0 \& 1 \& 6534 \& \& 0 \& \& \＄365 649 \& 1 \& 0 \& 0 \& 0 \\
\hline 15347 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．29\％ \& 0 \& 1 \& 6534 \& 0 \& 0 \& 0 \& \＄476450 \& 1 \& 0 \& 0 \& 0 \\
\hline 15348 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．92\％ \& 1 \& 1 \& 6534 \& 0 \& 0 \& 1 \& \＄561279 \& 1 \& 0 \& 0 \& 0 \\
\hline 15349 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．30\％ \& 0 \& 1 \& 6534 \& 0 \& 1 \& 0 \& 5825059 \& 1 \& 0 \& 0 \& 0 \\
\hline 15350 \& 0 \& 0 \& 0 \& \& 0 \& 1．42\％ \& 0 \& 1 \& 6970 \& 1 \& 0 \& \& \＄92194 \& 1 \& 0 \& 0 \& 0 \\
\hline 15351 \& 0 \& 0 \& 0 \& 0 \& 0 \& \({ }^{1.29 \%}\) \& 0 \& 1 \& 6970 \& 0 \& 0 \& \(\bigcirc\) \& \({ }_{\$ 305951}^{\$ 5222}\) \& 1 \& 0 \& 0 \& 0 \\
\hline 15352 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．32\％ \& 0 \& \& 6970 \& 1 \& 0 \& 0 \& \＄124322 \& 1 \& 0 \& 0 \& 0 \\
\hline 15353 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．30\％ \& 0 \& 1 \& 6970 \& 0 \& 1 \& 0 \& \＄1115610 \& 1 \& 0 \& 0 \& 0 \\
\hline 15354 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．10\％ \& 0 \& 1 \& 6970 \& 1 \& 0 \& － \& \＄137266 \& 1 \& 0 \& 0 \& 0 \\
\hline 15355 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．09\％ \& 0 \& 1 \& 6970 \& 1 \& 0 \& 0 \& 5149641 \& 1 \& 0 \& 0 \& 0 \\
\hline 15356 \& 0 \& 0 \& \& － \& 0 \& 1．45\％ \& 0 \& 1 \& 6970 \& 1 \& 0 \& \& \＄119048 \& 1 \& 0 \& 0 \& 0 \\
\hline 15357 \& 0 \& 0 \& 0 \& \& 0 \& 1．36\％ \& 0 \& 1 \& 7405 \& 1 \& 0 \& 0 \& S11789
\(\$ 28189\) \& 1 \& 0 \& 0 \& － \\
\hline \begin{tabular}{l}
15358 \\
1559 \\
\hline 1598
\end{tabular} \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．43\％ \& 0 \& 1 \& 7405 \& 0 \& 0 \& 1 \& S281149
S110312 \& 1 \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \\
\hline 15359
15360 \& \(\bigcirc\) \& \({ }_{0}\) \& 0 \& 0 \& \(\bigcirc\) \& 1．37\％ \& 0 \& 1 \& 7405
7405 \& 1 \& \({ }_{0}\) \& \(\bigcirc\) \& \& 1 \& 0 \& \({ }_{0}\) \& \({ }_{0}\) \\
\hline 15361 \& 0 \& 。 \& 。 \& 0 \& 。 \& 1．10\％ \& 0 \& 1 \& 7405 \& \({ }_{0}\) \& 1 \& 0 \& \({ }_{\text {S942 } 177}\) \& 1 \& 。 \& 。 \& 0 \\
\hline 15362 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．15\％ \& 0 \& 1 \& 7405 \& 0 \& 0 \& 1 \& \＄311273 \& 1 \& 0 \& 0 \& \\
\hline \({ }_{15563}^{1563}\) \& 0 \& 0 \& 0 \& 0 \& 0 \& \({ }^{1.10 \%}\) \& 0 \& 1 \& 7841 \& 0 \& 0 \& 1 \& S4115 546
\(\$ 1585\) \& 1 \& 0 \& 0 \& 0 \\
\hline 15364 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．36\％ \& 1 \& 1 \& 7841 \& 1 \& 0 \& 0 \& S115 685
\(\$ 14831\) \& 1 \& 0 \& 0 \& 0 \\
\hline 15365 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．10\％ \& 0 \& 1 \& 7841 \& 1 \& 0 \& 0 \& \＄148311 \& 1 \& 0 \& 0 \& 0 \\
\hline 15366 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 7841 \& 0 \& 1 \& 0 \& 587947 \& 1 \& 0 \& 0 \& 0 \\
\hline \({ }_{1}^{15367}\) \& 0 \& 0 \& \& － \& 0 \& \({ }^{1.27 \%}\) \& 0 \& 1 \& 7841 \& 0 \& 0 \& 0 \& \＄500160 \& 1 \& 0 \& 0 \& 0 \\
\hline 15368
15369 \& 0 \& \(\bigcirc\) \& \({ }_{0}\) \& 0 \& 0 \& 1．1．3\％ \& 0 \& 1 \& \begin{tabular}{l}
7841 \\
7841 \\
\hline
\end{tabular} \& 1 \& \({ }_{0}\) \& 0 \& S134146
S153 905 \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& 0 \\
\hline 15370 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．29\％ \& 0 \& 1 \& 7841 \& 0 \& 1 \& 0 \& 5778636 \& 1 \& 0 \& 0 \& 0 \\
\hline 15371 \& 0 \& － \& 0 \& 0 \& 0 \& 1．73\％ \& 1 \& 1 \& 7841 \& 0 \& ， \& － \& 5343035 \& 1 \& 0 \& 0 \& 0 \\
\hline 15372 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．15\％ \& 0 \& 1 \& 8276 \& 0 \& 1 \& 0 \& 5926238 \& 1 \& 0 \& 0 \& 0 \\
\hline \({ }^{15373}\) \& 0 \& 0 \& 0 \& \& 0 \& 1．38\％ \& 0 \& 1 \& 8276 \& \& 0 \& 1 \& \({ }_{5}^{5433601}\) \& 1 \& 0 \& 0 \& 0 \\
\hline 15374
15375 \& \(\bigcirc\) \& \({ }_{0}\) \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \& （1．30\％ \& \({ }_{0}\) \& 1 \& 8276
8712 \& \({ }_{0}\) \& \(\bigcirc\) \& \({ }_{0}^{1}\) \& S4799967
S294212 \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& 0 \\
\hline \({ }_{15376}^{15375}\) \& \& 0 \& 0 \& \({ }_{0}\) \& \(\bigcirc\) \& 1．15\％ \& \({ }_{0}\) \& 1 \& \({ }_{8712}^{8712}\) \& 1 \& \({ }_{0}\) \& \(\bigcirc\) \& \＄134650 \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \\
\hline 15377 \& － \& 0 \& 0 \& 0 \& 0 \& 1．36\％ \& 0 \& 1 \& 8800 \& 0 \& 0 \& 0 \& 5448876 \& 1 \& 0 \& 0 \& 0 \\
\hline 15378 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．32\％ \& 0 \& 1 \& 8925 \& 0 \& 0 \& 0 \& \＄575844 \& 1 \& 0 \& 0 \& 0 \\
\hline 15379
15380 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \& \({ }_{\text {l }}^{1.1 .16 \%} 1\) \& 0 \& 1 \& 9583
11761 \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }_{0}^{1}\) \& \＄409693 \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \\
\hline 15380
15881 \& \(\bigcirc\) \& \(\stackrel{0}{0}\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& －\({ }_{1}^{1.33 \%}\) \& \(\bigcirc\) \& 1 \& 11761
11761 \& \({ }_{1}^{0}\) \& \(\stackrel{0}{0}\) \& 0 \& S250323
\(\$ 174249\) \& 1 \& \(\stackrel{0}{0}\) \& \(\bigcirc\) \& \(\stackrel{0}{0}\) \\
\hline 15382 \& \& 0 \& 。 \& 0 \& 0 \& 1．39\％ \& 0 \& 1 \& 12197 \& 0 \& 1 \& 0 \& \＄861 344 \& 1 \& 0 \& 0 \& 0 \\
\hline 15383 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．16\％ \& 0 \& 1 \& 16988 \& 1 \& 0 \& 0 \& \＄150565 \& 1 \& 0 \& 0 \& \\
\hline 15384 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．28\％ \& 0 \& 1 \& 25265 \& 0 \& 0 \& 1 \& \＄596981 \& 1 \& 0 \& 0 \& 0 \\
\hline 15385 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．14\％ \& 0 \& 1 \& \({ }^{3920}\) \& 0 \& 0 \& 1 \& \({ }^{5236226}\) \& 1 \& 0 \& 0 \& 0 \\
\hline 15386
15387 \& \(\bigcirc\) \& \({ }_{0}\) \& \({ }_{0}\) \& 0 \& \(\bigcirc\) \& 1．35\％ \& \(\bigcirc\) \& 1 \& 3920
4356 \& 1 \& \({ }_{0}\) \& \({ }_{0}\) \& \＄12207
\(\$ 110628\) \& 1 \& \(\bigcirc\) \& \({ }_{0}\) \& \({ }_{0}^{0}\) \\
\hline 15388 \& 。 \& 0 \& 0 \& 0 \& 0 \& 1．18\％ \& 0 \& 1 \& 4356 \& 0 \& 。 \& 1 \& \＄433 104 \& 1 \& 。 \& 。 \& 0 \\
\hline 15389 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．18\％ \& 0 \& 1 \& \({ }^{4356}\) \& 1 \& 0 \& 0 \& \＄89959 \& 1 \& 0 \& 0 \& － \\
\hline 15390 \& 0 \& 0 \& 0 \& \& 0 \& 1．15\％ \& 0 \& 1 \& 4356 \& 1 \& 0 \& 0 \& \＄116676 \& 1 \& 0 \& 0 \& 0 \\
\hline 15391 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．09\％ \& 0 \& 1 \& \({ }_{4}^{4356}\) \& 1 \& 0 \& 0 \& \＄168633 \& 1 \& 0 \& 0 \& 0 \\
\hline 15392
15393 \& \(\bigcirc\) \& \({ }_{0}\) \& \(\bigcirc\) \& 0 \& \(\bigcirc\) \& 1．1．12\％ \& \(\bigcirc\) \& 1 \& 4356
4356 \& \(\bigcirc\) \& \({ }_{0}\) \& \({ }_{1}\) \& \＄228072
\(\$ 311355\) \& 1 \& \({ }_{0}\) \& 0 \& \({ }_{0}^{0}\) \\
\hline 15394 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．18\％ \& 0 \& 1 \& 4356 \& 0 \& 0 \& 0 \& \({ }_{\text {\＄401 } 276}\) \& 1 \& 。 \& 0 \& 0 \\
\hline 15395 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．09\％ \& 0 \& 1 \& 4356 \& 1 \& 0 \& 0 \& \＄187754 \& 1 \& 0 \& 0 \& 0 \\
\hline 15396 \& 0 \& 0 \& 0 \& \& 0 \& 1．18\％ \& 0 \& 1 \& 4356 \& 0 \& － \& 0 \& \＄359592 \& 1 \& 0 \& 0 \& 0 \\
\hline 15397
15398 \& 0 \& \(\bigcirc\) \& 0 \& 0 \& \(\bigcirc\) \& 1．12\％ \& 0 \& 1 \& 4356
4356 \& 0 \& 0 \& 1 \& \＄359470 \& 1 \& 0 \& 0 \& 0 \\
\hline 15398
15399 \& \(\bigcirc\) \& \({ }_{0}\) \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \& 1．1．18\％ \& \(\bigcirc\) \& 1 \& 4356
4455 \& \({ }_{0}\) \& \(\bigcirc\) \& \({ }_{0}\) \& \＄420275
\(\$ 461701\) \& 1 \& 0 \& \({ }_{0}\) \& \({ }_{0}\) \\
\hline 15400 \& \& 0 \& 0 \& 0 \& 0 \& 1．18\％ \& 0 \& 1 \& 4500 \& 0 \& 0 \& 0 \& \＄480938 \& 1 \& 0 \& 。 \& 0 \\
\hline 15401 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．18\％ \& 0 \& 1 \& 4792 \& 1 \& 0 \& 0 \& \＄106069 \& 1 \& 0 \& 0 \& 0 \\
\hline 15402 \& 0 \& 0 \& 0 \& 0 \& \& 1．12\％ \& 0 \& 1 \& 4792 \& 0 \& 0 \& 1 \& 5327754 \& 1 \& 0 \& 0 \& 0 \\
\hline 15003 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．09\％ \& 0 \& 1 \& 4792 \& 0 \& 1 \& 0 \& 571204 \& 1 \& 0 \& 0 \& 0 \\
\hline 15404
15405 \& 0 \& 0 \& \(\bigcirc\) \& 0 \& 0 \& －\({ }_{\text {1．1．15\％}}\) \& \(\bigcirc\) \& 1 \& 4792
4792 \& \({ }_{0}^{1}\) \& \({ }_{1}\) \& \(\bigcirc\) \& \(\begin{array}{r}\text { S92 } 733 \\ \$ 979 \\ \hline 126\end{array}\) \& 1 \& 0 \& \(\bigcirc\) \& \({ }_{0}^{0}\) \\
\hline 15406 \& 0 \& 0 \& 0 \& 0 \& － \& 1．15\％ \& 0 \& 1 \& 4792 \& 0 \& 0 \& 0 \& \＄372 124 \& 1 \& 0 \& 0 \& 0 \\
\hline 15407 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．15\％ \& 0 \& 1 \& 4792 \& 0 \& 1 \& 0 \& 5799645 \& 1 \& 0 \& 0 \& 0 \\
\hline 15408
15409 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& 1．18\％ \& \(\bigcirc\) \& 1 \& 4792
4792 \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& S116052
S148643 \& 1 \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \\
\hline 15410 \& \& 0 \& \({ }_{0}\) \& \({ }_{0}\) \& 0 \& 1．1．9\％ \& \({ }_{0}\) \& 1 \& 4792
4825 \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& S148643
S477 351 \& 1 \& 0 \& \(\stackrel{0}{0}\) \& \(\bigcirc\) \\
\hline 15411 \& 0 \& \& 0 \& 0 \& \& 1．18\％ \& 0 \& 1 \& 5096 \& 0 \& 0 \& 0 \& 5438616 \& 1 \& 0 \& 0 \& 0 \\
\hline \({ }^{15412}\) \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．10\％ \& 0 \& 1 \& 5227 \& 1 \& 0 \& 0 \& \＄115669 \& 1 \& 0 \& 0 \& 0 \\
\hline 15413 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．12\％ \& 0 \& 1 \& 5227 \& ， \& 0 \& 1 \& 5306019 \& 1 \& 0 \& 0 \& 0 \\
\hline 15414 \& \& 0 \& 0 \& 0 \& 0 \& 1．15\％ \& 0 \& 1 \& 5227 \& 1 \& 0 \& 0 \& S110203 \& 1 \& 0 \& 0 \& 0 \\
\hline 15415
15416 \& 0 \& 0 \& 0 \& \(\bigcirc\) \& 0 \& 1．18\％ \& 0 \& 1 \& 5227
5227 \& 0 \& \(\bigcirc\) \& 1 \& \begin{tabular}{l}
5462368 \\
\(\$ 38285\) \\
\hline
\end{tabular} \& 1 \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \\
\hline 15416
15417 \& 0
1 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }^{1.1 .18 \%}\) \& 0 \& 1 \& 5227
5229 \& 0 \& \(\bigcirc\) \& 0 \& 5382853
\(\$ 397246\) \& 1 \& 。 \& \(\bigcirc\) \& \(\bigcirc\) \\
\hline 15418 \& 0 \& 0 \& 0 \& 0 \& \& 1．14\％ \& 0 \& 1 \& 5663 \& 1 \& 0 \& 0 \& \＄97334 \& 1 \& 0 \& 0 \& 0 \\
\hline 15419 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．15\％ \& 0 \& 1 \& 5663 \& 0 \& 0 \& 0 \& 5437546 \& 1 \& 0 \& 0 \& 0 \\
\hline 15420
15421 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．18\％ \& 0 \& 1 \& 5663
5663 \& \(\bigcirc\) \& \(\bigcirc\) \& 1 \& \(\$ 263069\)
S354 144 \& 1 \& 0 \& \(\bigcirc\) \& \(\bigcirc\) \\
\hline \({ }_{15422}^{1521}\) \& 0 \& \({ }_{0}\) \& \({ }_{0}\) \& \({ }_{0}\) \& \({ }_{0}\) \& \({ }^{1.1 .18 \%}\) \& \({ }_{0}\) \& 1 \& 5663
563 \& \({ }_{0}\) \& \({ }_{0}^{0}\) \& \({ }_{0}\) \& S354 144
S408760 \& 1 \& 0 \& \({ }_{0}\) \& \(\stackrel{0}{0}\) \\
\hline \({ }_{15423}\) \& 0 \& 0 \& 0 \& 0 \& 0 \& \({ }^{1.1 .10 \%}\) \& 0 \& 1 \& \({ }^{6} 6988\) \& 0 \& 1 \& 0 \& S993737
S11818 \& 1 \& 0 \& 0 \& 0 \\
\hline 15424
15425 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．15\％ \& 0 \& 1 \& \({ }^{6} 6998\) \& 1 \& 0 \& 0 \& \＄111818 \& 1 \& 0 \& \(\bigcirc\) \& 0 \\
\hline 15425
15426 \& \(\bigcirc\) \& \(\bigcirc\) \& \({ }_{0}\) \& 0 \& \(\bigcirc\) \& － \& \(\bigcirc\) \& 1 \& 6098
6098 \& \({ }_{1}\) \& 0 \& \({ }_{0}^{1}\) \& S289182
S164938 \& 1 \& 0 \& \({ }_{0}\) \& \(\bigcirc\) \\
\hline \({ }_{15427}^{1526}\) \& \& 0 \& － \& － \& \& 1．13\％ \& \& 1 \& \({ }_{6} 6534\) \& \({ }_{0}\) \& － \& 0 \& \＄351965 \& 1 \& － \& － \& 0 \\
\hline 15428 \& 0 \& 0 \& 0 \& 0 \& \& 1．31\％ \& 0 \& 1 \& 6534 \& 0 \& 0 \& 1 \& S404430 \& 1 \& 0 \& \& 0 \\
\hline 15429
15430 \& 0 \& 0 \& 0 \& 0 \& 0 \& \(1.13 \%\)
\(1.10 \%\)
1 \& 0 \& 1 \& 6970
6970 \& 0 \& 0 \& 0 \& \＄355794 \& 1 \& 0 \& 0 \& 0 \\
\hline 15430
15431 \& 0 \& 0 \& 0 \& 0 \& \(\bigcirc\) \& \({ }^{1.1 .18 \%}\) \& 0 \& 1 \& 6970
6970 \& \({ }_{0}^{1}\) \& 0 \& \({ }_{1}^{0}\) \& \＄140995
\(\$ 296211\) \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \\
\hline 15432 \& － \& 0 \& 0 \& 0 \& － \& 1．15\％ \& 0 \& 1 \& 6970 \& 1 \& 0 \& 0 \& \＄126 363 \& 1 \& 0 \& 0 \& 0 \\
\hline 15333 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．35\％ \& 0 \& 1 \& \({ }^{6970}\) \& 1 \& 0 \& 0 \& S145318
\(\$ 15652\) \& 1 \& 0 \& － \& 0 \\
\hline 15434
15435 \& \(\bigcirc\) \& \({ }_{0}\) \& \({ }_{0}\) \& 0 \& \({ }_{0}\) \& 1．33\％ \& \({ }_{0}\) \& 1 \& 6970
6970 \& 1 \& 0 \& 0 \& S115 662
S14717 \& 1 \& \({ }_{0}\) \& \({ }_{0}\) \& \({ }_{0}^{0}\) \\
\hline 15436 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．34\％ \& \& 1 \& 6970 \& 1 \& 0 \& 0 \& \＄131027 \& 1 \& 0 \& \& 0 \\
\hline \begin{tabular}{l}
15437 \\
\hline 15438
\end{tabular} \& 0 \& 0 \& 0 \& － \& 0 \& 1．27\％ \& 0 \& 1 \& 6970 \& 1 \& 0 \& 0 \& \＄259 725 \& 1 \& \& 0 \& 0 \\
\hline 15438
15439 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \& － \(1.25 \%\) \& \(\bigcirc\) \& 1 \& 6970
7052 \& \(\bigcirc\) \& 0 \& 1 \& \＄510032
\(\$ 467082\) \& 1 \& \(\bigcirc\) \& \(\bigcirc\) \& \(\bigcirc\) \\
\hline 15440 \& 0 \& 0 \& 。 \& 0 \& 0 \& \({ }^{1.27 \%}\) \& 0 \& 1 \& 7076 \& \({ }_{0}\) \& 0 \& \({ }_{0}\) \& S467082
\(\$ 67926\) \& 1 \& \({ }_{0}\) \& \({ }_{0}\) \& \(\stackrel{0}{0}\) \\
\hline 15441 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．18\％ \& 0 \& 1 \& 7405 \& 0 \& 0 \& 1 \& \＄284544 \& 1 \& － \& － \& 0 \\
\hline 15442 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．26\％ \& \& 1 \& 7405 \& 1 \& 0 \& 0 \& \＄558447 \& 1 \& 0 \& 0 \& 0 \\
\hline 15443 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．15\％ \& 0 \& 1 \& 7841 \& 1 \& 0 \& 0 \& S188207

$\$ 15793$ \& 1 \& \& \& 0

\hline 15444
15445 \& \bigcirc \& \bigcirc \& 0 \& \bigcirc \& \bigcirc \& ${ }^{1.29 \%}$ \& \bigcirc \& 1 \& 7841
8276 \& 1 \& 0 \& \bigcirc \& \＄157693 \& 1 \& \bigcirc \& \bigcirc \& ${ }_{0}^{0}$

\hline 15446 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．18\％ \& \& 1 \& 8276 \& ${ }_{0}$ \& 1 \& 0 \& S20 192
$\$ 8234$ \& 1 \& 0 \& \& $\stackrel{0}{0}$

\hline 15447 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．84\％ \& 1 \& 1 \& 8276
9 \& 0 \& 0 \& 1 \& \＄502516 \& 1 \& 0 \& － \& 0

\hline 15448
15449 \& \bigcirc \& \bigcirc \& 0 \& 0 \& \bigcirc \& － 1.27% \& \bigcirc \& 1 \& 9148
9148 \& 1 \& ${ }_{1}$ \& \bigcirc \& S175108
$\$ 721281$ \& 1 \& \bigcirc \& \bigcirc \& ${ }_{0}^{0}$

\hline 15450 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．25\％ \& 0 \& 1 \& 10019 \& 0 \& \& 1 \& \＄565093 \& 1 \& 。 \& 。 \& 。

\hline 15451 \& 0 \& 0 \& 0 \& － \& 0 \& 1．12\％ \& － \& 1 \& 10019 \& 1 \& 0 \& 0 \& \＄249402 \& 1 \& 0 \& 0 \&

\hline 15452 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．22\％ \& 0 \& 1 \& 11890 \& 0 \& 0 \& 1 \& S 5999000
$\$ 5739$ \& 1 \& 0 \& 0 \& 0

\hline 15453
15454 \& 0 \& 0 \& 0 \& 0 \& 0 \& ${ }^{1.111 \%}$ \& \bigcirc \& 1 \& 10890
10890 \& 0 \& 0 \& 0 \& 5677591
$\$ 736920$ \& 1 \& 0 \& \bigcirc \& \bigcirc

\hline 15454
15455 \& 0 \& \bigcirc \& 0 \& \bigcirc \& 0 \& ${ }^{1.1 .11 \%}$ \& 0 \& 1 \& 10890
11326 \& ${ }_{0}$ \& \bigcirc \& 0 \& S73920
S441318 \& 1 \& \bigcirc \& 0 \& 0

\hline 15456 \& 0 \& 0 \& 0 \& 0 \& 0 \& ${ }_{1.11 \%}$ \& \& 1 \& 11761 \& 1 \& 0 \& 0 \& ${ }_{5338772}$ \& 1 \& 0 \& － \& －

\hline | 15457 |
| :--- |
| 15458 | \& 0 \& 0 \& 0 \& 0 \& － \& 1．55\％ \& 0 \& 1 \& 13068

13939 \& 0 \& 0 \& 1 \& \＄1024232 \& 1 \& 0 \& 0 \& 0

\hline 15458
15459 \& 0 \& ${ }_{0}$ \& ${ }_{0}$ \& ${ }_{0}$ \& \bigcirc \& 1．27\％${ }_{1}^{1.25 \%}$ \& ${ }_{0}$ \& 1 \& 13939
14810 \& 0 \& 0 \& \bigcirc \& 5479457
$\$ 598747$ \& 1 \& \bigcirc \& \bigcirc \& \bigcirc

\hline 15460 \& \& \& 0 \& 0 \& 0 \& ${ }^{1.29 \%}$ \& 0 \& 1 \& ${ }_{4356}^{14310}$ \& 0 \& 0 \& 0 \& \& 1 \& \bigcirc \& \bigcirc \& 0

\hline 15461 \& 0 \& 0 \& \& 0 \& 0 \& 1．13\％ \& \& 1 \& 4356 \& \& \& 0 \& \＄40694 \& 1 \& 0 \& \&

\hline 15462
15463 \& 0 \& 0 \& 0 \& 0 \& \bigcirc \& ${ }^{1.15 \%}$ \& \bigcirc \& 1 \& 4356
4356 \& 0 \& \bigcirc \& 1 \& S251026
$\substack{\text { S47 } 606}$ \& 1 \& 0 \& \bigcirc \& \bigcirc

\hline 15463
15464 \& 0 \& \bigcirc \& 0 \& 0 \& 0 \& ${ }^{1.1 .15 \%}$ \& \bigcirc \& 1 \& 4356
4992 \& 0 \& 0 \& \bigcirc \& S347606
S45 930 \& 1 \& \bigcirc \& 0 \& 0

\hline 15465 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1．18\％ \& 0 \& 1 \& 4792 \& 1 \& 0 \& \& \＄55004 \& 1 \& 0 \& 0 \& 0

\hline ${ }_{15466}^{1546}$ \& － \& － \& \& － \& 0 \& 1．15\％ \& 0 \& 1 \& ${ }_{4}^{4922}$ \& 1 \& 1 \& 0 \& \＄748636 \& 1 \& 0 \& 0 \& 0

\hline 15467
15468 \& \bigcirc \& \bigcirc \& \bigcirc \& 0 \& \bigcirc \& ${ }_{\text {1．15\％}}^{\text {1．09\％}}$ \& \bigcirc \& 1 \& 5227
5227 \& 1 \& \bigcirc \& 0 \& \＄99830
$\$ 169386$ \& 1 \& ${ }_{0}$ \& ${ }_{0}$ \& \bigcirc

\hline 15469
15470 \& － \& \& \& \& － \& ${ }^{1.1 .15 \%}$ \& O \& 1 \& 5227
5227 \& 0 \& － \& 0 \& S348696
S399592 \& 1 \& \bigcirc \& ${ }_{0}$ \&

\hline
\end{tabular}

observation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％．90\％	LTV 70\％－78\％	Ltv below 70\％	total tax BURDEN	parcel in SCEIP $=1$	CONVENTIONAL	Lot size	SOLD PRIOR 2000	SOLD DURING	Solo 2008－2012	PRICE ADJUST．TO 2012	ZIP CODE 295403	ZIP CODE 95404	ZIP CODE 95472	ZIP CODE 94928
15471	${ }_{0}$	0	0	0	。	1．12\％	Sterp－1	－	5598	－	2004－200	1	${ }_{\text {\＄266 }}{ }^{2188}$	迷	5004	542	
15472	0	0	0	0	0	1．13\％	0	1	5663	0	1	0	\＄678451	1	0	0	0
15473	0	0	0	0	0	1．18\％	0	1	5663	0	。	0	${ }_{5316} 005$	1	0	0	0
15474	0	0	0	0	0	1．11\％		1	5663	0	0	1	\＄304707	1	0	0	0
15475	0	0	0	－	0	1．10\％	0	1	5663	0	1	0	\＄795426	1	0	0	0
15476	0	0	0	0		1．18\％	0	1	5663	0	1	0	\＄117681	1	0	0	0
15477	0	0	0	0	0	1．33\％	0	1	5663	1	0	0	\＄136018	1	0	0	0
15478	0	0	0	0	0	1．29\％	0	1	5663	1	0	0	\＄186220	，	0	0	0
15479	0	0	0	0	0	1．18\％	0	1	5663	1	0	0	\＄145651	1	0	0	0
15480	0	0	0	0		1．27\％	0	1	5663	0	0	1	5381560	1	0	0	0
15481	0	0	0	0		1．18\％	0	1	${ }^{6} 098$	1	0	0	\＄1115073	1	0	0	0
15482		0	0		0	1．30\％	0	1	6098	0	0	0	\＄278 137	1	0	0	0
15483	0	0	0	0	0	1．12\％	0	1	6098	1	0	0	\＄113551	1	0	0	
15484	0	0	0	0	0	1．29\％	0	1	6098	0	0	0	5496970	1		0	0
15885 15486	0	0	0	0	0	1．30\％	0	1	6098 6098	0	${ }_{0}^{1}$	0	$\$ 85014$ $\$ 666901$	1	0	0	\bigcirc
$\begin{array}{r}15486 \\ \hline 1548\end{array}$	0	0	0	0		${ }^{1.29 \%}$	0	1	${ }_{6}^{6098}$	0	0	0	\＄666901	1	0	0	0
15487	0	0	0	0	0	1．15\％	0	1	${ }^{6534}$	1	0	0	\＄1141460	1	0	0	0
15488	1		0	0	0	1．13\％	0	1	6534	0	0	0	5402427	1	0	0	0
15489	0	0	0	0	0	1．12\％	0	1	6534	1	－	0	\＄139273	1	0	0	0
15990	0	0	0	0	0	${ }^{1.1 .18 \%}$	0	1	${ }_{6}^{6534}$	0	0	1	${ }_{\text {\％}} 52398981$	1	0	0	0
15492	0	0	0	0	－	${ }^{1.25 \%}$	0	1	6534 6534	${ }_{0}$	1	\bigcirc	\＄1293733	1	0	0	0
15493	0	0	0	0	0	${ }^{1.26 \%}$	0	1	${ }_{6} 6334$	0	0	0	${ }_{5} 5292129$	1	0	0	0
15494	0	0		0	0	1．27\％	0	1	${ }^{6930}$	0	0	0	S673 314	1	0	0	0
15995	0	0	0	0	0	1．18\％	0	1	6970	0	1	0	\＄1080 733	1	0	0	0
15496 15497	0	\bigcirc	\bigcirc	0	\bigcirc	${ }^{1.120 \%}$	0	1	6970 6970	1	${ }_{1}$	\bigcirc	（ $\begin{gathered}\text { S131489 } \\ \$ 1154629\end{gathered}$	1	\bigcirc	\bigcirc	\bigcirc
15498	0	0	0	0	0	1．75\％	0	1	6970	0	0	1	\＄430000	1	0	0	0
15499	0	0	0	0	0	1．15\％	0	1	6970	1	0	0	\＄118727	1	0	0	0
15500	0	0	0	0	0	1．18\％	0	1	6970	1	0	0	\＄188959	1	0	0	0
15501	0	0	0	0	0	1．26\％	0	1	6970	0	0	1	5498036	1	0	0	0
15502 15503	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	－${ }_{1}^{1.12 \%}$	${ }_{0}^{1}$	1	7405 7405	${ }_{1}$	${ }_{0}^{1}$	${ }_{0}^{0}$	$\$ 1012887$ $\$ 79600$	1	\bigcirc	\bigcirc	\bigcirc
15504	0	0	0	0	0	1．35\％	0	1	7405	1	0	0	\＄133948	1	0	0	0
15505	0	0	0	0	0	1．24\％	0	1	7405	0	0	0	\＄402835	1	0	0	0
15506	0	0	0	0	0	1．28\％	0	1	7405	1	0	0	\＄238646	1	0	0	0
15507 15508	0	0	0	0	0	1．25\％	0	1	7440	0	0	0	\＄761806	1	0	0	0
15508 15509	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{2}^{1.29 \%}$	\bigcirc	1	7841 7841	${ }_{1}$	${ }_{0}^{1}$	${ }_{0}^{0}$	5779829 S182894	1	\bigcirc	\bigcirc	\bigcirc
15510	0	0	0	0	0	1．26\％	0	1	7841	0	0	0	\＄477277	1	0	0	0
15511	0	0	0	0	0	1．30\％	0	1	8276	1	－	0	\＄107326	1	0	0	0
15512	0	0	0	0	0	1．31\％	0	1	8276	0	0	1	\＄476950	1	0	0	0
15513	0	0	0	0	0	1．25\％	0	1	8700	0	1	0	\＄1293733	1	0	0	0
1514 15515	0	0	0	0	0	1．13\％	0	1	8712 953	1	0	0	\＄135009	1	0	0	0
${ }_{15516}$	0	0	0	0	。	${ }_{1}^{1.27 \%}$	0	1	${ }_{9} 983$	0	1	${ }_{0}$		1	0	0	0
15517	0	0	0	0	0	1．30\％	0	1	9583	1	0	0	\＄105090	1	0	0	0
15518	0	0	0	0	0	1．11\％	0	1	9583	0	0	0	\＄725406	1	0	0	0
15519	0	0	0	0	0	1．11\％	0	1	11761	0	0	0	\＄748434	1	0	0	0
15520 15521	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	1．31\％	\bigcirc	1	12197 14810	${ }_{1}$	${ }_{0}^{1}$	${ }_{0}$	\＄1429893	1	\bigcirc	\bigcirc	0
15522	0	0	0	0	0	1．26\％	0	1	15246	0	0	－	\＄594717	1	0	0	0
15523	0	0	0	0	0	1．12\％	0	1	19602	1	0	0	\＄172616	1		0	0
15524	－	0	0	0	0	1．12\％	0	1	21780	1	0	0	5395717	1	－	0	0
15525	0	0	0	0	0	1．18\％	0	1	3920	0	0	1	\＄212500	1	0	0	0
1526	－	0	0	0	0	${ }^{1.112 \%}$	0	1	3920 3920	1	0	0	$\$ 58110$ $\$ 397987$	1	0	0	0
15527 15528	0	0	0	${ }_{0}$	\bigcirc	${ }_{\text {1．15\％}}^{1.15 \%}$	\bigcirc	1	3920 3920	0	${ }_{1}$	${ }_{0}^{1}$	S397987 $\$ 740888$	1	\bigcirc	0	\bigcirc
15529		0	0	0	0	1．14\％	0	1	3920	＋	0	0	\＄111732	1	0	0	0
15530	0	0	0	0	0	1．18\％	0	1	4356	1	0	0	\＄77946	1	0	0	0
15531	0	0	0	0	0	1．38\％	0	1	4356	1	0	0	\＄164869	1		0	0
15532	0	0	0	0	0	1．34\％	0	1	${ }^{4356}$	0	－	0	\＄414517	1	0	0	0
1533 1553 1	0	0	－	0	0	1．31\％	0	1	${ }^{4356}$	0	1	0	$\$ 826619$ $\$ 557247$	1	0	0	0
15534 15535	0	\bigcirc	\bigcirc	0	0	－${ }_{\text {1．33\％}}^{1.34 \%}$	。	1	4375 4726	0	0	0	S557247 $\$ 480688$	1	0	\bigcirc	0
15536	0	－	0	0	0	1．13\％	0	1	4792	1		0	\＄93591	1	0	0	0
15537	0	0	0	0	0	1．18\％	0	1	4792	0	0	1	\＄329510	1	0	0	0
15538	0	0	0	0	0	1．15\％	0	1	4792	1	0	0	\＄129689	1	0	0	0
15399	0	－	0	0	0	${ }^{1.15 \%}$	0	1	4792	0	0	0	S4688113 $\$ 33251$	1	0	0	0
15540 15541	0	${ }_{0}$	${ }_{0}$	${ }_{0}$	0	（1．15\％	\bigcirc	1	5227 5227	0	0	${ }_{1}^{0}$	533231 $\$ 366498$	1	${ }_{0}$	${ }_{0}$	${ }_{0}$
${ }_{15542}^{1541}$	0	0	${ }_{0}$	${ }_{0}$	${ }_{0}$	${ }_{\text {1．29\％}}$	${ }_{0}$	1	5227 5227	1	0	${ }_{0}^{1}$	\＄3664703	1	0	0	\％
15543	0	0	0	0	0	1．15\％	0	1	5663	1	0	0	\＄87165	1	0	0	0
15544	0	0	0	0	0	1．09\％	0	1	5663		0	0	\＄119713	1	0	0	0
$\begin{array}{r}1545 \\ \hline 15546\end{array}$	0		0	0	0	${ }^{1.15 \%}$	0	1	${ }_{5}^{5663}$	0	－	1	\＄3882822	1	0	0	0
15546 15547	0	0	\bigcirc	\bigcirc	0	${ }_{\text {1．18\％}}^{1.10 \%}$	0	1	6098 6534	0	0	${ }_{1}^{0}$	S442215 $\$ 368723$	1	0	\bigcirc	0
15548	0		0	0	。	1．99\％	1	1	6534	1	。	${ }_{0}$	\＄82730	1	0	0	0
15549	0	0	0	0	0	1．15\％	0	1	6970	0	0	0	\＄455 288	1	0	0	0
15550	0	0	0	0	0	1．27\％	0	1	6970	－	0	1	5381560	1	0	0	0
1551	0		0	0	0	${ }^{1.12 \%}$	－	1	7215	0	1	0	\＄1162885	1	0	0	0
15552 15553	${ }_{0}$	${ }_{0}$	${ }_{0}$	0	0	1.15% 1.10% 1.1	0	1	7841 7841	${ }_{1}$	\bigcirc	${ }_{0}^{\circ}$	S487751 S138210	1	${ }_{0}$	${ }_{0}$	${ }_{0}$
15554	0	0	0	0	。	1．34\％	0	1	8276	1	0	0	\＄148731	1	0	0	0
15555	0	0	0	0	0	1．15\％	0	1	8712	0	0	1	5343888	1	0	0	0
15556	1	0	0	0	0	1．13\％	0	1	9148		0	1	5432203	1	0	0	
15557	0	0	0	0	0	${ }^{1.12 \%}$		1	${ }^{11326}$	，	0	1	\＄898674	1	0	0	
15558 1559	0	\bigcirc	0	0	0	（1．12\％	0	1	12632 15682	${ }_{1}^{0}$	0	$\stackrel{0}{0}$	S742677 $\$ 352524$	1	$\stackrel{0}{0}$	0	0
15560	0	0	0	0	0	1．15\％	－	1	5663	0	1	0	\＄644139	1	0	0	0
15561	0	0	0	0	0	1．10\％	0	1	5663	0	1	0	\＄1016074	1	0	0	0
15562		0	0	0	0	${ }^{1.15 \%}$	0	1	6098	0	0	0	\＄563019	1	0	0	
15563 15564	0	\bigcirc	0	0	0	${ }^{1.1 .12 \%}$	0	1	6098 6098	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	$\$ 330000$ $\$ 1031600$	1	\bigcirc	\bigcirc	\bigcirc
15565	－	0	0	0	0	1．10\％	0	1	6534	0	0	1	\＄510 032	1	0	0	0
15566 15567	0	0	0	0	0	${ }^{1.115 \%}$	0	1	${ }_{6970} 6970$	0	0	1		1	0	0	－
15567 1558	0	\bigcirc	\bigcirc	\bigcirc	${ }_{0}$	${ }^{1.1 .16 \%}$	${ }_{0}$	1	6970 6970	${ }_{0}$	${ }_{0}$	1	S442991 S525	${ }_{1}^{1}$	${ }_{0}$	${ }_{0}$	${ }_{0}$
15569	0	0	0	0	0	1．16\％	0	1	6970	0	1	0	\＄904602	1	0	0	0
15570	0	0	0	0	0	1．10\％	0	1	6970	1	0	0	\＄165 603	1	0	0	0
15571 15572	\bigcirc	0	\bigcirc	0	0	${ }_{\text {1．1．5\％}}^{1.10 \%}$	0	1	6970 7232	1	0	0	\＄162942	1	0	0	0
${ }_{15573}^{1572}$	${ }_{0}$	${ }_{0}$	${ }_{0}$	${ }_{0}$	${ }_{0}$	${ }_{\text {1．1．0\％}}^{1.15 \%}$	${ }_{0}$	1	7232 7405	1	${ }_{0}$	1	－	1	${ }_{0}$	${ }_{0}$	${ }_{0}$
15574	0	0	0	0	0	1．23\％	0	1	7405	0	0	0	\＄519413	1	0	0	0
15575	0	0	0	0	0	1．10\％	0	1	7405	－	0	0	\＄489961	1	0	0	
15576 15577	0	${ }_{0}$	0	0	0	－${ }_{\text {1．1．12\％}}^{12 \%}$	\bigcirc	1	8559 8712	\bigcirc	${ }_{0}$	0	S673314 S419 525	1	\bigcirc	0	${ }_{0}$
15578	0	0	0	0		1．27\％		1	9148		1	0	\＄1440 977	1			0
15579	1	0	0	0	0	1．12\％	0	1	10019	0	0	1	\＄600000	1	0	0	0
15880 15581			\bigcirc	\bigcirc	\bigcirc	1．12\％	\bigcirc	1	10454	\bigcirc	${ }_{1}$			1		\bigcirc	
15581 15882	${ }_{0}^{1}$	\bigcirc	\bigcirc	0	0	${ }^{1.12 \%}$	0	1	11761 194713	0	${ }_{0}^{1}$	0	$\$ 1621854$ 548937	1	\bigcirc	\bigcirc	\bigcirc
15583		0	0	0	0	1．09\％	－	1	4356	0	0	0	\＄254959	1	0	0	
15584	0		0	0	0	1．09\％	－	1	4792			0	5118307	1	0	0	－
15585 1558	0	0	\bigcirc	\bigcirc	\bigcirc	l ${ }_{\text {1．1．18\％}}^{109 \%}$	\bigcirc	1	4792 4792	${ }_{1}$	0	0	S351420 $\$ 117300$	1	\bigcirc	\bigcirc	\bigcirc
15587 1585		0	0	0	0	1．09\％		1	${ }_{5663}$	1	0	${ }_{0}$	\＄1106549	1	0	0	0
15588	0		0	0		${ }^{1.15 \%}$	0	1	${ }_{5}^{5663}$	－	0	1	\＄388701 $\$ 564306$	1	0	0	0
15899 1599	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }^{1.1 .15 \%}$	0	1	5663 5663	\bigcirc	，	${ }_{0}^{1}$	S544306 $\$ 834417$	1	\bigcirc	0	－
15590 1599	${ }_{0}$	0	${ }_{0}$	${ }_{0}$	${ }_{0}$	1．10\％	${ }_{0}^{0}$	1	5663 5663	${ }_{0}$	1	${ }_{0}$	\＄ 8834470279	1	${ }_{0}$	0	${ }_{0}$
15592	0	0	0	0	0	1．18\％	－	1	5663	0	0	1	\＄556012	1	0	0	0
15933 1599	0	0	0	0	0	${ }^{1.15 \%}$	0	1	5663 5633	0	0	0	S159594 $\$ 408750$	1	0	0	
15994 15595	0	0	0	0	0	${ }_{\text {1．1．16\％}}^{1.15}$	0	1	5663 6006	0	0	0	S408 760 S605 341	1	${ }_{0}$	0	0
15596	0	0	0	0	0	1．1．16\％		1	6098	0	0	1	\＄530845	1	0	0	0
15597	0	0	0	0	0	1．18\％	0	1	6098	0	0	0	${ }_{\text {S }}^{5} 5050238$	1	0	0	0
15998	0	0	0	0	0	1．15\％	0	1	6098	1	0	0	\＄172253	1	0	0	0
									6534 6534								

osservation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％－90\％	LTV 70\％－78\％	$\begin{gathered} \text { LTV beLow } \\ 70 \% \end{gathered}$	total tax burden	parcel in SCEIP $=1$	conventional LOAN $=1$	torstiz	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	$\begin{aligned} & \text { SOLD DURING } \\ & \text { 2004_2007 } \end{aligned}$	Sold 2008－2012	PRICE ADJUST．TO 2012	ZIP CODE 295403	$\begin{aligned} & \text { ZIP CODE } \\ & 95404 \end{aligned}$	ZIP CODE 95472	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
15731	－	0	0	0	－	1．35\％	－1	Loan 1	11326	PRok－200	${ }^{2004}$	0	\＄639048	29403	5504		9498
15732	0	0	0	0	0	${ }_{1.41 \%}^{1.45}$	1	1	11764	0	。	0	\＄719 648	1	。	。	0
15733	0	0	0	0	O	1．11\％	0	1	12197	1	0	0	\＄395 234	1	0	0	0
15734	0		0		0	1．11\％	0	1	14810	0	0	0	5577527	1	0	0	0
15735	0	0	0	0	0	1．11\％	0	1	19602	0	0	0	\＄644350	1	0	0	0
15736	0	0	0	0		1．37\％	0	1	1742	0	0	1	\＄268438	1	0		0
15737	0	0	0	0	0	1．40\％	0	1	2178	0	0	0	\＄342553	1		0	0
15738	。	0	。	0	O	1．09\％		1	4792	0	0	1	\＄354677	1	0	0	0
15739	0	0	0	0	0	1．09\％	0	1	5227	0	0	0	\＄227 145	1	0	0	0
15740	0	0	0			1．18\％	0	1	6098	0	0	0	5235489	1	0	0	0
15741	0	0	0	0	0	${ }^{1.120 \%}$	0	1	6098	0	0	1	${ }_{\$ 359707}$	1	0	0	0
15742	0	0	0	0	0	1．28\％	0	1	6098	0	0	1	5391601	1	0	0	0
15743	0	0	0	0	0	1．10\％	0	1	6098	0	0	0	566783	1	0	0	－
15744	0	0	0	0	0	1．18\％	0	1	7405	0	1	0	\＄779990	1	0	0	0
15745	0	0	0	0	0	1．12\％	0	1	87120	0	0	1	\＄1125000	1	0	0	0
15746 15747	0	0	0	0		${ }_{1}^{1.09 \%}$		1	${ }^{2178}$		1	0	${ }_{5} 569275$	1	0	0	0
15747 15748	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	（1．12\％	\bigcirc	1	2178 2403	\bigcirc	${ }_{0}^{1}$	0	\＄796865 $\$ 411683$	1	\bigcirc	\bigcirc	\bigcirc
15749	0		0	0	0	1．09\％	0	1	3960	0	1	0	${ }_{5903738}$	1	0	0	0
15750	0	0	0	0	0	1．15\％	0	1	4113	0	1	0	\＄725241	1	0	0	0
15751	0	0	0	0	0	1．18\％	0	1	4185	0	0	1	\＄365649	1	0	0	0
15752	0	0	0	0		1．15\％	0	1	6098	0	0	1	5462368	1	0	0	0
15753	0	0	0	0	0	1．29\％	0	1	${ }_{6} 698$	－	0	0	\＄575719	1	0	0	－
15754	0	0	0	0	0	1．10\％	0	1	6970	0	0	0	\＄599321	1	0	0	0
15755	0	0	0	0	0	1．11\％	0	1	14810	0	1	0	\＄1899351	1	0	0	0
15756	0	0	0	0	0	1．27\％	0	1	15682	0	0	1	\＄571336	1	0	0	0
15757 15758	1	0		0		1．26\％	0	1	15760	0	0	0	\＄945204	1	0	0	0
15758 1559	0	0	0	0	0	${ }^{1.32 \%}$	0	1	23087 2565	0	0	0	\＄681046	1	0		
15759	1	0	－	0	0	1．32\％		1	25265	0	0	1	\＄580000	1	0	0	0
15760	0	0	0	0	0	1．33\％	0	1	36155	0	1	0	\＄1492885	1	0	0	0
15761 15762	0	0	0	0	0	－1．12\％	0	1	90169 1779	0	1	0	¢2043153	1	\bigcirc	0	0
15762 15763	0	\bigcirc	\bigcirc	0	0	－	${ }_{0}$	1	1779 3735	0	${ }_{1}$	${ }_{0}^{1}$	（ ${ }_{\text {S190780 }}^{\text {S1034548 }}$	1	\bigcirc	\bigcirc	\bigcirc
15764	0	0	0	0	0	1．15\％	0	1	4128	0	1	0	\＄1060 411	1	0	0	0
15765	0	0	0	0	0	1．18\％	0	1	4702	\bigcirc	0	1	\＄454 174	1	0	0	0
15766	0	0	0	0	0	1．10\％		1	6534	0	0	0	5706983	1	0	0	0
15767	0	0	0	0	0	${ }^{1.10 \%}$	0	1	8276	0	0	1	\＄566315	1	0	0	0
15768 15769	\bigcirc	0	\bigcirc	0	0	－${ }^{1.10 \%}$	0	1	9583 7841	0	${ }_{0}^{1}$	\bigcirc		1	0	\bigcirc	0
15770	0	0	0	0	0	1．10\％	0	1	5663	0	1	0	5802373	1	0	0	0
15771	1	0	0	0	0	1．12\％	0	1	15682	0	0	0	\＄814379	1	0	0	0
15772	0	0	0	0	0	1．12\％	0	1	6970	1	0	0	\＄278546	1	0	0	
15773	0	0	0	0	0	${ }^{1.1 .15 \%}$	0	1	7405	1	0	0	\＄116105	1	0	0	0
15774 15775	\bigcirc	0	0	0	\bigcirc	${ }^{1.1 .18 \%}$	0	1	7841 5663	${ }_{0}^{1}$	0	\bigcirc	$\$ 139273$ $\$ 473243$	1	\bigcirc	\bigcirc	0
15776	0	0	0	0	0	1．16\％	0	1	6534	0	。	0	\＄466332	1	0	0	0
15777	0	0	0	0	0	1．11\％	0	1	14810	1	0		\＄217567	1	0	0	0
15778	0	0	0	0	0	${ }^{1.12 \%}$	0	1	6534	0	0	0	\＄321454	1	0	0	0
15779 15780	0	0	0	0	0	－ $1.1 .13 \%$	0	1	13939 8276	0	\bigcirc	\bigcirc	5400455 $\$ 52768$	1	0	\bigcirc	${ }_{0}$
15780 15781	\bigcirc	0	0	0	\bigcirc	${ }^{1.1 .15 \%}$ 1．23\％	0	1	8276 3397	${ }_{0}^{1}$	0	\bigcirc	$\$ 52768$ $\$ 493622$	1	0	0	0
15782	－	0	0	0	0	1．10\％	0	1	7405	0		1	\＄465879	1	0	0	0
15783	0	0	0	0	0	1．10\％	0	1	6534	0	0	1	5310586	1	0	0	0
15784	0	0	0	0	0	1．15\％	0	0	4792	0	0	1	\＄345312	1	0	0	0
15785	0	0	0	0	0	1．12\％	0	1	15246	0	0	0	\＄392640	1	0	0	0
15786 15787	0	\bigcirc	\bigcirc	0	\bigcirc	${ }^{1.28 \%}$	0	1	5663 7500	${ }_{0}^{1}$	0	0	$\$ 160129$ $\$ 545064$	1	\bigcirc	0	0
15788	0	－	1	0	0	1．15\％	0	0	4770	0		1	\＄360 330	1	－	0	0
15789	0	0	1	0	0	1．30\％	0	1	4792	0	1		5629024	1	0	0	0
15790	0	0	1	0	0	1．12\％	0	1	5227	0	0	0	${ }_{5680} 395$	1	0	0	0
15791	\bigcirc	0	1	\bigcirc	0	${ }^{1.1 .16 \%}$	0	${ }_{1}^{1}$	9148 2534	\bigcirc	1	${ }_{1}$	5834417 $\$ 325760$	1	\bigcirc	\bigcirc	\bigcirc
15792 15793	0	\bigcirc	1	0	\bigcirc	（1．12\％	0	${ }_{1}^{1}$	2534 6534	${ }_{1}^{0}$	\bigcirc	${ }_{0}^{1}$	S325760 $\$ 114544$	1	0	0	\bigcirc
15794	0	0	1	0	0	1．14\％	0	1	3920	0	1	0	\＄569275	1	0	0	0
15795	0	0	1	0	0	1．18\％	0	1	5663	0	0	0	\＄365041	1	0	0	－
15796		0	1	0	0	1．24\％	0	1	${ }_{7}^{11761}$	\bigcirc	1	0	\＄1130567	1	0	\bigcirc	\bigcirc
$\begin{array}{r}15797 \\ \hline 15798\end{array}$	0	0	1	0	0	${ }^{1.13 \%}$	0	1	7405 5027	${ }_{1}$	0	\bigcirc	\＄294212	1	0	\bigcirc	0
15798 15799	0	\bigcirc	1	0	0	1．109\％	\bigcirc	1	5227 6098	${ }_{0}^{1}$	${ }_{1}^{0}$	\bigcirc		1	0	\bigcirc	\bigcirc
15800	0	0	1	0	0	1．15\％	0	1	6534	0	1	0	\＄795426	1	0	0	0
15801	0	0	1	0	0	1．09\％	0	1	6970	0	0	0	5230287	1	0	0	－
15802	0	0	1	0	0	${ }^{1.62 \%}$	0	1	${ }_{4}^{4792}$	1	－	0	\＄192871	1	－	－	－
15803 15804 1	\bigcirc	\bigcirc	1	\bigcirc	\bigcirc	${ }_{\text {l }}^{1.1 .15 \%}$	\bigcirc	1	6098 12197	${ }_{1}^{1}$	\bigcirc	1	S322436 S117 S252	1	\bigcirc	\bigcirc	\bigcirc
15884 15805	0	\bigcirc	1	0	0	1．1．13\％	\bigcirc	1	12197 4356	${ }_{0}^{1}$	0	\bigcirc	\＄117052 $\$ 362703$	1	0	\bigcirc	\bigcirc
15806	0	0	1	0	0	1．25\％	0	1	${ }^{6970}$	0	0	0	\＄759376	1	0	0	0
15807	0	0	1	0	0	1．11\％	0	1	43560	0	1	0	S1108444	1	0		－
15088 15809		0	1	0	0	1．15\％	0	1	3920 4073	${ }_{0}^{1}$	0		S158094 S29997	1	0	0	\bigcirc
15809 15810	0	\bigcirc	1	0	\bigcirc	－${ }_{\text {2．1．2\％\％}}$	${ }_{1}^{0}$	1	4073 18295	\bigcirc	${ }_{1}^{0}$	${ }_{0}^{1}$	${ }_{\substack{\text { S }}}^{529918827}$	1	\bigcirc	\bigcirc	\bigcirc
15811	0	0	1	0	0	1．15\％	0	1	4792	0	0	0	\＄227094	1		0	0
15812	0	0	1	0	0	1．15\％	0	1	7841	1	0		\＄182 184	1	0	－	0
15813	0	0	1	0	0	${ }^{1.1 .15 \%}$	0	1	3920 6098	0	1	0	\＄1010612	1	0	\bigcirc	\bigcirc
15814 15815	\bigcirc	\bigcirc	1	\bigcirc	\bigcirc	1.12% 1.19% 1	\bigcirc	${ }_{0}^{1}$	6098 23522	\bigcirc	1	${ }_{1}$	\＄904602	1	\bigcirc	\bigcirc	\bigcirc
15816	0	0	1	0	0	1．15\％	0	0	5310	0	0	0	\＄433486	1	0		
15817	0	0	1	0	0	1．15\％	0	1	2614	0	1	0	\＄648818	1	\bigcirc	0	0
15818 15819	0	0	1	0	0	1．1．16\％	0	1	5663	0	0	1		${ }_{1}^{1}$	0	0	\bigcirc
15819 15820	\bigcirc	\bigcirc	1	\bigcirc	0	1.12% 1.09% 1	\bigcirc	1	6098 5227	0	${ }_{0}^{1}$	${ }_{1}^{1}$	S8806 634 $\$ 27541$	1	0	\bigcirc	0
15821	0	0	1	0	0	1．18\％	0	1	5663	1	0		\＄214 555	1	0		
15822	0	0	1	0	0	${ }^{1.12 \%}$	0	1	4900	0	1	0	\＄744442	1	\bigcirc	0	0
15823 15824	－	0	1	0	0	1．35\％	0	1	20473 9983	0	－	1	\＄664816	1	0	\bigcirc	\bigcirc
15824 15825	\bigcirc	\bigcirc	1	\bigcirc	0	${ }^{1.26 \%}$ 1．33\％	0	1	${ }_{11353}$	${ }_{0}^{0}$	${ }_{0}$	1	$\$ 620392$ $\$ 373758$	1	0	0	\bigcirc
15826	\％	0	1	0	0	${ }^{1.10 \%}$	0	1	${ }_{5663}^{143}$	0	1	0	\＄1182340	1	0	0	0
15827 15828	0	0	1	\bigcirc	0	1．09\％	0	0	$\begin{array}{r}7841 \\ 7405 \\ \hline\end{array}$	1	\bigcirc	0	S137005 S23834	1	\bigcirc	0	
15828 15829	\bigcirc	\bigcirc	1	0	0	${ }^{1.1 .15 \%}$ 1．13\％	\bigcirc	1	7405 6098	\bigcirc	0	\bigcirc	$\$ 238734$ $\$ 166882$	1	\bigcirc	0	\bigcirc
15830	0	0	1	0	0	1．09\％	0	1	6098	1	0	0	579343	1	0	0	0
15831 15832	0	0	1	0	0	1．28\％	0	1	6098	0		0	\＄920892	1	－		0
15832 15838	0	\bigcirc	1	0	0	1．14\％	0	${ }^{1}$	4792 4792	1	\bigcirc	0	S86457 S455615	1	\bigcirc	\bigcirc	\bigcirc
15834	0	${ }_{0}$	1	${ }_{0}$	\bigcirc	${ }^{1.35 \%}$ 1．14\％	${ }_{0}$	${ }_{0}^{1}$	4792	${ }_{1}$	${ }_{0}$	${ }_{0}$	S456515 $\$ 8775$	1	0	${ }_{0}$	\bigcirc
15835	－	0	1	0	0	1．14\％	0	0	4792	1	0	0	$\$ 87675$ $\$ 65958$	1	0	0	0
15836 15837	0	\bigcirc	1	0	0	1．10\％	\bigcirc	1	6798 16513	\bigcirc	0	${ }_{0}^{1}$	5660358 $\$ 679348$	1	0	0	${ }_{0}$
15838	0	0	1	。	0	1．08\％	0	1	4356	1	0		\＄50126	1		。	${ }_{0}$
15839	－	0	1	0	0	1．13\％	0	1	5227	1	0		555004	1	0	0	
15840	1	0	1	0	0	1．10\％	0	1	$\begin{array}{r}6534 \\ \hline 2829\end{array}$	\bigcirc	1	0	5809463 69716	1	\bigcirc	0	
15841 15842	0	0	1	\bigcirc	0	1.15% 1.08%	\bigcirc	1	24829 5663	0	0	1	$\$ 607516$ $\$ 80369$	1	\bigcirc	\bigcirc	0
15843	0		1			1．16\％	0	1	6970	0	0	1	\＄560 109	1	0	0	0
15844 15845 1585	0	\bigcirc	1	0	0	${ }^{1.15 \%}$		1	5227 8000	\bigcirc	1	\bigcirc	$\$ 826619$ $\$ 505947$	1	0	0	
15845 15846	0	\bigcirc	1	0	\bigcirc	－${ }_{\text {1．1．1\％\％}}^{1.14 \%}$	\bigcirc	${ }_{0}^{1}$	8000 6970	${ }_{1}^{0}$	0	\bigcirc	\＄505947 $\$ 87675$	1	\bigcirc	\bigcirc	\bigcirc
15847	0	0	1	0	0	1．14\％	0	1	3485	1		0	\＄109737	1	0	0	0
15848	0	0	1	0	0	1．37\％	0	1	${ }_{4}^{4366}$	0			5260522	1	0	0	\bigcirc
15899 15850	${ }_{1}^{0}$	0	1	0	0	${ }_{\text {1．14\％}}^{1.15 \%}$	0	1	5663 37028	\bigcirc	1	0	\＄1052098 $\$ 1117681$	1	\bigcirc	0	\bigcirc
15851		0	1			1．11\％		1	15246	0	1		\＄458272	1	－	0	－
15852 1585	0	0	1	0	0	${ }^{1.1 .16 \%}$	0	1	${ }^{21344}$	\bigcirc	－		S683980 S54633	1	\bigcirc	，	0
15853 15854	0	0	1	0	0	－1．22\％	0	1	12632	0		0	\＄546933	1	\bigcirc	\bigcirc	\bigcirc
15854 1585	1	${ }_{0}^{0}$	1	\bigcirc	\bigcirc	（1．16\％	0	1	9148 8276	${ }_{0}^{1}$	0	0		1	\bigcirc	0	\bigcirc
15856	0	0	1	0	0	1．09\％	0	1	7405	0	0	1	\＄292638	1	0	0	0
15857 15858	\bigcirc	\bigcirc	1	0	\bigcirc	1．1．18\％	0	1	$\begin{array}{r}8276 \\ 705 \\ \hline\end{array}$	0	\bigcirc	，	532902 S11838	1	－	\bigcirc	\bigcirc
15858 1559 15850	0	\bigcirc	1	\bigcirc	\bigcirc	1.18% 1.18% 1.10%	\bigcirc	1	7405 10019 16553	1	0	0	S111338 $\mathbf{S 1 9 3 6 9}$ S932 940	1	O	0	－

observation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％－90\％	LTV 70\％－78\％	$\begin{gathered} \text { LTV beLow } \\ 70 \% \end{gathered}$	totaltax burden	parcel in SCEIP $=1$	conventional LOAN $=1$	torstiz	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	$\begin{aligned} & \text { SOLD DURING } \\ & \text { 2004_2007 } \end{aligned}$	Sol0 2008－2012	PRICE ADJUST．TO 2012	$\begin{gathered} \text { ZIP CODE } \\ \text { Z95403 } \end{gathered}$	$\begin{aligned} & \text { ZIP CODE } \\ & 95404 \end{aligned}$	ZIP CODE 95472	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
15991	石 1	0	1	0	－	1．15\％	－1	Lodi	7841	－	${ }^{2004}$	0	${ }_{5126363}$	2s403	5504	9540	9498
15992	0	0	1	0	0	1．15\％	。	1	6970	1	。	0	S110 125	1	0	。	0
15993	0	0	1	0	O	1．16\％	0	1	10454	1	0		\＄167265	1	0	0	0
15994	0	0	1		0	1．18\％	0	1	4792		1	0	574737	1	0		0
15995	0	0	1		0	1．18\％	0	1	7405	1	0	0	\＄139000	1	0		0
15996	0		1	0		1．15\％	0	1	5227	1	0	0	\＄169762	1	0		0
15997	0	0	1	0	0	1．15\％	0	1	20473	0	0	1	\＄192788	1	0	0	0
15998	0	0	1	0	O	1．14\％		1	3920	0	0		\＄261522	1	0	0	0
15999	0	0	1		0	1．13\％	0	1	${ }^{3885}$	1	0	0	\＄67050	1	0	0	0
16000	0	0	1			1．18\％	0	1	4792		0	0	\＄53886	1	0	0	0
16001	0	0	1	0	0	1．17\％	0	1	6534	0	0	1	${ }_{5321328}$	1	0	0	0
16002	0	0	1	0	0	1．08\％	0	1	4356	1	0	0	\＄54110	1	0	0	0
16003	0	0	1	0	0	1．30\％	0	1	7841	0	1	0	\＄756434	1	0	0	0
16004	0	0	1	0	0	${ }^{1.12 \%}$	0	1	5663	0	0	1		1	0	0	0
16005	0	0	1	0	O	1．14\％	0	1	4792 6098	1	\bigcirc	\bigcirc	\＄61265 $\$ 97223$	1	\bigcirc	0	0
16006 16007	\bigcirc	0	1	\bigcirc	\bigcirc	（1．37\％	\bigcirc	1	6098 5663	1	${ }_{0}$	${ }_{0}$	\＄57029	1	0	\bigcirc	${ }_{0}$
16008	0		1	0	0	1．35\％	0	1	6534	1	0	0	\＄78258	1	0	0	0
16009	0	0	1	0	0	1．14\％	0	1	3920	0	1	0	\＄789345	1	0	0	0
16010	0	0	1	0	0	1．18\％	0	1	4792	1	0	0	${ }_{563} 544$	1	0	0	0
16011	0	0	1	0	0	1．13\％	0	1	${ }_{5}^{4792}$	1	0	0	\＄54110	1	0	0	0
16012	0	0	1	0	0	1．34\％	0	1	5663	1	0	0	${ }_{\text {\％}} \$ 81612$	1	0	0	0
16013 16014	\bigcirc	0	1	0	0	1．08\％		1	${ }_{4}^{4366}$	1	0	0	\＄545772	1	0	0	\bigcirc
16014 16015	${ }_{0}$	\bigcirc	1	0	\bigcirc	（1．18\％	1	1	7841 4356	${ }_{1}^{1}$	0	0	S385732 S117 612	1	${ }_{0}$	\bigcirc	0
16016	0	0	1	0	0	1．09\％	0	1	5663	0	1	0	\＄557735	1	0	0	0
16017	0	0	1	0		1．18\％	0	1	8276	0	0	0	\＄246615	1	0	－	0
16018	0	0	1	0	0	1．15\％	0	1	2614	0	0	1	\＄200 319	1	0	0	
16019	0	0	1	0	0	1．31\％	0	1	12632	1	0	0	\＄90109	1	0	0	－
16020	0	0	1	0	0	1．36\％	0	1	7841	1	0	0	581389	1	0	0	
16021	0	0	1	0	0	1．15\％	0	1	4792	1	0	0	\＄197993	1	0	0	0
16022	0	0	1	0		${ }^{1.09 \%}$	0	1	5663 5663	0	0	0	\＄419378	1	0	0	0
16023 16024	0	${ }_{0}$	1	\bigcirc	0	（1．36\％	${ }_{0}$	1	5663 7405	1	\bigcirc	0	S129686 $\$ 91719$	1	\bigcirc	\bigcirc	0
16025	0	0	1	0	0	1．12\％	0	1	2178	\bigcirc	0	1	\＄299167	1	0	。	0
16026	0		1	0	0	1．12\％		1	57935		0	0	\＄1070890	1	0	0	0
16027	0	0	1	0	0	1．12\％	0	1	5663	0	0	1	532688	1	0	0	0
16028	0	0	1	0		1．12\％	0	1	7405	0	0	0	\＄690862	1	0	0	0
16029	0	0	1	0	0	1．1．16\％	0	0	6970	0	0	1	S440 238 $\$ 122388$	1	0	\bigcirc	－
16030 16031	0	0	1	0	0	1．18\％	0	1	5663	1	0	0	\＄124368	1	0		\bigcirc
16031 16032	0	0	1	0	0	－${ }_{\text {1．1．10\％}}$	0	1	13504 6970	1	0	\bigcirc	S102819 S200 25	1	\bigcirc	\bigcirc	\bigcirc
16033	0	0	1	0	0	1．09\％	0	1	2178	0	0	0	\＄295302	1	0	0	0
16034	0	0	1	0	0	${ }^{1.35 \%}$	0	1	${ }^{4} 356$	0	0	1	$\begin{array}{r}\$ 365797 \\ \$ 682136 \\ \hline\end{array}$	1	0	\bigcirc	0
16035	0	0	1	0	0	1．47\％	0	1	21344 6534	0	0	0	\＄682136 $\$ 7235$	1	\bigcirc	0	0
${ }_{16036}^{16037}$	0	0	1	0	0	1．33\％	0	1	${ }^{6534}$	1	0	0	578035	1	0	0	0
16037 16038	\bigcirc	0	1	\bigcirc	\bigcirc	${ }_{\text {1．15\％}}^{1.26 \%}$	\bigcirc	1	7638 4792	\bigcirc	${ }_{0}^{1}$	0	S1367 81 $\$ 460$ 575	1	\bigcirc	\bigcirc	0
16039	0	0	1	0	0	1．14\％	0	1	3920	1	0	0	\＄143037	1	0	0	0
16040	0	0	1	0		1．18\％	0	1	${ }^{6970}$	0	0	1	\＄225488	1	0	0	0
16041	0	0	1	0	0	1．09\％	0	1	5663	1	0		S108099 $\$ 143555$	1	－	0	－
16042 16043	0	0	1	0	0	1．62\％	1	1	5227	1	0		\＄143655	1	0	0	0
16043 16044	1	0	1	0	0	${ }_{\text {l }}^{1.12 \% \%}$	\bigcirc	1	5665 7405	\bigcirc	0	${ }_{1}^{0}$	\＄254 495 $\$ 374740$	1	\bigcirc	\bigcirc	\bigcirc
16045	0	0	1	0	0	1．14\％	0	1	3485	1	0	0	580673	1	0	0	0
16046	0	0	1	0	0	1．12\％	0	1	6970	1	0	0	579600	1	0	0	0
16047	0	0	1	0	0	${ }^{1.15 \%}$	0	1	3049 4356	0	1	0	\＄701846	1	0	－	－
16048 16049	0	0	1	0		${ }^{1.12 \%}$	－	1	4356	1	，		\＄61042		0	0	0
16049 16050	\bigcirc	\bigcirc	1	\bigcirc	0	${ }^{1.1 .15 \%}$ 1．15\％	\bigcirc	${ }_{1}^{1}$	4792 8276	\bigcirc	${ }_{1}^{0}$	\bigcirc	${ }_{\text {S }} \mathbf{\$ 2 5 4 9 5 9}$	1	\bigcirc	\bigcirc	\bigcirc
16051	0	0	1	0	0	1．28\％	0	1	6534	0	0	0	\＄431213	1	0	0	0
16052	0	－	1	0	0	${ }^{1.36 \%}$	0	1	4792	0	0	1	530000 $\$ 56515$	1	0	\bigcirc	0
16053 16054	0	\bigcirc	1	\bigcirc	\bigcirc	－${ }_{\text {1．12\％}}$	\bigcirc	1	15056 6098	\bigcirc	0 1	\bigcirc	5615601 $\$ 711204$	1	0	0	\bigcirc
16055	0		1	0	0	1．23\％	0	1	46174	1	0		\＄266028	，	。	0	
16056	0	0	1	0	0	1．33\％	0	1	11761	0	1	0	\＄1108444	1	0	0	0
16057	0	0	1	0	0	${ }^{1.32 \%}$	0	1	6098 6098	1	0	\bigcirc	\＄151636	1	0	0	
16058 16059	0	\bigcirc	1	0	\bigcirc	1．1．29\％	0	1	6098 6534	${ }_{0}^{1}$	${ }_{1}$	\bigcirc	S124787 S98965	1	${ }_{0}$	\bigcirc	${ }_{0}$
16060	0	0	1	0	0	1．15\％	0	1	7405		0	0	\＄133014	1	0	0	0
${ }^{16061}$	0	0	1	0	0	${ }^{1.18 \%}$	0	1	2614	1	0	\bigcirc	\＄146801	1	0	0	
16062 16063	${ }_{0}^{1}$	\bigcirc	1	\bigcirc	\bigcirc	－${ }_{1}^{1.26 \%}$	0	1	11326 6098	0 1	：	0	S604 505 S10358	1	0	0	\bigcirc
16064	0	0	1	0	0	${ }_{1.34 \%}$	0	1	7841	1	0	0	\＄76917	1	0	0	0
16065	0		1	0	0	1．15\％	0	1	9148 5297	1	\bigcirc	0	579824 $\$ 5826$	1	\bigcirc	\bigcirc	\bigcirc
16066 16067	0	0	1	0	0	${ }^{0.39 \%}$	0	1	5227	1	0	0	\＄53216	1	0	－	\bigcirc
16067 16068	\bigcirc	\bigcirc	1	\bigcirc	\bigcirc	－${ }_{\text {1．13\％}}$	0	1	8712 5663	1	\bigcirc	\bigcirc		1	0	\bigcirc	\bigcirc
16069		0	1	0	0	1．10\％	0	1	6098	1	0		\＄130 091	1	0	0	
16070	0	0	1	0	0	1．15\％	0	1	6098	0	1	0	5670653	1		0	
16071	0	0	1	0	0	1．116\％	0	1	10454	1	0	0	\＄139450	1	0	0	0
16072 16073	0	0	1	0	0	1．15\％	0	1	8276	1		0	\＄101 145	1	0	0	0
16073 16074	\bigcirc	\bigcirc	1	\bigcirc	\bigcirc	${ }_{\text {1．1．15\％}}^{1.15}$	\bigcirc	1	6970 6534	1	\bigcirc	\bigcirc	S162942 S166268	1	0	\bigcirc	${ }_{0}$
16075	0	0	1	0	0	1．15\％	0	1	9148	1	O	0	\＄113062	1	0	0	0
16076	0	0	1	0	0	1．15\％	0	1	8276 563	1	0	0		1	\bigcirc	0	0
16077 16078	0	0	1	0	0	－ $1.1 .18 \%$	0	1	5663 6098	1	0	0	S109594 $\$ 114737$	1	\bigcirc	0	0
16678 16079	\bigcirc	\bigcirc	1	\bigcirc	\bigcirc	${ }_{\text {l }}^{1.135 \%}$	\bigcirc	1	6098 6534	1	0	\bigcirc	5114737 $\$ 21303$	1	0	\bigcirc	\bigcirc
16080	0	0	1	0	0	1．38\％	0	1	4356	0	1	0	\＄970 300	1	0	0	0
16081	0	0	1	0	0	1．10\％	0	1	5663 5633	1	0	0	5117897 $\$ 465291$	1	\bigcirc	0	0
16082 16083	\bigcirc	0	1	0	0	${ }_{\text {1．1．15\％}}^{1.15}$	0	1	5663 4356	1	0	0	$\$ 465291$ $\$ 142990$	1	\bigcirc	\bigcirc	\bigcirc
16084	－	0	1	0	0	1．15\％	0	1	3485	0	0	0	\＄201186	1	0		0
16885 16086	0	0	1	0	0	${ }^{1.118 \%}$	0	1	${ }_{6}^{654}$	0	1	0	${ }_{\substack{\text { S12 }}}^{\text {S12984 }}$	1	，	－	0
16086 16087	\bigcirc	\bigcirc	1	\bigcirc	\bigcirc	（1．18\％	\bigcirc	1	6098 11761	1	\bigcirc	\bigcirc	S146316 S142353	1	\bigcirc	\bigcirc	\bigcirc
16088		0	1	0	0	1．15\％	0	1	${ }_{6}^{1754}$	1	\bigcirc	0	514335 $\$ 17509$	1	\bigcirc	0	\bigcirc
16089	0	0	1	0	0	1．14\％	－	1	${ }^{4356}$	1	0	0	${ }_{5}^{52321}$	1	\bigcirc	0	0
16990 16091	0	0	1	0	0	1．11\％		1	23087	0	0	0	\＄298365	1	0	0	0
16091 16992	0	0	${ }_{1}^{1}$	0	0	1.32% 1.18% 1	\bigcirc	${ }_{1}^{1}$	10890 5227	1	\bigcirc	\bigcirc	5188959 $\$ 56793$	1	\bigcirc	\bigcirc	${ }_{0}$
16993		0	1	0	0	1．18\％	0	1	4356	1	0		\＄57240	1	0	0	0
16094	0	0	1	0	0	${ }^{1.14 \%}$	0	1	6534 12323	1	0	0	\＄57464	1	\bigcirc	0	0
16095 16096	0	0	1	0	0	${ }^{1.1 .12 \%}$	0	1	12632 4792	0	1	0	$\underset{\substack{\text { S1452042 } \\ \$ 5924}}{5}$	1	0	0	\bigcirc
16097	0	0	1	0	0	${ }^{1.1 .19 \%}$	0	1	7405	1		0	${ }_{\text {S } 52383}$	1		0	0
16098 16099		\bigcirc	1	\bigcirc	0	1．15\％	\bigcirc	1		1	0	0	\＄64619 $\$ 339460$	1	0	0	
16099 16100	0	\bigcirc	1	0	\bigcirc	${ }^{1.09 \%}$ 1．09\％	\bigcirc	1	7405 5663	${ }_{1}$	0	${ }_{0}^{1}$	$\$ 339460$ $\$ 93591$	1	0	0	\bigcirc
${ }_{1}^{16101}$	1	0	1	0	0	1．15\％	0	1	5665	0		0	\＄ 5325902	1	0	0	
16102 16103 1	0	0	1		0	1．26\％	0	1	10890	0		0	5935795	1			0
16103 16104	\bigcirc	\bigcirc	1	\bigcirc	0	－${ }_{\text {1．1．28\％}}$	\bigcirc	1	6098 6970	1	\bigcirc	0	567079 5206172	1	0	0	0
16105		0	1	0	0	${ }_{\text {1．18\％}}^{1.128 \%}$		1	7881	1	0	0	\＄594708	1	${ }_{0}^{0}$	0	0
16106	0	0	1		0	1．15\％	0	1	${ }^{6970}$	1	0	0	\＄1111566	1	0	\bigcirc	\bigcirc
16107 16108	0	0	1	\bigcirc	0	1．11\％	0	1	11326 563	0		0	S392283 S10 S	1	－	\bigcirc	\bigcirc
16109	0	0	1	\bigcirc	\bigcirc	（1．18\％	0	1	5663 3920	1	0	\bigcirc	S110507 S147095	1	\bigcirc	0	\bigcirc
16110	0	0	1	0	0	1．13\％	0	1	${ }_{5663}$	${ }_{0}$	1	0	\＄569275	1	0	0	0
16111	0	0	1	0	0	1．18\％	0	1	7841 12632	1	，	\bigcirc	\＄136340	1	\bigcirc	\bigcirc	
16112 16113	0	0	1	0	0	2.34% 1.18%	${ }_{0}^{1}$	1	12632 3049	1	0	0	S313176 $\$ 805469$	1	\bigcirc	0	\bigcirc
${ }_{16114}^{16112}$	0	0	1			（1．09\％	0	1	12049 6098	0			5805469 $\$ 208139$	1	0	0	
16115 16116	${ }_{0}^{1}$	\bigcirc	1	\bigcirc	\bigcirc	－ $1.1 .10 \%$	\bigcirc	1	39295 7405	\bigcirc	0	0	S884927 S21302	1	0	\bigcirc	
16116 16117	0	\bigcirc	1	\bigcirc	\bigcirc	1．1．16\％	\bigcirc	1	7405 7841	0	0	0	$\$ 213702$ $\$ 154961$	1	\bigcirc	\bigcirc	0
16118	0	0	1	0	0	0．69\％	0	1	4792	1	0	0	\＄176914	1	0	0	－
16119 16120			1	\bigcirc	0	${ }^{1.10 \%}$	\bigcirc	1	7841 10019	${ }_{0}^{1}$	\bigcirc	0	\＄195 735 $\$ 556012$	1	O	\bigcirc	

observation	PROPERTY DURESS $=1$	LT＿－90\％	LTV 81\％ 100%	LTv 70\％－78\％	$\begin{aligned} & \text { LTV below } \\ & \text { 70\% } \end{aligned}$	total tax burden	parcel in SCEIP $=1$	conventional LOAN $=1$	Lorstze	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	$\begin{aligned} & \text { SOLD DURING } \\ & \text { 2004_2007 } \end{aligned}$	Sold 2008－2012	PRICE ADJUSt．TO 2012	ZIP CODE 295403	ZIP CODE 95404	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
16121	0	0	1	0	\％	1．12\％		1	9148	－	－	0	\＄159617	1	－		
16122	0	0	1	0	0	1．15\％	0	1	2178	0	。	1	5311388	1	0	0	0
16123	0	0	1	0	0	1．18\％	0	1	7405	1	。	0	\＄225471	1	0	0	0
16124	0	0	1	0	0	1．18\％	0	1	6098	0	0	0	5344855	1	0	0	0
16125	0	0	1	0	0	1．15\％	0	1	4356	0	0	0	\＄379 399	1	0	0	0
16126	0	0	1	0	0	1．15\％	0	1	5227	0	0	0	5359592	1	0	0	0
16127	0	0	1	0	0	1．10\％	0	1	10454	0	0	1	5357560	1	0	0	0
16128	0	0	1	0	0	1．33\％	0	1	7545	0	0	0	5495687	1	0	0	0
16129	0	0	1	0		1．19\％	0	1	13939	0	0	0	\＄454242	1	0	0	0
16130	0	0	1	0	0	1．36\％	0	1	5227	0	0	0	${ }_{5505947}$	1	0	0	0
${ }^{16131}$	0	0	1		0	1．16\％	0	1	7841	0	1	0	\＄720443	1	0	0	0
16132	0	0	1	0		1．09\％		1	5663	0	0	1	\＄261500	1	0	0	0
116133	0	－	1	0	0	1．18\％	0	1	8276	0	1	0	\＄689369	1	0	0	0
16134	0	0	1	0		1．12\％	0	1	27878	0	1	0	\＄1386536	1	0	0	0
16135	0	0	1	0	0	1．15\％	0	1	6098	0	1	0	5788377	1	0	0	0
116136	0	0	1		0	1．11\％	0	1	12197	0	1	0	\＄813538	1	0	0	0
16137	0	0	1	0	0	1．09\％	0	1	6534	0	1	0	S706185 $\$ 1263733$	1	0	0	0
16138	0	0	1	0	0	1．26\％	0	1	$\begin{array}{r}7841 \\ 183 \\ \hline\end{array}$	0	1	0	\＄1263733	1	0	0	0
16139	0	0	1	0	0	1．38\％	0	1	1307 52727	0	1	0	\＄7124919	1	0	0	0
16140	0	0	1		0	1．15\％	0	1	5227		1	0	\＄126918	1	0	0	0
16141	0	0	1	0	0	${ }^{1.25 \%}$	0	1	8712 8276	0	1	0	S990 383 $\$ 773253$	1	0	0	0
16142	0	－	1		－	1．10\％	0	1	8276 3920	\bigcirc	\bigcirc	\bigcirc	\＄773253	1	${ }_{0}$	0	${ }_{0}$
16143 16144	\bigcirc	${ }_{1}$	${ }_{0}^{1}$	\bigcirc	\bigcirc	${ }^{1.1 .15 \%}$	\bigcirc	${ }_{1}^{1}$	3920 6098	\bigcirc	\bigcirc	\bigcirc	${ }_{\text {S }}^{\text {S41402076 }}$	${ }_{1}^{1}$	\bigcirc	\bigcirc	$\stackrel{0}{0}$
16145	0	1	0	0	0	1．14\％	0	1	33106	0	0	1	\＄516213	1	0	0	0
16146	0	1	－	0		1．16\％	0	1	6970	1	0	0	\＄39113	1	0	0	0
16147	0	1	0	0		1．09\％	0	1	6534	0	0	0	S101984	1	0	0	0
16148	0	1	0		0	1．11\％	1	1	24829	1	0	0	\＄165622	1	0	0	0
16149 16150	\bigcirc	1	0	0	${ }_{0}$	1．60\％	${ }_{0}^{1}$	1	8494 22400	${ }_{0}$	${ }_{0}$	1	S304343 S240985	1	${ }_{0}$	0	${ }_{0}$
16151		1	0		0	1．10\％	0	1	6888	0	0		\＄423226	1	0	0	－
16152	0	1	0	0	0	1．10\％	0	1	7841	0	0	0	\＄261912	1	0	0	0
16153	0	1	0	0	0	1．10\％	0	1	7841	0	0	0	${ }_{5883565}$	1	0	0	0
1164	0	1	0	0	0	1．10\％	0	1	12197	0	1	－	5897408 $\$ 2363$	1	0	0	0
${ }^{16155}$	0	1	0	0	0	${ }_{\text {1．17\％}}^{1.17}$	0	1	38768 705	1	0	－	－	1	0	0	0
16156	0	1	0	0	0	1．12\％	0	1	7405	0	0	0	5332351	1	0	0	0
16157 16158	\bigcirc	1	0	0	${ }_{0}$	－ 1.09%	${ }_{0}$	1	5663 10019	${ }_{1}$	${ }_{0}^{1}$	${ }_{0}$	S951414 S146029	1	${ }_{0}$	0	0
16159	0	1	0	0	0	1．12\％	0	1	6555	0	0	1	\＄362871	1	。	。	－
16160	0	1	0	0	0	1．09\％	0	1	6970	0	1	0	5731240	1	0	0	0
16161	0	1	0	0	0	1．10\％	0	1	9583	1	0	0	\＄75999	1	0	0	0
16162	－	1	0	0	0	1．10\％	－	1	6384	0	0	－	\＄316005	1	0	0	0
16163	0	1	0	0	0	1．16\％	0	1	17016	0	0	0	\＄570714	1	0	0	0
16164 16165	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	（1．13\％	\bigcirc	1	19166 14375	\bigcirc	${ }_{1}$	0		${ }_{1}^{1}$	\bigcirc	\bigcirc	${ }_{0}$
16166	0	1		0	0	1．13\％	0	1	21344	1	0	0	\＄146316	1	0	0	0
16167	－	1	0	0	0	1．11\％	－	1	23087	0	0	0	\＄518147	1	0	0	0
16168	－	1	0	0	0	1．11\％	0	1	37897	0	0	0	\＄301315	1	0	0	0
16169 16170	${ }_{0}$	1	0	0	${ }_{0}$	1．13\％	${ }_{0}$	${ }_{1}$	38333 14375	${ }_{0}$	${ }_{0}$	${ }_{0}^{1}$	\＄465 5000 $\$ 310557$	${ }_{1}^{1}$	${ }_{0}$	0	${ }_{0}$
16171	0	1	0	0	0	1．15\％	0	1	${ }_{21780}^{147}$	0	1	0	\＄1498105	1	。	0	－
16172	0	1	0	0	0	1．14\％	－	1	23958	0		0	\＄847086	1	0	0	0
16173	1	1	0	0	0	1．12\％	0	1	5663	0	0	0	\＄299374	1	0	0	0
16174	0	1	0	0	0	1．29\％	0	1	9148	0	1	0	5738998	1	0	0	0
16175	1	1	0	0	0	1．13\％	0	1	27878	0	0	0	\＄602776	1	0	0	
16176 16177	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	1	$\begin{array}{r}6098 \\ 7405 \\ \hline\end{array}$	\bigcirc	${ }_{0}^{1}$	0	5678451 S488876	1	\bigcirc	\bigcirc	\bigcirc
16178		，		0	0	1．13\％	0	1	7841	。	1	－	\＄528 380	1	0	0	0
16179	0	1	0	0	0	1．28\％	0	1	10454	0	1	O	${ }_{\text {S1 }} \mathbf{5 1 2 6 9 1 8}$	1	0	0	0
16180	1	1	0	0	0	1．78\％	1	1	${ }^{11326}$	0		0	\＄384004	1	0	0	\bigcirc
16181 16182	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	${ }^{1.10 \%}$	\bigcirc	1	12197 17860	\bigcirc	${ }_{0}^{1}$	\bigcirc	5839096 5480988	${ }_{1}^{1}$	\bigcirc	\bigcirc	\bigcirc
16183		1	0	0	0	1．13\％	0	1	21780	0	1	0	\＄884988	1			0
16184	0	1	0	0	0	1．08\％	0	1	5663	1	0	0	548073	1	0	0	0
16185	0	1	0	0	0	${ }^{1.12 \%}$	0	1	6098	0	0	1	\＄215000	1	0	0	0
${ }^{16186}$	0	1	0	0	0	1．09\％	0	1	6970	0	0	1	\＄257521	1	0	0	0
16187 16188	\bigcirc	1	0	0	0	1．08\％	0	1	6970 7841	${ }_{0}^{1}$	${ }_{0}$	${ }_{1}$	\＄50 085 $\$ 257521$	${ }_{1}^{1}$	${ }_{0}$	${ }_{0}$	0
16189	0	1	。	。	－	1．13\％	0	1	8276	0	1	0	\＄564596	1	0	0	0
16190	0	1	0	0	0	1．29\％	0	1	10816	0	0	0	S634839	1	0	0	0
16191	0	1	0	0	0	1．08\％	0	1	5663 12800	1	0	0	S46955 $\$ 85977$	1	0	0	0
${ }_{1}^{16192}$	0	1	0	0	0	1．11\％	0	1	12800	0	1	0	5839977	1	0	0	0
16193 16194	\bigcirc	1	0	0	0	${ }^{1.13 \% \%} 1$	\bigcirc	1	5663 9000	${ }_{0}^{1}$	\bigcirc	0	\＄103137 $\$ 351165$	${ }_{1}^{1}$	\bigcirc	\bigcirc	\bigcirc
16195	0	1	0	0	0	1．12\％	0	1	36155	0	0		\＄397736	1	0	－	0
16196	0	1	0	0	0	1．13\％	0	1	39600	0	0	0	5887977	1	0	0	0
16197	0	1	0	0	0	1．09\％	0	1	5663	0	0	0	${ }_{\$ 2932122}$	1	0	0	0
16198 16199	0	1	0	0	0	1．09\％	0	1	${ }_{5663}^{5693}$	0	0	1	${ }_{5}^{5234110}$	1	0	0	\bigcirc
16199 16200	\bigcirc	1	0	0	\bigcirc	${ }_{\text {l }}^{1.12 \% \%}$	0	1	6098 6534	\bigcirc	${ }_{1}^{0}$	0	S326902 S63162	1	$\stackrel{0}{0}$	\bigcirc	\bigcirc
16201	0	1		0	0	1．30\％	O	1	6970	0			\＄603353	1	0	0	－
16202		1	0	0	0	1．31\％	0	1	6970	0		1	S479926 $\mathbf{S 6 7 2 1 1}$	1	0	0	0
16203		1	0	0	0	1．09\％	0	1	8276	0	1		S637411 S43051	1	\bigcirc	0	0
16204 16205 1	0	1	0	0	0	1．07\％	0	1	${ }^{6970}$	0	0	0	\＄436051	1	0	0	\bigcirc
16205 16206	\bigcirc	1	\bigcirc	\bigcirc	${ }_{0}$	${ }_{1.123 \%}^{1.11 \%}$	${ }_{0}$	1	772724 192	1	\bigcirc	0	5240904 $\$ 332749$	1	${ }_{0}$	\bigcirc	\bigcirc
16207	0	1	0	0	0	1．15\％	O	1	6970	0	0	1	\＄314699	1		0	0
16208	0	1	0	0	0	1．15\％	0	1	7405	0	1	0	5984362	1	0	0	0
16209	0	1	0	0	0	1．15\％	0	1	8712	0	0	1	\＄357018	1	0	0	0
16210	0	1	0	0	0	1．18\％	0	1	8712	0	0	1	\＄397987	1			0
16211 16212	\bigcirc	${ }_{1}^{1}$	0	\bigcirc	\bigcirc	1．1．16\％	\bigcirc	1	9583 10019	\bigcirc	${ }_{0}^{1}$	0	\＄$\$ 761113$	${ }_{1}^{1}$	\bigcirc	\bigcirc	0
16213	0	1	0	0	0	1．11\％	0	1	29185	1	0	0	\＄206172	1	0	0	0
16214	0	1	0	0	0	1．22\％	0	1	${ }^{33977}$	0	0	0	\＄517595	1	0	－	
16215 16216	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	－ 1.14%	\bigcirc	1	7405 7841	1	${ }_{0}$	0	5108099 $\$ 50533$	1	${ }_{0}$	\bigcirc	\bigcirc
16217	0	1	0	0	0	1．16\％	0	1	7841 8690	1	${ }_{0}$	${ }_{0}$	S50 S50 176	1	0	0	${ }_{0}$
16218	0	1	0	0	0	1．15\％	0	1	9148	1	0		\＄111116	1	0	0	0
16219 16220	0	1	0	0	\bigcirc	1．25\％	\bigcirc	1	¢16117	0	1	1		1	。	0	
16220 16221	\bigcirc	1	0	0	0	1．1．15\％	0	1	8025 8276	0	\bigcirc	${ }_{0}^{1}$	$\$ 301232$ $\$ 237343$	1	${ }_{0}^{0}$	${ }_{0}$	0
16222	0	1	0	0	0	1．18\％	0	1	5663	1	0	0	583813	1		0	
16223	0	1	0	0	0	1．15\％	0	1	5663	0	0	1	\＄279176	1	0		0
16224 16225	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	1．15\％	\bigcirc	1	6098 6098	\bigcirc	\bigcirc	1	S288887 S24042	1	\bigcirc	\bigcirc	
16225 16226	\bigcirc	1	0	0	\bigcirc	1．17\％\％	\bigcirc	1	6098 6534	0	\bigcirc	${ }_{0}^{1}$	\＄240442 $\$ 288764$	1	$\stackrel{0}{0}$	0	\bigcirc
16227	0	1	0	0	0	1．15\％	0	1	7405	0		1	\＄5420288	1	0		0
16228 16229	0	1	0	0	\bigcirc	1．10\％	－	1	7405	0	1	0	\＄252177 $\$ 592670$	1			\bigcirc
16229 1623	0	1	\bigcirc	\bigcirc	\bigcirc	${ }^{1.1 .19 \%}$	\bigcirc	${ }_{1}^{1}$	7841 7841	${ }_{1}$	${ }_{0}^{1}$	0	\＄592670 $\$ 116387$	${ }_{1}^{1}$	\bigcirc	\bigcirc	${ }_{0}$
16231	0	1	0	0	0	1．15\％	1	1	7841	${ }_{0}$	1	0	\＄1163422	1	。	0	0
16232	0	1	0	0	0	1．18\％	0	1	7841	0	，	1	5418210	1	0	0	0
16233	0	1	0	0	0	1．15\％	0	1	8712	0	1	0	\＄675 332	1	0	0	0
116234	0	1	－			1．15\％		1	10454	1		0	\＄59700	1			－
16235 16236	\bigcirc	1	0	0	0	${ }^{1.1 .10 \%}$	0	1	12197 14375	0 1	\bigcirc	0	S449924 S181897	${ }_{1}^{1}$	0	0	0
16237	0	1	0	0	0	1．10\％		1	${ }_{14810}^{14375}$	1	0	\bigcirc	${ }_{\text {S }} 5177622$	1	0	0	${ }_{0}^{0}$
16238	0	1	0	0	0	1．15\％	－	1	${ }_{5}^{5663}$	1	，	0	\＄86606	1	0	0	0
16239 16240	\bigcirc	1	\bigcirc	0	\bigcirc	－ $1.1 .18 \%$	0	1	5663 5633	${ }_{0}^{1}$	0	\bigcirc	\＄88606 S670 959	1	0	0	\bigcirc
16241	\bigcirc	1	0	0	0	1．18\％	${ }_{0}$	1	（ 6098	${ }_{0}$	1	1	${ }_{5304343}$	1	\bigcirc	\bigcirc	$\stackrel{0}{0}$
16242	0	1	0	0	0	1．18\％	0	1	6098	0	0	1	\＄278000	1	0	0	0
16243	0	1	0	0	0	1．1．18\％	0	1	${ }_{6}^{6831}$	0	1		5468113 555829	1	0	0	
16244 16245	0	1	0	0	0	${ }_{\text {1．1．15\％}}$	0	1	6970 7405	0	1	\bigcirc	5655829 $\$ 104198$	1	0	0	0
${ }_{16246}^{1624}$	0	1	0			1．15\％		1	7841	${ }_{0}^{1}$		0	\＄5622304	1	0	0	0
16247	0	1	0	0	0	1．08\％	0	1	9148	1	0	0	\＄129689	1	0	0	0
16248	0	1	0	0	0	1．10\％	0	1	9583	1	0	0	\＄130 354	1	0	0	0
						1．10\％			9632 10019		${ }_{0}^{0}$				0	${ }_{0}$	

observation	PROPERTY DURESS $=1$	LTV_9\%	LTV 81\%.90\%	LTV 70\%-78\%	ltv below 70\%	total tax BURDEN	parcel in SCEIP $=1$	conventional	torstiz	sold PRIOR 2000	SOLD DURING	Solo 2008-2012	PRICE ADJUST. TO 2012	ZIP CODE 295403	ZIP CODE 95404	ZIP CODE 95472	ZIP CODE 94928
16251	S	1	0	0	\%	1.13\%	Sterp-1	-	11761	-	2004-2007	0	\$106835		,	S472	
16252	0	1	0	0	0	1.12\%	0	1	7300	0	1	0	S644 139	1	0	0	0
16253	0	1	0	0	0	1.18\%	0	1	5663	0	。	1	\$294979	1	0	0	0
16254	0	1	0	0	0	1.14\%	0	1	5663	1	0	0	\$113062	1	0	0	0
16255	0	1	0	-	0	1.15\%	0	1	6098	1	0	0	\$109 363	1	0	0	0
16256	0	1	0	0		1.09\%	0	1	7841	1	0	0	\$98894	1	0	0	0
16257	0	1	0	0	0	1.13\%	0	1	8276	0	1	0	5701846	1	0	0	0
16258	0	1	0	0	0	1.09\%	0	1	5663	0	0	0	5310888	,	0	0	0
16259	0	1	0	0	0	1.15\%	-	1	7405	0	0	0	\$242906	1	0	0	0
16260	0	1	0	0	O	${ }^{1.1 .15 \%}$	0	1	6534	0	0	1	5316757 $\$ 9859$	1	0	0	0
${ }_{16261}^{16261}$	0	1	0			${ }^{1.18 \%}$	0	1	9148	1	0	0	\$98899	1	0	0	0
16262	0	1	0		0	1.18\%	0	1	9148	0	0	0	5466332	1	0	0	0
16263	0	1		0	0	1.14\%	0	1	6098	1	0	0	\$74314	1	0	0	
16264	0	1	0	0	0	1.09\%	0	1	6098	0	0	0	\$348310	1	0	0	0
16265 16266 16268	\bigcirc	1	0	0	\bigcirc	- $1.1 .15 \%$	0	1	6970 8712	1	0	0	$\$ 72638$ $\$ 92850$	1	0	0	0
116266	0	1	0	0		${ }_{\text {1.15\% }}$	0	1	8712 1263	1	0	0	592850 $\$ 776535$	1	0	0	0
16267	0	1	0	0	0	${ }^{1.1 .18 \%}$	0	1	12632	0	1	0	\$776635	1	0	0	0
16268	0	1	0	0	0	1.15\%	0	1	4792	0	1	0	5632379	1	0	0	0
16269	0	1	0	0	0	1.09\%	0	1	5663	1	0	0	${ }^{594677}$	1	0	0	0
16270 16271	0	1	0	\bigcirc	\bigcirc	li.1.15\%	0	1	6970 7841	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	588003 5288303	1	\bigcirc	\bigcirc	\bigcirc
16272	0	1	0	0	0	1.15\%	0	1	6098	1	0	\bigcirc	¢108565	1	0	0	0
16273	0	1		0	0	1.18\%	0	1	6970	0	0	0	${ }_{5} 5424880$	1	0	0	0
16274	0	1	0	0	0	1.15\%	0	1	6970	0	0	1	\$520895	1	0	0	0
16275	0	1	0	0	0	${ }^{1.115 \%}$	0	1	7875	0	0	0	\$551476	1	0	0	\bigcirc
16276 1627	0	1	\bigcirc	0	\bigcirc	${ }^{1.1 .5 \%}$	0	1	8276 3920	${ }_{0}^{1}$	\bigcirc	${ }_{1}$	5116949 533360	1	\bigcirc	\bigcirc	0
16278	0	1	0	0	0	1.11\%	0	1	4356	1	0	0	\$109 189	1	0	0	0
16279	0	1	0	0	0	1.15\%	0	1	4485	0	0	0	5423226	1	0	0	0
16280	0	1	0	0	0	1.68\%	1	1	4792	0	0	1	5333607	1	0	0	0
16281	0	1	0	0	0	1.18\%	0	1	4792	0	0	1	\$300651	1	0	0	0
16282 1628	0	1	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	1	4792 6098	\bigcirc	1	\bigcirc	5686250 S709 645	1	\bigcirc	\bigcirc	\bigcirc
16284	0	1	0	0	0	1.18\%	0	1	6534	0	1	0	\$686250	1	0	0	0
16285	0	1	0	0	0	1.31\%	0	1	6534	0	1	0	\$694048	1	0	0	0
16286	0	1	0	0	0	1.36\%	0	1	6534	0	0	1	5390597	1	0	0	0
16287	1	1	0	0	0	1.29\%	0	1	6970	0	0	0	\$389014	1	0	0	0
16288 16289	0	1	\bigcirc	\bigcirc	\bigcirc	1.31% 1.34% 1	\bigcirc	1	7405 7405	${ }_{1}^{0}$	\bigcirc	${ }_{0}^{1}$	$\$ 355000$ S154296	1	\bigcirc	\bigcirc	\bigcirc
16290	0	1	0	0	0	1.32\%	0	1	7405	1	0	-	\$225095	1	0	0	0
16291	0	1	0	0	0	1.30\%	0	1	7405	0	0	0	\$454 818	1	0	0	0
16292	0	1	0	0	0	1.12\%	0	1	7405	0	1	0	\$1065 148	1	0	0	0
16293	0	1	0	0	0	1.18\%	0	1	7841	0	1	0	5670653	1	0	0	0
16294 16295	0	1	\bigcirc	0	\bigcirc	-	\bigcirc	1	7841 7841 781	${ }_{0}^{1}$	\bigcirc	${ }_{0}$	S173150 $\$ 227145$	1	\bigcirc	\bigcirc	0
16296	0	1	0	0	0	1.28\%	0	1	7841	0	0	0	\$369922	1	0	0	0
16297	0	1	0	0	0	1.33\%	0	1	8276	1	0	0	\$127859	1		0	0
16298	0	1	0	0	0	1.29\%	0	1	8300	0	0	1	\$520895	1		0	0
16299	0	1	0	0	0	1.29\%	0	1	10454	0	1	0	\$865 610	1	0	0	0
16300 16301	\bigcirc	1	\bigcirc	\bigcirc	0	1.30% 1.30%	\bigcirc	1	12632 16988	${ }_{1}$	0	${ }_{0}^{0}$	S548084 S185555	1	\bigcirc	\bigcirc	0
16302	-	1	0	0	0	1.15\%	0	1	4356	0	1	-	\$654277	1	0	0	0
16303	0	1	0	0	0	${ }^{1.15 \%}$	0	1	4356	0	0	0	${ }^{5252513}$	1	0	0	0
16304	0	1	0	0	0	1.15\%	0	1	4356	0	1	0	\$1043785	1	-	0	0
16305	0	1	\bigcirc	0	0	1.32\%	0	1	4356	0	0	1	${ }^{5368723}$	1	0	0	0
16306	-	1	0	0	0	1.10\%	0	1	4462	0	0	1	\$397987 583204	1	0	0	0
16307 16308	0	1	0	0	\bigcirc	${ }^{1.12 \%}$	\bigcirc	1	4792 4792	0	0	1	$\$ 433104$ $\$ 362703$	1	${ }_{0}$	\bigcirc	0
16309	0	1	0	0	0	1.09\%	0	1	4792	1	0	0	${ }_{565513}$	1	0		0
16310	0	1	0	0	0	1.15\%	0	1	4792	1	0	0	5121043	1	0	0	0
16311	0	1	0	0	0	1.10\%	0	1	4792	0		0	\$316005	1		0	0
${ }_{16312}^{16312}$	0	1	\bigcirc	\bigcirc	\bigcirc	1.12% 1.18% 1	0	1	4792 4792	\bigcirc	\bigcirc	1	$\$ 306019$ $\$ 345312$	${ }_{1}^{1}$	\bigcirc	\bigcirc	\bigcirc
16314	0	1	0	0	0	1.15\%		1	4792	0	1	\bigcirc	5715883	1	0	0	0
16315	0	1		0	0	1.15\%	0	1	4792	0		0	\$1032700	1		0	0
16316	0	1	0	0	0	1.15\%	0	1	4792	1	0	0	\$134650	1	0	0	0
16317	0	1	0	0	0	1.12\%	0	1	4792	0	1	0	\$1055611	1		0	0
16318	0	1	0	0	0	${ }^{1.12 \%}$	0	1	4792	1	1	-	\$1049986	1	0	0	0
16319 16320	0	1	\bigcirc	0	\bigcirc	1.18\%	0	1	4792 5227	1	0	\bigcirc	S172397 $\$ 169386$	1	\bigcirc	\bigcirc	\bigcirc
16321	0	1	0	0	0	1.18\%	0	1	5227	0	1	-	\$1014226	1	0	0	0
16322	0	1	0	0	0	1.09\%	0	1	5663	-	0	0	\$326902	1	0	0	0
16323	0	1	0	0	0	1.09\%	0	1	5663	0	0	1	\$275000	1	0	0	0
16324 16325	0	1	0	0	\bigcirc	1.15\%	0	1	5663 5663	\bigcirc	${ }_{0}^{1}$	\bigcirc	S6778451 $\$ 442152$	1	\bigcirc	\bigcirc	\bigcirc
16325 16326	0	1	0	\bigcirc	\bigcirc	1.1.15\%	\bigcirc	1	5663 6098	0	\bigcirc	$\stackrel{0}{0}$	S442152 $\$ 120925$	1	\bigcirc	\bigcirc	\bigcirc
16327	0	1	0	0	0	1.18\%	0	1	6098	1	0	0	5144320	1	0	0	0
16328	0	1	0	0	0	1.38\%	0	1	6098	1	0	0	${ }_{5121162}$	1	0	0	0
16329	0	1	0	0	0	1.12\%	0	1	6518	0	0	1	5491631	1	0	0	0
16330	1	1	0	0	0	${ }^{1.18 \%}$	0	1	${ }_{6}^{6534}$	1	1	-	\$1012487	1	0	0	0
16331 16332	0	1	0	0	\bigcirc	1.15% 1.09% 1,	0	1	6534 6534	1	\bigcirc	\bigcirc	S114804 \$126098	1	\bigcirc	\bigcirc	0
16333	0	1	0	0	0	1.26\%	0	1	6534	0	1	0	\$1365 234	1	0	0	0
16334 1635	0	1	0	0	0	${ }^{1.1 .15 \%}$	0	1	6970	0	0	1	S245000 S 956512	1	0	0	0
16335 16336	\bigcirc	1	\bigcirc	\bigcirc	0	(1.09\%	0	1	6970 6970	${ }_{1}$	${ }_{0}^{1}$	\bigcirc		1	\bigcirc	${ }_{0}$	\bigcirc
16337	0	1	0	0	0	1.25\%	0	1	6970	0	0	1	\$702330	1	0	0	
16338	-	1	0	0	0	1.26\%		1	7500	0	0	0	${ }_{\text {S6822 } 291}$	1	0	0	0
16339	0	1	0	0	0	1.25\%	0	1	7964	0	0	0	\$692551	1	0	0	0
16340	0	1	0	0	0	1.16\%	0	1	8106	0	0		\$577 126	1	0	0	0
16341 16342	0	1	\bigcirc	\bigcirc	\bigcirc	${ }^{1.1 .16 \%}$	\bigcirc	1	8276 8712	\bigcirc	${ }_{1}$	\bigcirc	5380296 5747076	1	\bigcirc	\bigcirc	\bigcirc
16343	0	1	0	0	0	1.34\%	0	1	9583	1	0	0	\$176914	1	0		0
16344	0	1	0	0	0	1.31\%	0	1	9583	1	0	0	\$201381	1	0	0	0
16345 16346	0	1	\bigcirc	\bigcirc	0	${ }_{1}^{1.29 \%}$	0	1	9583 10019	${ }_{1}$	${ }_{0}^{1}$	${ }_{0}^{\circ}$	S799546 S18820	${ }_{1}^{1}$	${ }_{0}$	\bigcirc	\bigcirc
16336 1637	0	1	\bigcirc	\bigcirc	${ }_{0}$	$1.12 \% \%$ 1.28% 1	${ }_{0}$	1	${ }_{10782}^{10019}$	1	${ }_{0}$	${ }_{0}$	S188207 S686139	1	${ }_{0}$	0	${ }_{0}$
16348	0	1	0	0	0	1.28\%	0	1	10890	0	0	1	5443210	1	0	0	0
16349	0	1	0	0	0	${ }^{1.111 \%}$	0	1	10890	1	0	0	\$313248	1	0	0	
16350 16351	${ }_{0}$	1	0	0	0	1.25% 1.09%	0	1	19166 3920	1	0	${ }_{0}$	$\$ 306400$ $\$ 178796$	1	${ }_{0}^{0}$	0	\bigcirc
16352	0	1	0	0	0	1.15\%	0	1	4356		。	1	\$374576	1	0		0
16353	0	1	0	0	0	1.18\%	0	1	4792	0	0	0	\$227 145	1	0	0	0
16354 16355	\bigcirc	1	\bigcirc	0	0	1.15\%	\bigcirc	1	5227 5227	1	\bigcirc	1	S150565 $\$ 343064$	1	\bigcirc	\bigcirc	
16355 16356	\bigcirc	1	0	0	0	1.1.15\%	\bigcirc	1	5227 5250	\bigcirc	\bigcirc	1	$\$ 373064$ $\$ 493763$	${ }_{1}^{1}$	\bigcirc	0	\bigcirc
16357	-	1	0	0	0	1.18\%	0	1	5300	,		0	\$505306	1	0	0	
16358 16359	0	1	0	0	0	${ }^{1.118 \%}$	0	1	5663	1	0		S123038 S725	1	0	0	0
16359 16360	0	1	\bigcirc	0	0	(1.15\%	\bigcirc	1	5663 5663	\bigcirc	${ }_{0}^{1}$	0	5775150 $\$ 520770$	${ }_{1}^{1}$	\bigcirc	\bigcirc	\bigcirc
16361	0	1	0	0	0	1.25\%	0	1	5663	0	1	0	\$1307964	1	0	0	0
16362	0	1	0	0	0	1.15\%	-	1	6098	0	0	0	5356946	1	0	0	0
16363 16364	\bigcirc	1	\bigcirc	\bigcirc	0	1.12\%	\bigcirc	1	6098 6098	0	0	0	S431789 $\$ 1271016$	1	\bigcirc	\bigcirc	0
16364 16365	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	(1.27\%	\bigcirc	1	6098 6098	${ }_{1}$	1	${ }_{0}$	¢ $\begin{gathered}\text { \$1271016 } \\ \$ 85190\end{gathered}$	1	\bigcirc	\bigcirc	\bigcirc
16366	0	1	0	0	0	1.15\%	0	1	6098	0	0	1	\$467 050	1	0	0	0
16367	0	1	0	0	0	1.18\%	0	1	6255 6534	1	0	0	\$509 153 $\$ 146316$	1	\bigcirc	\bigcirc	0
16368 16369	0	1	\bigcirc	0	0	- $1.1 .10 \%$	0	1	6534 6534	1	\bigcirc	0	S146316 S240 125	1	0	0	\bigcirc
${ }_{16370}^{1639}$	0	1	0	${ }_{0}^{\circ}$	0	${ }^{1.1 .25 \%}$	0	1	6534 6970	0	0	1	5240125 5788	1	${ }_{0}$	0	${ }_{0}$
16371	0	1		0	0	1.18\%		1	7405		0	1	\$450976	1	0	0	0
16372 16373	0	1	\bigcirc	\bigcirc	\bigcirc	(1.30\%	1	1	7405 7405	\bigcirc	\bigcirc	1	S479926 $\$ 33287$	1	\bigcirc	\bigcirc	0
16373 16374	0	1	\bigcirc	\bigcirc	\bigcirc	1.87% 1.26%	1	1	7805 7841	0	1	\bigcirc	${ }_{\text {S }}^{53328378}$	1	\bigcirc	\bigcirc	\bigcirc
16375	0	1	0		-	1.26\%		1	9583		0	0	\$416278	1	0	0	0
16376 16377	0	1		0		1.12\%		1	10019		,		S190056	1	0	0	0
16377 16378	${ }_{0}^{1}$	1	\bigcirc	0	0	${ }_{\text {1.11\% }}^{1.27 \%}$	0	1	10890 12632	${ }_{0}$	1	\bigcirc	$\$ 1200814$ $\$ 1551860$	1	0	\bigcirc	\bigcirc
16379 16380	0					-		1	13504 16117		0	\bigcirc	\$942639 $\$ 454290$	1			0

observation	PROPERTY DURESS $=1$	LTV＿90\％	LTV 81\％－90\％	LTV 70\％－78\％	$\begin{aligned} & \text { LTV below } \\ & \text { 70\% } \end{aligned}$	total tax burden	parcelin SCEIP $=1$	CONVENTIONAL LOAN＝ 1	Lot SIIE	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	SOLD DURING 2004＿2007	Soto 2008－2012	PRICE ADJUST．TO 2012	$\begin{gathered} \text { ZIP CODE } \\ \text { Z95403 } \end{gathered}$	$\begin{aligned} & \text { ZIP CODE } \\ & 95404 \end{aligned}$	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
16511	－	1	0	0	70\％	1．10\％	Scaror		5663	PRok－2000	${ }^{2004}$	0	\＄305023	25403	9504		${ }_{0}$
16512	0	1	0	0	0	1．29\％	0	1	7405	1	0	0	\＄214555	1	0	0	0
16513	0	1	0	0	0	1．13\％	0	1	6098	0	0	1	5311366	1	0	0	0
16514	0	1	0	0	0	1．10\％	0	1	4792	0	0	0	5442463	1	0	0	0
16515	0	1	0	0	0	1．15\％	0	1	3485	0	1	0	586289	1	0	0	0
16516	0	1	0	0	0	1．18\％	0	1	7841	0	0	0	5391489	1	0		0
16517	0	1	0	0	0	1．13\％		1	12632	0	0	1	5376539	1	0	0	0
16518 16519	0	1	0	0	0	${ }^{1.1 .18 \%}$	0	1	6098 705	0	0	1	\＄588275	1	0	0	0
16519	0	1	0	0	0	1．18\％	0	1	7405	0	0	0	${ }_{5} 5248005$	1	0	0	0
16520	0	1	0	0	0	1．10\％	0	1	5663	0	0	0	5232708	1	0	0	0
16521	0	1	0	0	0	${ }^{1.116 \%}$	0	1	10454	1	0	0	\＄176914	1	0	0	0
16522	0	1	0	0	0	1．13\％	0	1	10454	0	0	1	5351165	1	0	0	0
16523	0	1	0	0	0	1．18\％	0	1	6098	1	0	0	S176914	1	0	0	0
16524 16525	0	1	0	0	0	${ }^{1.09 \%}$	0	0	2178 6970	0	0	1	S181000 S277421	1	0	\bigcirc	0
16525 16526	0	1	0	0	\bigcirc	${ }^{1.12 \%}$	0	0	6970 7841	\bigcirc	0	1	${ }_{\substack{\text { S27 } \\ \$ 300651}}$	1	0	0	${ }_{0}$
16526 16527	${ }_{0}$	1	0	0	${ }_{0}$	1．1．9\％ 1．1．	${ }_{0}$	0	${ }_{4}^{7841}$	1	－	1	¢ 5165622051	1	${ }_{0}$	\bigcirc	${ }_{0}$
16528	0	1	0	0	0	1．15\％	0	1	5663	0	0	1	5334869	1	0	0	0
16529	0	1	。	0	－	${ }^{1.15 \%}$	0	1	${ }^{5} 979$	1	0	${ }_{0}$	${ }_{5161858}$	1	0	0	0
16530	0	1	0	0	0	${ }^{1.18 \%}$	0	1	3049	0	0	0	\＄266970	1	0	0	0
16531	0	1	0	0	0	${ }^{1.1 .15 \%}$	0	1	5227	0	1	0	${ }_{\text {¢ }} 59974747$	1	0	\bigcirc	0
16532	0	1	0	0	\bigcirc	${ }^{1.12 \%}$	0	1	71003 4356	0	0	0		1	0	\bigcirc	0
16533 16534	\bigcirc	1	\bigcirc	${ }_{0}$	\bigcirc	－ $1.1 .18 \%$	0	0	4356 3049	\bigcirc	${ }_{0}$	1	5225754 5368973	1	${ }_{0}$	\bigcirc	${ }_{0}^{\circ}$
16535	0	1	0	0	0	1．15\％	0	1	5663	0	。	${ }_{0}$	\＄215092	1	。	。	－
16536	0	1	0	0	0	1．15\％	0	1	7405	1	0	0	\＄146316	1	0	0	0
16537	0	1	0	0	0	1．14\％	0	0	6098	0	0	1	5343488	1	0	0	0
16538	0	1	0	0	0	1．12\％	0	1	10890	0	1	0	\＄1598007	1	0	0	0
16539 1654	\bigcirc	1	0	0	0	${ }^{1.1 .18 \%}$		1	3485 8876	0	0	1	\＄2771088	1	0	0	0
16540 16541	\bigcirc	1	\bigcirc	\bigcirc	0	${ }^{1.1 .15 \%}$	\bigcirc	1	8276 13939	${ }_{0}^{1}$	0	${ }_{1}$	5165603 S819386	1	\bigcirc	\bigcirc	\bigcirc
16542	0	1	0	0	0	1．18\％		1	6970	0	0	0	\＄310 557	1	0	。	0
16543	0	1	0	0	0	1．19\％	0	1	14375	1	0	0	\＄101983	1	0	0	0
16544	1	1	0	0	0	1．09\％	0	1	21346	0	1	0	\＄1415606	1	0	0	0
16545 16546	0	1	0	0	0	1．116\％	0	1	8712	0	0	1	\＄4459880	1	0	0	\bigcirc
16546 16547	\bigcirc	1	0	\bigcirc	\bigcirc	${ }^{1.1 .15 \%}$	$\stackrel{0}{0}$	0	3920 6098	1	0	${ }_{0}$		1	\bigcirc	0	\bigcirc
${ }_{16548}^{16547}$	0	1	0	0	0	1．18\％	－	1	${ }_{4}^{6356}$	${ }_{0}$	0	0	\＄208603	1	0	0	0
16549	0	1	0	\bigcirc	0	1．11\％	0	0	${ }^{11761}$	0	0	1	$\$ 479967$ 50309	1	\bigcirc	0	0
16550	－	1	0	0	0	1．09\％	0	0	7405	1	0	0	$\begin{array}{r}550309 \\ \$ 240985 \\ \hline\end{array}$	1	0	\bigcirc	0
16551 16552	\bigcirc	1	${ }_{0}$	\bigcirc	0	${ }^{1.1 .15 \%}$	${ }_{0}$	${ }_{1}$	6970 3049	0	${ }_{1}^{0}$	${ }_{0}^{1}$	\＄240985 $\$ 771292$	${ }_{1}^{1}$	0	0	0
16553	0	1	0	0		1．18\％	－	1	4792	0	0	0	\＄385732	1	0	0	0
16554	0	1	0	0	0	1．22\％	0		29621	0	0	1	\＄638223	1	0	0	0
16555 16556	${ }_{0}$	1	0	${ }_{0}$	${ }_{0}$	－	${ }_{0}$	${ }_{0}^{1}$	5227 5663	${ }_{0}$	0	1	\＄351165 $\$ 213295$	1	0	0	${ }_{0}$
16557	0	1	0		O	1．10\％	0	1	5227	0	0	1	\＄520895	1	0	－	0
16558		1	0	0		1．12\％	0	0	7841	0	0	1	\＄464263	1	0	0	0
16559	0	1	0	0	0	1．12\％	0	0	6970	1	0	0	\＄111732	1	0	0	0
16560	0	1	0	0	0	${ }^{1.15 \%}$	0	1	4792	0	0	0	\＄238734	1	0	0	0
${ }_{16562}^{1651}$	${ }_{0}$	1	0	${ }_{0}$	${ }_{0}$	${ }_{\substack{1.15 \% \\ 1.17 \%}}^{1.1}$	0	1	5227 6534	\bigcirc	0	${ }_{1}$	\＄388034 $\$ 245000$	1	0	0	${ }_{0}$
16563		1	。		O	1．15\％	0	0	8800	0	0	1	\＄301232	1		。	0
16564	0	1	0	0	0	1．18\％	0	1	6098	0	0	0	5393087	1	0	0	0
16565	0	1	0	0	0	${ }^{1.15 \%}$	0	1	6970 5663	\bigcirc	\bigcirc	${ }_{1}$	$\$ 233171$ $\$ 300275$	1	0	0	\bigcirc
16566 16567	\bigcirc	1	0	0	\bigcirc	${ }_{\text {1．1．15\％}}^{1.15}$	${ }_{0}$	${ }_{1}^{1}$	5663 7841	\bigcirc	0	1	\＄300275 $\$ 41546$	1	0	\bigcirc	${ }_{0}$
16568	0	1	0	0	0	1．13\％	0	1	11761	0		${ }_{0}$	\＄489361	1	。	。	0
16569	0	1	0		0	1．09\％	0	1	${ }_{2}^{2178}$	0	0	0	\＄318185	1	0	0	0
16570	0	1	0	0	0	1．26\％	0	1	5227	0	0	0	5358797	1	－	0	0
16571	0	1	0	0	0	${ }^{1.10 \%}$	0	1	11326 6534	0	\bigcirc	\bigcirc	S239 198 $\$ 84022$	1	0	\bigcirc	\bigcirc
16572 16573	0	1	$\stackrel{0}{0}$	\bigcirc	\bigcirc	－${ }_{\text {1．25\％}}^{1.48 \%}$	\bigcirc	${ }_{0}^{1}$	6534 13068	1 0	$\stackrel{0}{0}$	${ }_{1}$	¢ ${ }_{\substack{\text { S84022 } \\ 56205}}$	1	$\stackrel{0}{0}$	\bigcirc	\bigcirc
16574	0	1	0	0	0	${ }^{1.09 \%}$	0	0	7841	0	0	1	5225488	1	0		0
16575	0	1	0	0	0	1．15\％	0	1	${ }_{6}^{6098}$	0	0	0	\＄357309	1	－		－
16576 16577	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	1．1．5\％	\bigcirc	1	8276 3485	\bigcirc	${ }_{0}^{1}$	${ }_{1}$	5717443 5409693	1	0	\bigcirc	\bigcirc
16578		1	。	0		1．13\％	。	1	9583	0	1	${ }_{0}$	\＄741410	1	0	－	\bigcirc
16579	0	1	0	0	0	1．15\％	0	0	5663	0	0	1	5503337	1	0	0	0
16580 16581	0	1	0		\bigcirc	${ }^{1.32 \%}$	0	0	$\begin{array}{r}7841 \\ \hline 1236\end{array}$	0	0	1	S457419 $\mathbf{S 6 7 3 4 9}$	1	0	0	\bigcirc
16581 16582	\bigcirc	1	0	\bigcirc	\bigcirc	${ }^{1.12 \%}$	$\stackrel{0}{0}$	${ }_{1}^{0}$	11326 7841	${ }_{1}^{0}$	0	${ }_{0}^{1}$	S603 449 $\$ 159617$	${ }_{1}^{1}$	$\stackrel{0}{0}$	$\stackrel{0}{0}$	\bigcirc
${ }_{16583}^{1682}$	0	1	0	0	0	${ }_{1} 1.12 \%$	0	1	7841	0	1	0	\＄1087486	1	0	－	0
16584	\bigcirc	1	0	0	0	${ }^{1.112 \%}$	0	1	10900	0	0	0	S525826 $\$ 35901$	1	0	0	0
16585 16586	0	1	0	0	\bigcirc	1．1．8\％	${ }_{0}$	1	3920 6098	${ }_{1}$	0	${ }_{0}$	S305901 S115 100	1	0	\bigcirc	\bigcirc
16587	0	1	0	0	0	1．09\％	0	1	4792	${ }_{0}$	－		S401000	1	0	－	0
16588	0	1	0	0	0	1．33\％	0	1	7405	1	0	0	\＄156292	1	0	0	0
16589	1	1	0	0	0	${ }^{1.09 \%}$	0	1	5229 5663	1	\bigcirc	0	$\begin{array}{r}592343 \\ \$ 32202 \\ \hline\end{array}$	1	0	0	0
16590 16591	0	1	\bigcirc	0	\bigcirc	－${ }_{\text {1．09\％}}$	$\stackrel{0}{0}$	${ }_{1}^{1}$	5663 8276	0	0	${ }_{1}^{0}$	S322 402 $\$ 161600$	1	0	\bigcirc	0
16592	0	1	0		0	1．09\％	0	1	6098	1	0	0	\＄129356	1		0	0
16593 1594	\bigcirc	1	0	0	0	1．18\％	0	1	${ }^{3920}$	，	0	－	\＄1771500	1	0	0	0
16594 16595	\bigcirc	1	\bigcirc	0	\bigcirc	${ }_{\text {1．15\％}}^{1.37 \%}$	\bigcirc	1	4336 8276	${ }_{1}^{1}$	${ }_{0}^{0}$	0	S316005 S116387	1	\bigcirc	${ }_{0}$	\bigcirc
16596		1	0	。	0	1．41\％	0	1	4792	1	0	0	\＄130 021	1	。	。	0
16597		1	0	0	0	1．10\％	0	，	4356	1	－	－	\＄161105	1	0	0	0
16598 16599	0	1	0	0	0	${ }^{1.1 .15 \%}$	0	1	6534 8712	1	0	0	S17291 $\mathbf{S 1 7 2 9 2 9}$	1	0	0	\bigcirc
16599 16600	\bigcirc	1	\bigcirc	0	\bigcirc	${ }^{1.15 \%}$ 1．9\％\％	\bigcirc	1	8712 6098	${ }_{0}^{1}$	\bigcirc	0	\＄1778922 $\$ 339978$	1	\bigcirc	0	\bigcirc
16601	0	1	0		0	1．18\％	0	1	4792	1	0	0	\＄105 081	1	0	0	0
16602	0	1	0	0	0	1．09\％	0	1	${ }_{5}^{5663}$	0	－	－	\＄152975 $\$ 152966$	1	\bigcirc	0	0
16603 16604	0	1	0	\bigcirc	0	1．30\％	\bigcirc	1	7480 6098	${ }_{0}^{1}$	0	${ }_{1}$	$\$ 152966$ $\$ 496899$	1	\bigcirc	0	\bigcirc
16604 16605	\bigcirc	1	0	0	\bigcirc	${ }^{1.25 \%}$	\bigcirc	1	6098 6970	1	${ }_{0}$	1	5496899 $\$ 27405$	1	\bigcirc	\bigcirc	${ }_{0}$
16606	0	1	0	0	0	${ }_{1.13 \%}$	0	1	16988	0	0		\＄522500	1	0	0	0
16607 16608		1		\bigcirc	0	1．10\％	\bigcirc	1	6970 4356	0	\bigcirc	0	5436051 $\$ 362703$	1	0	\bigcirc	
16608 16609	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	${ }^{1.1 .10 \%}$	\bigcirc	1	4336 7405	\bigcirc	\bigcirc	0	\＄3627 $\$ 385732$	1	\bigcirc	\bigcirc	0
16610	0	1	0	0	0	1．46\％	1	1	6534	0		0	\＄506588	1	0	0	0
16.11	\bigcirc	1	0	0	0	1．15\％	0	1	$\begin{array}{r}6098 \\ \hline 2951\end{array}$	0	－	1	S422002 $\$ 837809$	1	0	0	
16612 16613	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	1．11\％	\bigcirc	${ }_{1}$	22651 7811 829	0	\bigcirc	1	5387809 5483815	1	\bigcirc	\bigcirc	\bigcirc
16613 16614	0	1		0	\bigcirc	${ }^{1.129 \%}$	${ }_{0}$	1	7841 5227	${ }_{1}$	${ }_{0}$	0	（109 515	1	${ }_{0}^{\circ}$	${ }_{0}^{0}$	\bigcirc
16615	0	1	0	－	0	1．15\％	－	1	5663		1	－	\＄1097360	1	0		0
${ }_{16616}^{1617}$	0	1	0	0	0	1．35\％	0	1	8276	0	0	0	\＄513 001	，	0	0	0
16617 16618	\bigcirc	1	0	0	\bigcirc	1．1．8\％	${ }_{0}$	1	4792 4356	${ }_{1}$	0	0	\＄246732	1	\bigcirc	${ }_{0}$	${ }_{0}$
16619	0	1	0	0	0	1．37\％	0	1	16117	1	0	0	\＄325974	1	0		0
16620	0	1	0	0	0	1．36\％	0	1	1831	0	0	1		1	0		0
16621 16622	0	1	0	0	0	－ 1.33%	\bigcirc	1	6970 6534	1	0	0	S176244 $\$ 89785$	1	\bigcirc	${ }_{0}$	${ }_{0}$
${ }_{16623}^{1622}$	0	1	0	0	0	${ }^{1.13 \%}$	${ }_{0}$	1	${ }_{3}^{6534}$	1	0	0	\＄89785 $\$ 261067$	1	0	${ }_{0}$	${ }_{0}$
16624	0	1	0	0	0	1．18\％	0	1	8712	0	0		${ }_{5374217}$	1	0	0	0
16625	1	1	0	0	\bigcirc	1．12\％	0	1	6968 8276	0	0	0	5362703 5297647	1	0	0	
16626 16627	0	1	0	0	\bigcirc	${ }^{1.1 .15 \%}$	0	1	8276 7841	0	0	0	${ }_{\substack{\text { S297 } \\ \$ 647 \\ \$ 651}}$	1	0	\bigcirc	\bigcirc
16628	0	1	0	0	0	1．18\％	0	1	6098	0	0	1	\＄397987	1	0	0	0
16629 1663	0	1	\bigcirc	\bigcirc	－	－	\bigcirc	1	3485 10454	0	${ }_{1}$	1	5195801 $\$ 62383$	1	0	\bigcirc	\bigcirc
16631	0	1	0	0	0	1．32\％		1	16094 6098		${ }_{0}$	1	¢443210	1	\bigcirc	\bigcirc	${ }_{0}$
16632		1	0	0	0	${ }^{1.18 \%}$	0	1	${ }_{5}^{6098}$	1	0	0	S142990 $\$ 525954$	1	\bigcirc	\bigcirc	0
16633 1634	\bigcirc	1	0	0	\bigcirc	1．15\％	0	1	5000 9	0	0	1	S529954 $\$ 55337$	1	0	0	0
16634 16635	0	1	\bigcirc	\bigcirc	\bigcirc	－${ }_{\text {1．18\％}}^{1.18 \%}$	\bigcirc	1	91488 7405	\bigcirc	0	1	\＄503337 $\$ 397222$	1	\bigcirc	\bigcirc	0
16636	0	1	0	0	－	1．15\％		1	5663	0	1	0	${ }_{5897840}$	1	0	0	
16637 1663	\bigcirc	1	0		\bigcirc	1．15\％	0	1	6000 5653	0	0	1	\＄245000	1	0	\bigcirc	0
16638 16639 16640	0	1	0 0 0	0	0	（1．1．15\％ $\begin{aligned} & 1.18 \% \\ & 1.12 \%\end{aligned}$	0	1	5663 5663 4992	0	0	1	S269000 S31274 S30 171	1	\bigcirc	－	0

observation	PROPERTY DURESS $=1$	LT＿－90\％	LTV 81\％－90\％	LTv 70\％－78\％	LTV below	total tax burden	parcel in SCEIP $=1$	CONVENTIONAL LOAN＝ 1	Lorstze	$\begin{aligned} & \text { SOLD } \\ & \text { PRIOR_2000 } \end{aligned}$	$\begin{gathered} \text { SOLD DURING } \\ 2004 _2007 \end{gathered}$	Sold 2008－2012	PRICE ADJUSt．to 2012	ZIP CODE 295403	ZIP CODE 95404	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
16771	0	1	0	0	\％	1．18\％		1	5252	－	－	0	\＄451441	1	－	，	0
16772	0	1	0	0	0	1．32\％	0	1	5663	0	0	1	\＄32000	1	0	0	0
16773	0	1	0	0	0	1．10\％	0	1	5663	0	1	0	\＄726801	1	0	0	0
16774	0	1	0	0	－	1．15\％	0	1	5663	1	0	0	\＄154629	1	0	0	0
16775	0	1			0	1．15\％	0	1	6098	0	0	1	5354338	1	0	0	0
16776	0	1	0	0	0	1．12\％	0	1	6098	0	0	0	5487351	1	0	0	0
16777	0	1	0	0		1．15\％	0	1	6098	0	0	0	5326902	1	0	0	0
16778	0	1	0	0	0	1．09\％	0	1	6098	1	0	0	\＄128359	1	0	0	0
16779	0	1	0	0	0	1．12\％	0	1	6098	1	0	0	\＄141660	1	0	0	0
16780	0	1	0		0	1．15\％	0	1	6534		0	0	\＄154329	1	0	0	0
16781	0	1	0	0	0	1．16\％		1	6534	0	0	1	5301232	1	0	0	0
16782	0	1	0	0	0	1．10\％		1	${ }_{11326}$	1	0	0	\＄217567	1	0	0	0
16783	0	1	0	0	0	${ }^{1.12 \%}$	0	1	14375	0	1	0	\＄1745799	1	0	0	0
16784	0	1	0	0	0	1．24\％	0	1	33977	0	0	0	\＄659774	1	0	0	0
16785	0	1	0	0	0	1．09\％	0	1	3920	1	0	0	5118715	1	0	0	0
16786	0	1	0		0	1．18\％	0	1	3920	0	0	0	\＄254959	1	0	0	0
16787	0	1	0	0	0	1．14\％	0	0	4356	0	0	1	${ }^{5246963}$	1	0	0	0
16788 1679	0	1	0	0	0	1．40\％	0	1	4356	0	0	1		1	0	0	0
16789	0	1	0	0		1．33\％	O	1	${ }_{5}^{4792}$		1	0	\＄779829	1	0	0	0
16790 16791	0	1	\bigcirc	0	\bigcirc	1．15\％	\bigcirc	1	5227 5634	\bigcirc	\bigcirc	\bigcirc	5293898 S550 194	1	\bigcirc	\bigcirc	\bigcirc
16792	0	1	0	0		1．12\％	0	1	7405	0	0	0	\＄321454	1	0	0	－
16793	0	1	0	0	0	1．03\％	0	1	9583	0	0	0	5288764	1	0	0	0
16794	0	1	0	0	0	1．24\％	0	1	10019	0	1	0	\＄1348607	1	0	0	0
16795	0	1	0	0	0	1．10\％	0	1	6098	0	0	1	\＄300000	1	0	0	0
16796	0	1	0	0	0	1．18\％		1	7204	0	1	0	\＄873409	1	0	0	0
16797	0	1	0	0		1．18\％	0	1	7405	0	0	0	5529032	1	0	0	0
16798	0	1	0	0	0	1．24\％	0	1	7405	0	0	0	\＄528492	1	0	0	0
16799 16880	\bigcirc	1	0	0	${ }_{0}$	1．1．18\％	0	1	10454 3049	${ }_{0}$	0	1	S287408 S209000	1	0	0	${ }_{0}$
16801		1	0	0	0	1．14\％	0	1	3920	0	0	1	\＄263374	1	0	0	。
16802	0	1	0	0	0	1．09\％	0	1	5227	0	0	0	5318185	1	0	0	0
16803	0	1	0	0	0	1．18\％	0	1	5663	0	0	0	${ }_{\text {S406 } 457}$	1	0	0	0
16804	0	1	0	0	0	1．18\％	0	1	5663	0	0	0	\＄523261	1	0	0	0
16805	－	1	0	0	0	1．18\％	0	1	${ }_{5}^{5663}$	0	0	1		1	0	0	
16806 16807	\bigcirc	1	0	0	0	1．1．18\％	\bigcirc	1	6098 6534	\bigcirc	${ }_{0}$	1	S424132 S225924	1	0	0	\bigcirc
16888	0	1	0	0	0	1．15\％	0	1	7405	1	0	0	\＄185948	1	0	0	0
16809	0	1	0	0	0	1．15\％	0	1	7405	1	0	0	$\$_{149641}$	1	0	0	0
116810 16811	1	1	\bigcirc	0	0	1．18\％	0	1	${ }^{6098}$	0	0	0	S339978 $\$ 993737$	1	\bigcirc	0	0
16811 16812	${ }_{0}^{1}$	1	0	0	${ }_{0}$	1．1．15\％	${ }_{0}$	1	6098 6970	${ }_{0}$	${ }_{0}^{1}$	\bigcirc	5993737 $\$ 43587$	${ }_{1}^{1}$	${ }_{0}$	0	0
16813		1	0	0	0	1．15\％	0	1	7841	1	0		\＄132349	1	0	0	0
16814	0	1	0	0	0	1．15\％	0	1	4356	0	0	0	\＄524544	1	0	0	0
16815 16816	\bigcirc	1	0	0	0	1．15\％	0	1	6098 6180	0	0	1	$\begin{array}{r}\text { S } 567717 \\ \$ 66049 \\ \hline\end{array}$	1	\bigcirc	0	0
16816 16817	\bigcirc	1	0	0	\bigcirc	（1．18\％	0	1	6180 6970	\bigcirc	${ }_{1}^{0}$	\bigcirc	$\$ 660489$ $\$ 1265474$	${ }_{1}^{1}$	${ }_{0}^{0}$	0	0
16818	0	1	0	0	0	1．18\％	0	1	2614	0	0	1	\＄321589	1	0	0	
16819	0	1	0	0	0	1．15\％	0	1	2887	0	0	0	\＄442 463	1	0	0	
16820 16821	0	1	\bigcirc	\bigcirc	\bigcirc	${ }_{\text {1．1．5\％}}^{1.15 \%}$	\bigcirc	1	3559 3920 3920	\bigcirc	1	0	$\$ 779829$ 678451	${ }_{1}^{1}$	\bigcirc	\bigcirc	\bigcirc
16822	0	1	0	0	0	1．18\％	0	1	5227	0	1	0	\＄1108444	1	0	0	0
16823	0	1	0	0	0	1．15\％	0	1	2614	1		0	\＄167 127	1	0	0	－
16824			0	0	0	1．18\％	0	1	2766	0	0		\＄4296388	1	0	0	0
16825	0		0	0	0	1．15\％	0	1	3485	0	1	0	\＄723682	1	0	0	0
16826 16827	\bigcirc	1	\bigcirc	0	\bigcirc	（1．14\％	\bigcirc	1	3920 3920 3920	0	0	0	$\$ 180789$ $\$ 337799$	1	\bigcirc	\bigcirc	\bigcirc
16828	－	1	－	0	0	1．18\％	0	1	3920	。	0	1	\＄321328	1	。	0	0
16829	0	1	0	0	0	1．12\％	0	1	12197	0	1	0	\＄117479	1	0	0	
16830		1	0	0	0	1．18\％	0	1	${ }^{4631}$	0	0	0	\＄4924881	1	0	0	0
16831	0	1	0	0	0	1．34\％	0	1	1742	0	0	0	${ }_{5338523}$	1	0	0	0
16832	0	1	0	0	0	1．15\％	0	1	3485	0	0	1	\＄235000	1	0	0	0
16833 16834 1	0	1	0	0	0	1．15\％	0	1	3920 4356	0	\bigcirc	0	\＄5245688	1	0	0	0
16834 16835	0	1	\bigcirc	0	0	－${ }_{\text {1．1．15\％}}^{1.09 \%}$	\bigcirc	1	4356 4356	0	。	0	5343247 S497 484	${ }_{1}^{1}$	\bigcirc	\bigcirc	\bigcirc
16836	0	1	0	0	0	1．15\％	0	1	3920	0	0	1	\＄413204	1	0	0	0
16837	0	1	0	0	0	1．39\％	0	1	2178	0	0	0	\＄323554	1	0	0	0
16838 16839	0	1	0	0	\bigcirc	（1．15\％	0	1	3999 5663	0	0	0	S473243 $\$ 62273$	1	0	0	\bigcirc
16839 16840	0	1	0	0	0	${ }_{\text {1．15\％}}^{1.28 \%}$	0	1	3485	0		1	5622733 $\$ 24000$	1	0	0	\bigcirc
${ }_{16841}^{16842}$	1	1	0	0	0	1．09\％	0	1	3935	0	0	\bigcirc	${ }_{5}^{5461701}$	1	－	0	0
${ }^{16842}$	0	1	0	0	0	${ }^{1.1 .18 \%}$	0	1	4356 12197	0	0	1		1	0	－	\bigcirc
16843 16844	\bigcirc	1	0	0	0	${ }^{1.11 \%}$	0	1	12197 2178	${ }_{0}$	${ }_{0}^{1}$	0	\＄998 181 $\$ 820932$	${ }_{1}^{1}$	\bigcirc	0	\bigcirc
16845	0	1	0	0	0	1．12\％	0	1	57064	0	0	0	\＄972965	1	0	0	0
16846	0	1	0	0	0	1．18\％	0	1	3485	0		0	S222526	1	0	0	0
16847	0	1	0	0	0	1．15\％	0	1	3318	0	0	0	\＄493647	1	0	\bigcirc	0
16848 16849	0	1	0	0	0	－ 1.24%	0	1	8276 5227	0	0	0		1	\bigcirc	\bigcirc	\bigcirc
16849 16850	\bigcirc	1	0	0	\bigcirc	1．1．17\％	\bigcirc	${ }_{0}^{1}$	5227 4792	0	0	1	S477201 $\$ 277007$	1	\bigcirc	0	${ }_{0}^{0}$
16851	0	1	0	0	0	1．15\％	0	1	4792	0	0	0	\＄423729	1		0	
16852		1	0	0	0	1．18\％	0	1	3049	1	0	0	\＄152 618	1	0	0	0
16853 16854 188	0	1	0	\bigcirc	0	1．1．16\％	0	1	16117 4500	1	\bigcirc	0	$\$ 148101$ $\$ 389970$	1	0	\bigcirc	
16854 16855	0	1	0	0	0	1．32\％	0	0	${ }^{4} 500$	0	0	1	\＄348970	1	0	0	\bigcirc
16855 16856	1	1	\bigcirc	\bigcirc	${ }_{0}$	${ }^{1.1 .18 \%}$	${ }_{0}$	1	10019 6970	${ }_{0}$	1	${ }_{0}^{0}$	S241802 $\$ 88821$	1	${ }_{0}$	\bigcirc	\bigcirc
16857		1	0	0	0	1．09\％	0	1	10019	0	0	0	\＄214165	1	0	0	
16858		1	0	0	0	1．18\％	0	1	4792	0	0	0	\＄292230	1	0	0	0
16859	1	1	0	0	0	1．09\％	0	1	7405	1	0	0	\＄113062	1		0	0
16860 16861	0	1	0	0	0	1．31\％	0	1	${ }^{4356}$	0	0	0	\＄408628	1	0	0	0
16861 16862	\bigcirc	1	0	\bigcirc	\bigcirc	1．18\％	\bigcirc	0	5663 10019	0	0	1	\＄258500 S246006	${ }_{1}^{1}$	${ }_{0}$	0	${ }_{0}$
16863		1	0	0	0	1．19\％	0	0	8276	1	0	0	\＄119048	1		0	0
16864	0	1	0	0	0	1．18\％	0	1	3485	0	1	0	5918738	1			
16865 16866	\bigcirc	1	0	0	0	${ }_{\text {1．0．2\％}}^{1.09}$	\bigcirc	1 1	5663 15682	${ }_{0}^{1}$	0	0 1	\＄121375 $\$ 59593$	1	\bigcirc	\bigcirc	\bigcirc
${ }_{16867}^{16867}$	0	1	0	${ }_{0}^{0}$	${ }_{0}$	${ }^{1.125 \%}$	${ }_{0}$	1	15682 6098	${ }_{0}^{\circ}$	1	1	（ 5119999377	1	\bigcirc	0	0
16868	1	1	0	0	0	1．35\％	0	1	5227	0	1	0	5837022	1	0	0	0
16869 16870	0	1	0	0	0	1．14\％	\bigcirc	0	3485 10019	0	0	1	\＄219045	1		0	0
16870 16871	\bigcirc	1	0	0	0	${ }^{1.1 .15 \%}$	0	1	10019 6534	${ }_{0}^{1}$	0	${ }_{1}^{1}$		1	0	0	0
16872	0	1	0	0	0	1．14\％	0	0	2614	1	0	0	\＄119048	1	0	0	0
16873 16874	0	1	0	0	${ }_{0}$	1．1．25\％	${ }_{0}$	0	7841 73616	${ }_{0}$	${ }_{0}$	${ }_{1}^{1}$		${ }_{1}^{1}$	\bigcirc	\bigcirc	\bigcirc
16875	0	1	0	0	0	1．15\％	0	0	6098	0	0	1	\＄331 355	1		0	
16876	0	1	0	0	0	1．16\％	0	0	2178	0	0	1	\＄194796	1	0	0	0
116877	0	1	\bigcirc	0	0	1．15\％	0	1	6970	1	0	0	\＄185948	1	0	0	
16878 16879	0	1	0	0	0	1．13\％	0	0	6840 5663	0	0	1	S184990 $\$ 87789$	1	0	0	0
16879 16880	\bigcirc	1	\bigcirc	${ }_{0}$	${ }_{0}$	1．34\％	\bigcirc	\bigcirc	5663 10890	${ }_{0}^{1}$	${ }_{0}$	${ }_{1}$		1	${ }_{0}$	${ }_{0}$	\bigcirc
16881	0	1	0	0	0	1．33\％	0	1	12035	0	0	${ }_{0}$	\＄846452	1		0	
116882	0	1	0	0	0	${ }^{1.13 \%}$	0	0	9148	0	0	1	\＄321901	1	0	0	0
16883	0		0	0	0	${ }^{1.15 \%}$	0	0	4792	0	0	1	5444809	1	0	－	0
16884 16885	0	1	0	0	0	1．16\％	0	0	7841	0	0	1	\＄397781	1	0	0	
16885 16886	${ }_{0}^{0}$	1	0	0	\bigcirc	－${ }_{\text {1．1．18\％}}^{1.18 \%}$	${ }_{0}^{1}$	${ }_{0}$	5663 17860	${ }_{0}$	${ }_{0}$	1	S248400 S646729	1	\bigcirc	\bigcirc	\bigcirc
16887		1	0	0	0	${ }^{1.1 .18 \%}$	0	0	5227	0		1		1	0	0	0
16888	0	1	0	0	0	1．15\％	0	0	6970	0	－	1	S349 164	1	0	0	0
16889 16890	0	1	\bigcirc	0	\bigcirc	${ }_{\text {1．1．25\％}}^{1.27 \%}$	0	\bigcirc	5663 12632	\bigcirc	\bigcirc	1	S321328 $\$ 389091$	1	\bigcirc	0	\bigcirc
16891	0	1	0	0	0	1．01\％	0		${ }_{6}^{16098}$	0		1	\＄267092	1	0	0	$\stackrel{0}{0}$
16892	。	1	0	0	0	1．18\％	0	0	${ }_{8276}$	0	。	1	${ }_{\text {S322 }} 126$	1		。	。
16893 16894	0	1	0	0	0	${ }^{1.12 \%}$	0	\bigcirc	6534 7 7	0	－	1	\＄288178	1	0	0	
16894 16895	0	1	0	0	\bigcirc	${ }_{\text {1．1．12\％}}^{1.18}$	0	${ }_{1}^{0}$	7405 5663	0	0	1	\＄227000 $\$ 251026$	1	0	0	0
168996 16896	1	1	0	0	0	${ }^{\text {1．1．15\％}}$	0		5663 4792	0		1	\＄230000	1	0	0	0
16897	0	1	0	0	0	1．11\％	0	\bigcirc	12632	0	0	1	\＄387000	1	0	0	0
16898		1	0	0	0	1．15\％	0	0	4356	0	0	1	\＄290000	1	0	0	0
													S3120 269 $\$ 268438$				

osservation	PROPERTY DURESS $=1$	LTV＿9\％	LTV 81\％－90\％	LTV 70\％－78\％	$\begin{gathered} \text { LTV beLow } \\ 70 \% \end{gathered}$	total tax burden	parcel in SCEIP $=1$	CONventional LOAN $=1$	torstiz	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	$\begin{gathered} \text { SOLD DURING } \\ \text { 2004_2007 } \end{gathered}$	Sol0 2008－2012	PRICE ADJUST．TO 2012	$\begin{gathered} \text { ZIP CODE } \\ \text { Z95403 } \end{gathered}$	$\begin{aligned} & \text { ZIP CODE } \\ & 95404 \end{aligned}$	ZIP CODE 95472	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
17291	－	1	0	0	－	1．18\％	${ }_{0}$	${ }_{1}$	7405	－	${ }^{2004}$	0	\＄1044275	25403	5404	9540	
17292	0	1	0	0	0	1．15\％	0	1	4356	0	1	0	5851889	1	0	0	0
17293	0	1	0		0	1．10\％	0	1	9148	1	0	0	\＄136340	1	0	0	0
17294	0	1			0	1．14\％	0	1	37897	0	0	1	\＄55401	1	0	0	0
17295	0	1	0		0	1．18\％	0	1	8712	0	0	0	\＄504023	1	0	0	0
17296	0	1	0	0		1．45\％	1	1	5663	0	1	0	5853114	1	0		0
17297	0	1	0	0	0	1．22\％	0	1	6534	0	0	0	\＄416813	1	0	0	0
17298	0	1	0	0	O	1．10\％	0	1	7841	0	0		\＄448876	1	0	0	0
17299	0	1	0		0	1．13\％	0	1	20038	0	0	0	535349	1	0	0	0
17300	0	1	0			1．11\％		1	${ }^{21344}$		1	0	\＄694048	1	0	0	0
17301	0	1	0	0	0	1．21\％	0	1	32234	0	1	0	5947730	1	0	0	0
17302	0	1	0	0	0	1．12\％	0	1	6175	0	0	0	5473243	1	0		0
17303	0	1	0	0	0	1．13\％	0	1	6534	0	0	0	5366796	1	0	0	0
17304	0	1	0	0	0	1．15\％	0	1	21840	0	0	0	5705376	1	0	0	0
17305	0	1	0	0	0	1．09\％	0	1	5663	0	1	0	S647258	1	0	0	0
17306	1	1	0	0		1．09\％		1	6002	0	0	0	5436051	1	0	0	0
17307	0	1	0	0	0	1．12\％	0	1	${ }^{6} 098$	0	1	0	${ }^{5577074}$	1	0	0	0
17308	0	1	0	0	0	1．12\％	0	1	6098	0	0	1	\＄207850	1	0	0	0
17309	0	1	0	0	0	1．09\％	0	1	6534	0	1	0	S662855	1	0	0	0
17310	0	1	0	0		1．13\％	0	1	7500	0	0	0	${ }_{5423226}$	1	0	0	0
17311 17312	0	1	\bigcirc	0	\bigcirc	${ }_{\text {1．1．12\％}}^{1.12 \%}$	\bigcirc	1	18295 5663	\bigcirc	${ }_{0}^{1}$	0	$\underset{\substack{\$ 1035924 \\ \$ 416813}}{ }$	1	\bigcirc	\bigcirc	\bigcirc
17313	0	1	0	0	0	${ }^{1.12 \%}$	0	1	5663	0	1	0	¢ 58688114	1	${ }_{0}$	0	0
17314	0	1	0	0	0	1．12\％	0	1	6098	0	1	0	\＄577 074	1	0	0	0
17315	0	1	0	0	0	1．09\％	0	1	6098	0	1	0	5612250	1	0	0	0
17316	0	1	0	0	0	${ }_{\text {1．12\％}}$	0	1	6188 6970	0	0	0	5421943 5738055	1	0	\bigcirc	\bigcirc
17317 17318	\bigcirc	1	\bigcirc	0	\bigcirc	1．1．8\％	\bigcirc	1	6970 7405	${ }_{1}$	${ }_{0}^{1}$	0	\＄738 055 $\$ 39004$	1	\bigcirc	\bigcirc	0
17319			0	0	－	1．09\％	0	1	8712	${ }_{0}$	1	0	${ }_{\text {S499871 }}$	1	－	0	0
17320	0	1	0	0	－	1．09\％		0	5663	1	0	0	\＄87975	1	0	0	0
17321	0	1	0	0	0	1．13\％	0	1	6000	0	0	0	5428356	1	0	0	0
17322	0	1		0	0	1．08\％	0	1	6098	1	0	0	\＄23254	1	0	0	0
17323 17324	0	1	${ }_{0}$	\bigcirc	0	（1．13\％	${ }_{0}$	1	20038 6098	\bigcirc	1	0	$\underset{\substack{\text { \＄1 } 108444 \\ \$ 803622}}{\text { che }}$	1	${ }_{0}$	\bigcirc	0
17325	0	1	0	0	0	1．12\％	0	1	5663	0	1	0	\＄550559	1	0	。	0
17326	1	1		0	0	1．09\％		1	5663		1	0	\＄642579	1	0	0	0
17327	0	1	0	0	0	1．12\％	0	1	6098	0	0	0	5443746	1	0	0	0
17328	0	1	0	0	0	1．18\％	0	1	8712	0	1	0	\＄584872	1	0	0	0
17329 17330	0	1	\bigcirc	\bigcirc	0	－	\bigcirc	1	46174 6098	\bigcirc	1	\bigcirc	$\underset{\substack{\$ 1168964 \\ \$ 800851}}{ }$	1	0	0	0
17331	0	1	0	0	0	1．13\％	0	0	6098	0	0	1	\＄177169	1	0	。	0
17332	0	1	0	0	0	1．15\％		1	7405	0	1	0	5719604	1	0	0	0
17333 17334	\bigcirc	1	\bigcirc	\bigcirc	0	－${ }_{\text {1．1．19\％}}$	\bigcirc	1	7841 9072 002	\bigcirc	\bigcirc	0	5118003 $\$ 461701$	1	\bigcirc	0	\bigcirc
17334 17335	\bigcirc	1	0	0	0	${ }^{1.1 .15 \%}$	0	1	9072 8276	\bigcirc	${ }_{1}$	0	\＄4617 71 $\$ 877518$	1	\bigcirc	0	0
17336	0	1	0	0	0	1．10\％	0	1	9583	－	1	－	\＄753911	1	0	0	0
17337	0	1	0	0	0	1．09\％	0	1	5663	\bigcirc	1	0	\＄569275	1	0	0	0
17338	0	1	0	0	0	1．15\％	0	1	6970	0	0	0	\＄377096	1	0	0	0
17339	0	1	0	0	0	（1．18\％	0	1	7405 8100	\bigcirc	1	\bigcirc	5754829 $\$ 495046$	1	\bigcirc	\bigcirc	\bigcirc
17340 17341	\bigcirc	1	0	0	\bigcirc	（1．18\％	0	1	8100 8712	\bigcirc	${ }_{1}^{1}$	0	\＄495046 \＄895992	1	0	0	0
17342	1	1	0	0	0	1．18\％	0	1	5665	0	1	0	\＄639460	1	0		0
17343	0	1	0	0	0	1．18\％	0	1	6098	0	1	0	5778115	1	0	0	0
17344	1	1	0	0	0	1．18\％	0	1	6098	0	1	0	5608267	1	0	0	0
$\begin{array}{r}17345 \\ \hline 17346\end{array}$	0	1	0	0	0	1．18\％	0	1	6098 6098	\bigcirc	\bigcirc	0	¢ 53845800	1	\bigcirc	\bigcirc	\bigcirc
17346 17347	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	2．38\％	${ }_{0}^{1}$	1	6098 6970	\bigcirc	0	0	5423226 $\$ 310888$	1	0	\bigcirc	0
17348	1	1	0	。	0	1．18\％	0	1	6970	0		0	\＄922488	1	。	。	0
17349	1	1	0	0	0	1．10\％	0	1	7405	0	1		5997600	1	0	0	0
17350	0	1	0	0	0	1．15\％	0	1	7405	0	0	0	\＄414517	1	0	0	0
17351	\bigcirc	1	0	0	\bigcirc	1．15\％	0	1	7841 7841 801	\bigcirc	1	\bigcirc	\＄914466	1	\bigcirc	\bigcirc	\bigcirc
17352 17353	0	1	\bigcirc	0	0	1．1．8\％	\bigcirc	1	7841 7841	\bigcirc	1	\bigcirc	$\$ 937488$ $\$ 417972$	1	\bigcirc	0	\bigcirc
17354		，	0	0	0	1．18\％	0	1	8712	0	1	0	\＄806239	1	0	0	0
17355	0	1	0	0	0	1．16\％	0	1	9180	0	0	0	\＄461701	1	0	0	－
17356		1	0	0	0	1．15\％	0	0	9 9883	1	0	0	\＄80400 S 54048	1	0	0	\bigcirc
17357 17358	0	1	0	0	0	${ }^{1.1 .16 \%}$	0	1	9583 10454	0	1	\bigcirc	5694048 $\$ 554829$	1	0	\bigcirc	
17358 17359	0	1	\bigcirc	0	\bigcirc	${ }^{1.1 .15 \%}$	\bigcirc	1	10454 6534	\bigcirc	1	\bigcirc	\＄754829 $\$ 32202$	1	0	\bigcirc	\bigcirc
17360	0	1	0	0	0	${ }^{1.15 \%}$	0	1	6534	0	1		\＄964346	1	0		0
117361	0	1	0	0	\bigcirc	${ }^{1.1 .15 \%}$	0	1	$\begin{array}{r}6534 \\ \hline 705 \\ \hline\end{array}$	\bigcirc	1	\bigcirc	$\begin{array}{r}\$ 984362 \\ \$ 63634 \\ \hline\end{array}$	1	0	0	\bigcirc
17362 17363	0	1	\bigcirc	\bigcirc	\bigcirc	－${ }_{1}^{1.1 .13 \%}$	\bigcirc	1	7405 7841	\bigcirc	${ }_{0}^{1}$	\bigcirc	S636341 S506 588	1	0	\bigcirc	0
17364	0	1	0	0	0	1．18\％	0	1	${ }^{7827}$	1	0	0	¢516317	1	0	0	0
17365	0	1	0	0	0	1．18\％	0	1	8712	0	\bigcirc	0		1	\bigcirc	\bigcirc	\bigcirc
${ }^{17366}$	0	1	0	\bigcirc	\bigcirc	${ }^{1.112 \%}$	0	1	9148 12197	\bigcirc	0	0	S245688 $\$ 529674$	1	0	\bigcirc	\bigcirc
17367 17368	\bigcirc	1	0	\bigcirc	\bigcirc	${ }^{1.1 .16 \%}$ 1．9\％	0	1	12197 6534	\bigcirc	\bigcirc	${ }_{0}$	5529674 535637	1	0	\bigcirc	\bigcirc
17369		1	0	0	0	1．09\％	0	1	5227	0	0	1	\＄327754	1		0	
17370	0	，	0	0	0	1．15\％	0	1	5663	0	1	0	5608267 $\$ 597299$	1	0	0	
17371	－	1	0	0	0	1．15\％	0	1	${ }_{5}^{5663}$	0	1		5597349	1	\bigcirc	0	\bigcirc
17372 17373	0	1	0	\bigcirc	\bigcirc	${ }^{1.1 .15 \%}$	\bigcirc	1	5663 5663	${ }_{0}^{1}$	1	\bigcirc	5121958 5678451	1	\bigcirc	\bigcirc	0
17374	0	1	0	0	0	1．12\％	0	1	6098	0	1	0	\＄656616	1	0	0	0
17375 17376	0	1	0	0	\bigcirc	1．15\％	0	1	6098 6970	0	1	\bigcirc	5499535 $\$ 598909$	1	0	\bigcirc	
17376 17377	0	1	\bigcirc	\bigcirc	0	1.15% 1.18%	\bigcirc	1	6970 6970	\bigcirc	1	\bigcirc	\＄598909 $\$ 984688$	1	0	\bigcirc	\bigcirc
17378		1	0	0	0	1．15\％	0	1	8712	0	1	0	\＄918738	1	0	－	0
17379	1	1	0	0	0	1．10\％	0	1	10892	0		0	S639400 S43478	1	0	0	0
17380 17381	0	1	\bigcirc	\bigcirc	\bigcirc	－ 1.09%	\bigcirc	1	5663 6000	\bigcirc	\bigcirc	\bigcirc	5434768 $\$ 416813$	1	0	\bigcirc	
17381 17382	${ }_{0}^{1}$	1	\bigcirc	0	0	1.12% 1.09% 1，	\bigcirc	1	6000 6534	\bigcirc	0	0	S416813 $\$ 805469$	1	\bigcirc	\bigcirc	\bigcirc
11738	－	1	0	0	0	1．112\％	0	1	7405	0	1	0	\＄9357995	1	0	\bigcirc	0
17384	0	1	0	0	0	1．13\％	0	1	9583	0	1	0	5629322	1	0	0	0
17385 17386	\bigcirc	1	\bigcirc	\bigcirc	0	${ }^{1.1 .15 \%}$	${ }_{0}$	1	4792 4792	\bigcirc	1	\bigcirc	S651 937 $\$ 691088$	1	0	\bigcirc	\bigcirc
17387	0	1	0	0	0	1．09\％	0	1	5663	0	1	0	\＄806239	1	0	0	0
17388	0	1	0	0	0	${ }^{1.12 \%}$	0	1	${ }_{6} 098$	0	1	0	S677451 $\$ 88288$	1	\bigcirc	0	
17389 17390	0	1	\bigcirc	0	0	1．15\％	\bigcirc	1	8712 5663	${ }_{1}$	1	0	S892488 S175 409	1	\bigcirc	\bigcirc	${ }_{0}$
17390 17391	0	1	\bigcirc	${ }_{0}$	${ }_{0}$	${ }^{1.11 \%}$	${ }_{0}$	1	566 18295	${ }_{0}^{1}$	0	${ }_{0}$	\＄1059361	1	\bigcirc	0	0
17392	－	1	0	0	0	1．15\％	0	1	3738	0	0	0	\＄403988	1	0	0	0
177393	0	1	0	0	0	1．15\％	0	1	4356 4356	${ }_{1}$	，	0	S737718 $\$ 106149$	1	\bigcirc	0	
17394 17395	0	1	0	0	0	1.35% 1.38% 1，	\bigcirc	1	4356 4792	1	0 1	\bigcirc	\＄106 149 $\$ 694048$	1	\bigcirc	\bigcirc	\bigcirc
17396	0	1				1．15\％		1	4792	0		1	\＄409693	1	0		
17397 17398	0	1	\bigcirc	0	0	${ }_{\text {l }}^{1.1 .15 \%}$	${ }_{0}^{1}$	1	4800 5227	\bigcirc	0	${ }_{0}$	\＄519413 S841864	1	0	\bigcirc	${ }_{0}$
17399	1	1	0	0	0	1．15\％	0	1	5663	0	1	0	\＄678451	1	0	0	0
17400	0	1	0	0	0	1．09\％	0	1	5663	1	0	0	\＄1437616 $\$ 83731$	1	\bigcirc	－	0
17401 17402	0	1	\bigcirc	0	\bigcirc	1．15\％	0	${ }_{0}^{1}$	6534 7405	0	1	0	$\$ 843731$ $\mathbf{S 4 5 0 6 2}$	1	\bigcirc	0	\bigcirc
174003	0	1	\bigcirc	0	0	1．10\％	0	1	9583	\bigcirc	1	1	5450662 $\$ 807903$	1	\bigcirc	0	\bigcirc
17404	0	1	0	0	0	1．33\％	0	1	3485	0	\bigcirc		\＄441298	1	0	0	0
17405	0	1	0	0	0	1．15\％	0	1	${ }_{4}^{4366}$	\bigcirc	，	0	\＄106259	1	\bigcirc	\bigcirc	
17406 17407	${ }_{0}$	1	\bigcirc	0	\bigcirc	${ }_{\text {l }}^{1.109 \%}$	${ }_{0}$	1	4792 4792	\bigcirc	${ }_{1}$	\bigcirc	S23178 S89813	1	\bigcirc	\bigcirc	${ }_{0}$
17408	0	1	0	0	0	1．12\％	0	1	4792	0	1		\＄937488	1	－		0
17709	0	1	0	0	0	1．15\％	0	1	4792	0			S838999 S9988	1	0		0
17410 17411	\bigcirc	1	\bigcirc	0	\bigcirc	1．1．18\％	\bigcirc	1	4792 5227	\bigcirc	1	\bigcirc	5969888 $\$ 778270$	1	\bigcirc	\bigcirc	\bigcirc
17412	0	1				1．15\％	0	1	5227		1		\＄686250	1	0	0	0
17413	0	1		O	－	1．15\％		1	5227	0	1		\＄740838	1	0	\bigcirc	－
17414	0	1	0			1．18\％		1	5600	0		0	547426	1	0		－
17415 17416	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	${ }_{\text {1．1．15\％}}$	\bigcirc	1	5663 5663	\bigcirc	${ }_{0}^{1}$	\bigcirc	\＄950 613 $\$ 374217$	1	\bigcirc	0	\bigcirc
17417	0	1	0	0	0	${ }^{1.29 \%}$	0	1	5663	0	1	0	${ }_{\text {S889 }}$	1	－	0	\bigcirc
17418	0	1	0	0	0	1．18\％	0	1	6098	0	1		\＄580 193	1	0	0	0
			0	0	0	（1．34\％	0	1	6098 6534	1	\bigcirc	0	${ }_{\text {S }}^{53711897}$	1	\bigcirc	\bigcirc	\bigcirc

observation	PRoperty DURESS $=1$	LT＿－90\％	LTV 81\％－90\％	LTV 70\％－78\％	Ltv below 7\%	totaltax burden	parcel in SCEIP $=1$	CONVENTIONAL LOAN $=1$	torstze	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	SOLD DURING 20042007	Sold $2008-2012$	PRICE ADJUST．TO 2012	$\begin{gathered} \text { ZIP CODE } \\ \text { Z95403 } \end{gathered}$	ZIP CODE 95404	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	ZIP CODE
17421	－	1	0	0	\％	1．18\％	－1	Loan 1	7405	${ }_{0}$	${ }^{2004}$	0	${ }_{5408760}$	2940			
17422	0	1	0	0	0	1．15\％	。	1	7405	0	1	0	\＄1099 207	1	0	0	0
17423	0	1			0	1．12\％	0	1	9148	O	0	0	\＄557889	1	0	0	0
17424	0	1	0	0	0	1．16\％	0	1	9148	0	1	0	\＄939343	1	0	0	0
17425	0	1	0	0	0	1．32\％	0	1	9583	0	1	0	\＄1136 155	1	0	0	0
17426	0	1	0	0	0	1．12\％	0	1	4356	0	1	0	5890426	1	0	0	0
17427	0	1	0	0	0	1．18\％	0	1	4356	0	0		\＄413366	1	0	0	0
17428	0	1	0	0	0	1．09\％	0	1	4792	0	1	0	\＄813538	1	0	0	0
17429	0	1	0	0	0	1．15\％	0	1	4792	0	1	0	5812700	1	0	0	0
17430	0	1		0		1．15\％	0	1	4792	0		0	5365041	1	0	0	0
17731	0	1	0	0	0	1．15\％	0	1	${ }_{5}^{4935}$	0	1	0	\＄748636	1	0	0	0
17432	0	1	0	0	0	1．15\％	0	1	5227	0	1	0	\＄636341	1	0	0	0
17433	0	1	－	0	0	1．18\％	0	1	5663		1	0	5733039	1	0	0	0
17434	0	1	0	0	0	1．15\％	0	1	5663	0	0	1	5357018	1	0	0	0
17435	0	1	0	0	0	1．31\％	0	1	5663	0	1	0	5971214	1	0	0	0
17436	0	1			0	1．27\％	0	1	5663	0	1	0	\＄1245152	1	0	0	0
17437	0	1	0	0	0	${ }^{1.27 \%}$	0	1	6098	0	1	0	\＄1039987	1	0	0	0
17438	0	1	0	0	0	1．16\％	0	1	6534	0	0	0	5426032	1	0	0	0
17439	0	1	0	0	0	1．28\％	0	1	6970	0	1	0	5748636	1	0	0	0
17440	0	1	0	0	0	1．48\％	1	1	8276	0	1	0	\＄946863	1	0	0	0
17441	0	1	0	0	0	${ }^{1.33 \%}$	0	1	8276 953	0	1	0	\＄857812	1	0	0	0
17442	0	1		0	0	1．44\％	0	0	9583	0	0	1	\＄400638	1	0	0	0
17443 17449	0	1	0	0	0	1．99\％	0	1	$\begin{array}{r}10019 \\ 3485 \\ \hline\end{array}$	0	1	0	¢	1	\bigcirc	0	0
17444 17445	\bigcirc	1	0	0	\bigcirc	${ }_{\text {1．15\％}}^{1.33 \%}$	0	1	3485 3710	\bigcirc	1	0		1	\bigcirc	\bigcirc	\bigcirc
17446	0	1	0	0	0	1．18\％	0	1	4449	0	0	0	S442 463	1	。	0	0
17447	0	1	0	0	0	1．18\％	0	1	5227	0	0	1	5386282	1	0	0	0
17448	0	1		0	0	1．18\％	0	0	5227	0	0	1	5332088	1	0	0	0
17749	0	1	0	0	0	1．18\％	0	0	6970	0	0	1	\＄301232	1	0	0	0
17450	0	1	－	0	0	1．18\％	0	1	6970	0	0	0	547847	1	0	0	0
17451	0	1	0	0	0	1．12\％	0	1	6970	0	0	1	5448809	1	0	0	0
17452	0	1	0	0		${ }^{1.12 \%}$	0	1	7405	0	0	1	${ }_{5} 531165$	1	0	0	0
17453 17454	\bigcirc	1	\bigcirc	0	${ }_{0}$	－	0	1	8712 18295	${ }_{1}$	${ }_{0}^{1}$	0	S9911862 S180678	1	\bigcirc	${ }_{0}$	0
17455		1				1．10\％	0	1	9826	0	0	1	\＄341396	1	。	0	0
17456	0	1	0			1．18\％	0	1	11761	O	1	0	\＄1096696	1	0	0	0
17457	0	1	0	0	0	1．14\％	0	1	2614	1	0	0	\＄123087	1	0	0	0
17758	0	1	0	0	0	${ }^{1.14 \%}$	0	1	2614	0	0	0	\＄165028	1	0	0	0
17459 17460	0	1	\bigcirc	\bigcirc	\bigcirc	${ }^{1.1 .18 \%}$ 1．1\％	0	1	3049 3390	0	${ }_{0}^{1}$	\bigcirc	$\$ 670959$ $\$ 38451$	1	\bigcirc	\bigcirc	0
17461	－	1	－	0	0	1．14\％	0	1	3920	0	1		\＄803622	1	。	0	0
17462	0	1	0	0	0	1．14\％	0	1	3920	0	0	0	\＄174299	1	0	0	－
17763	1	1	0	0	0	1．14\％	0	1	4358	0	1	－	\＄771292	1	0	0	0
17764 17465	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	${ }^{1.1 .18 \%}$ 1．9\％	0	1	4792 5227	\bigcirc	1	\bigcirc	¢956 237 $\$ 719003$	1	\bigcirc	\bigcirc	0
17466				－	0	1．18\％		1	5663	0	1	－	\＄850441	1	。	0	0
17467	0	1	0	0	0	1．09\％	\bigcirc	1	8276	\bigcirc	1		\＄686250	1	0	0	0
17768	0	1	0	0	0	${ }^{1.15 \%}$	0	1	6098	0	0	1	5441298	1	0	0	
17469 17470	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	${ }_{\substack{1.1 .8 \% \\ 116 \%}}^{1.8}$	\bigcirc	1	6970 6970	\bigcirc	\bigcirc	\bigcirc	S460575 $\$ 557889$	1	\bigcirc	0	0
17470 17471	0	1	\bigcirc	0	0	－${ }_{\text {1．1．16\％}}$	0	1	6970 7042	\bigcirc	0	\bigcirc	\＄557889 $\$ 654076$	1	0	$\stackrel{0}{0}$	0
17472	1		0	0	0	1．43\％	1	1	7866	－	1	0	\＄1258049	1	0	0	0
17473	1	1	0	0	0	1．36\％	0	1	4794	0	1	0	\＄983744	1	0	0	0
17774	0	1	0	0	0	1．16\％	0	1	10019	0	1	0	\＄998052	1	0	0	0
17775	0	1	0	0	0	${ }^{1.1 .15 \%}$	0	1	2178	\bigcirc	1	\bigcirc	5645798 $\$ 288764$	1	\bigcirc	\bigcirc	\bigcirc
17476 17477	0	1	\bigcirc	0	\bigcirc	${ }_{\text {l }}^{1.1 .18 \%}$	0	1	3049 3049	\bigcirc	${ }_{1}^{1}$	\bigcirc	S288764 $\$ 678451$	1	\bigcirc	\bigcirc	0
17478		1	0	0	0	1．15\％		1	3485	0	1	0	\＄678451	1	0	0	0
17779	0	1	0	0	0	1．18\％	\bigcirc	1	3485 4356	0	0	0	$\$ 525826$ S112924	1	\bigcirc	0	0
17480 17481	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	${ }^{1.1 .15 \%}$	\bigcirc	1	4356 10890	${ }_{0}^{1}$	${ }_{1}^{0}$	0	${ }_{\substack{\text { S112924 } \\ \$ 1331233}}$	1	\bigcirc	\bigcirc	0
17882		1			0	1．15\％	－	1	2614	0	1		\＄916863	1	。	0	0
17483	0	1	0	－	0	1．18\％	0	1	3705	0	0	0	547426	1	0	0	0
17784	0	1	0		0	${ }^{1.15 \%}$	0	1	3956 5227		1	－	5662572 587309	1	0	0	0
17885 17486	\bigcirc	1	0	0	\bigcirc	${ }_{\text {1．1．15\％}}^{1.15}$	\bigcirc	${ }_{1}^{1}$	5227 3920	\bigcirc	${ }_{0}^{1}$	\bigcirc	5873409 5403003	1	\bigcirc	${ }_{0}$	\bigcirc
17887	0	1	0	0	0	1．15\％	0	1	3920	0	1	0	\＄647258	1	0	0	
17488	0	1	－	0	0	1．18\％	0	1	3920	0	0	0	5439898	1	0	0	0
17889 17490	－	1	0	0	0	－	0	1	4356 563	O	0	－	\＄566204	1	－	－	0
17490 17491	\bigcirc	1	0	\bigcirc	\bigcirc	${ }^{1.1 .12 \%}$	0	1	5663 7157	0	${ }_{0}^{1}$	0	$\$ 1136235$ $\$ 961877$	1	\bigcirc	\bigcirc	\bigcirc
17492	0	1	0	0	0	1．12\％	0	1	47045	0	0	0	5978722	1	0	0	0
17993 17994	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	1．16\％	0	1	7841 2178	\bigcirc	1	0		1	\bigcirc	\bigcirc	
17494 17995	\bigcirc	1	0	\bigcirc	\bigcirc	1．38\％	0	1	2178 2178	0	1	0	$\$ 785148$ $\$ 175226$	1	\bigcirc	0	0
17496	0	1	0	0	0	1．36\％	0	1	3049	0	1	0	\＄796232	1	0	0	0
17497	0	1	0	0	0	1．18\％		1	3485	0	0		5356946 39993	1	\bigcirc	0	0
17498 17499		1	0			1．15\％	\bigcirc	1	3920 9583	\bigcirc	\bigcirc	0	5398973 588150	1	\bigcirc	\bigcirc	
17499 17500	0	1	0	\bigcirc	\bigcirc	1．33\％	$\stackrel{0}{0}$	1	9583 2099	0	\bigcirc	1	5381560 5670150	1	\bigcirc	\bigcirc	\bigcirc
17501	0	1	0	0	0	1．09\％	0	1	${ }^{2706}$	－	0	0	\＄4347688	1	0	0	0
17502	0	1	0	0	0	1．09\％	0	1	3748	0	0	0	5463625 $\$ 770888$	1	0	0	0
17503 17504	\bigcirc	${ }_{1}^{1}$	0	\bigcirc	\bigcirc	1．1．15\％	\bigcirc	1	3940 6098	0	1	0	\＄740838 $\$ 1074605$	1	\bigcirc	0	\bigcirc
17505	0	1	0	0	0	1．18\％	0	1	6578	0	0	0	\＄392446	1	0		0
17506	1		0	0	0	${ }^{1.12 \%}$	0	1	8276 3785	\bigcirc	1	\bigcirc	$\$ 1667724$ $\$ 20029$	1	\bigcirc	0	
17507 17508	\bigcirc	1	0	\bigcirc	\bigcirc	－1．12\％	${ }_{0}$	1	3485 2178	0	\bigcirc	0	\＄2002 29 \＄150606	1	\bigcirc	\bigcirc	0
17509	－	1	0	－	－	1．15\％	0	1	5358	0	－	0	\＄519 297	1		0	。
17510 17511	\bigcirc	1	0	0	0	1．26\％		\bigcirc		\bigcirc	\bigcirc	1	S461714 S439 O74	1	\bigcirc	0	
17511 17512	\bigcirc	1	0	\bigcirc	\bigcirc	${ }^{1.11 \% \%}$	0	0	13939 5663	\bigcirc	\bigcirc	1	5439074 $\$ 232450$	1	\bigcirc	\bigcirc	0
117513	－	1	0	0	0	1．08\％	－	0	7405	\bigcirc	0	1	\＄135000	1	0	－	0
17514	－	1	0	0	0	1．09\％	0	－	${ }_{5}^{6988}$	\bigcirc	0	1	S247000 S27000	1	－	－	0
17515 17516	\bigcirc	1	0	0	\bigcirc	${ }_{\text {1．18\％}}^{1.12 \%}$	0	0	5663 4792	0	0	1	\＄200 $\$ 280000$	1	0	0	0
17517	0	1	0	0	0	1．10\％		1	4792	0	1	0	\＄1349531	1	0	0	0
17518	－	，	0	0	0	1．09\％	0	0	5227	1	0	0	\＄55452	1	0	0	
17519 17520	\bigcirc	1	0	\bigcirc	${ }_{0}$	－ 1.14%	0	${ }_{0}^{1}$	4356 4792	0 1	1	0	${ }_{\substack{\text { S411 } \\ \$ 51427}}$	1	0	\bigcirc	0
17520 17521	${ }_{0}$	1	${ }_{0}$	${ }_{0}$	${ }_{0}$	1．09\％	0	${ }_{0}$	4992 6970	1	\bigcirc	${ }_{0}$	${ }_{55053}^{51427}$	1	${ }_{0}$	0	0
17522	0	1	0	0	0	1．15\％		0	4792	0	0	0	\＄299660	1		0	0
$\begin{array}{r}17523 \\ \hline 17524 \\ \hline 1595\end{array}$	0	1	0	0	0	1．15\％	0	1	5663	\bigcirc	0	0	5416813 $\$ 277007$	1	\bigcirc		
17524 17525	\bigcirc	1	\bigcirc	\bigcirc	0	${ }_{\text {1．15\％}}^{\text {1．15\％}}$	\bigcirc	\bigcirc	3920 8712	0 1	\bigcirc	1	\＄27 007 $\$ 127029$	1	\bigcirc	\bigcirc	0
17526	0	1	0	0	0	1．09\％	0	0	6970	1	0	0	593279	1		0	0
17527 17528	\bigcirc	1	0	${ }_{0}^{0}$	${ }_{0}$	${ }_{\text {1．15\％}}$	0	0	4792 9883	1	\bigcirc	0	\＄111997	1	\bigcirc	0	0
17529		1	0	0	0	1．15\％	0	0	9148	1	0	0	\＄108565	1	0	0	0
117530	0	1	0	0	0	1．40\％	0	0	7405 3485	1	0	0		1	0	0	
17531 17532	\bigcirc	1	0	\bigcirc	0	－${ }_{\text {1．1．13\％}}$	0	0	3485 5663	\bigcirc	0	0	S285495 $\$ 223575$	1	\bigcirc	0	0
17532 17533	\bigcirc	1	${ }_{0}$	0	0	${ }^{1.18 \%}$	0	0	5663 3485	0	${ }_{0}$	1	S223575 $\$ 344142$	1	0	0	\bigcirc
17534	0	1	0	0	0	1．14\％		0	3485	0	0	1	\＄300 651	1	0	0	
17535	0	1	0	0	\bigcirc	1．15\％	0	1	3485 6970	0	0	1	5335506 $\$ 110$	1	0	0	
17536 17537	0	1	0	0	\bigcirc	1.14% 1.09%	0	1	6970 6970	1	0	0	$\$ 110069$ $\$ 106411$	1	0	0	0
17538	0	1	0	0	0	1．1．6\％	0		6970	0	1		\＄964504	1			0
17539 17540	0	1	\bigcirc	0	\bigcirc	${ }_{\text {l }}^{1.14 \% \%}$	${ }_{0}$	\bigcirc	6098 3049	1	\bigcirc	0	\＄105414	1	0	${ }_{0}$	0
17541	0		0	0		1．14\％			3920	1	－		\＄103086	1	。	0	0
${ }^{17542}$	－	1	－	\bigcirc	0	${ }^{1.1 .15 \%}$	0	\bigcirc	6970	1	0	\bigcirc	S119713 $\$ 12633$	1	0	0	0
17543 17544	\bigcirc	1		0	0	${ }^{1.1 .18 \%}$			6098 4792	1	\bigcirc	0	\＄126363	1	\bigcirc	0	－
17544 17545	0	1	0	0	\bigcirc	1．1．12\％	0	0	4792 6098	1	\bigcirc	0	\＄149 060 $\$ 119380$	1	\bigcirc	0	\bigcirc
17546	0	1	0	0	－	1．13\％	0	0	6970	1			\＄131745	1	\bigcirc	0	0
17547 17548 1	\bigcirc	1	－	\bigcirc	0	1．15\％	\bigcirc	0	4792	1	\bigcirc	${ }_{1}$	S146048 $\$ 216065$	1	\bigcirc	0	\bigcirc
17548		1	0	0	0	1．18\％	0	0	3485 565	0	0	1	${ }_{\substack{ \\5216065 \\ \$ 397825}}$	1	\bigcirc	0	
17549 17550			\bigcirc	\bigcirc	\bigcirc	（1．18\％	\bigcirc	\bigcirc	5663 3049				S397825 $\$ 24906$		0	\bigcirc	

observation	PROPERTY DURESS $=1$	LTV_90\%	LTV 81\%-90\%	LTV 70\%-78\%	LTV BELOW 70\%	total tax burden	PARCEL IN SCEIP $=1$	conventional LOAN $=1$	Lot SIIE	$\begin{gathered} \text { SOLD } \\ \text { PRIOR_2000 } \end{gathered}$	SOLD DURING	SOLD 2008-2012	PRICE ADJUST. TO 2012	$\begin{gathered} \text { ZIP CODE } \\ \text { Z95403 } \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95404 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 95472 \end{gathered}$	$\begin{gathered} \text { ZIP CODE } \\ 94928 \end{gathered}$
17551	0	1	0	0	0	1.15\%	0	0	4356	0	0	1	\$276129	1	0	0	0
17552	0	1	0	0	0	1.15\%	0	0	3920		0	1	\$275000	1	0	0	0
17553	0	1	0	0	0	1.15\%	0		3485	0	0	1	\$342971	1	0	0	
17554	0	1	0	0	0	1.18\%	0	0	3920	0	0	1	\$357 018	1	0	0	0
17555	0	1	0	0	0	1.12\%	0	0	7405	0	0	1	\$327 494	1	0	0	0
17556	0	1	0	0	0	1.13\%	0	0	7841	0	0	1	\$301232	1		0	0
17557	0	1	0	0	0	1.18\%	0	0	5227	0	0	1	\$433 104	1	0	0	0
17558	0	1	0	0	0	1.45\%	0	0	6098	0	0	1	\$400 000	1	0	0	0
17559	0	1	0	0	0	1.12\%	0	1	4356	0	1	0	\$670 959	1	0	0	0
17560	0	1	0	0	0	1.18\%	0	0	4792	0	0	1	\$351 165	1	0	0	0
17561	0	1	0	0	0	2.58\%	1	0	3920	0	0	1	\$289913	1	0	0	0
17562	0	1	0	0	0	1.35\%	0	0	7841	0	0	1	\$410000	1	0	0	0
17563	0	1	0	0	0	1.12\%	0	0	6098	1	0	0	\$134756	1	0	0	0
17564	0	1	0	0	0	1.13\%	0	0	7405	0	0	1	\$405000	1	0	0	0
17565	0	1	0	0	0	0.01\%	0	1	7405	0	0	1	\$276 129	1	0	0	0
17566	0	1	0	0	0	1.09\%	0	0	4356	1	0	0	\$130 686	1	0	0	0
17567	0	1	0	0	0	1.32\%	0	1	10890	0	1	0	\$637411	1	0	0	0
17568	0	1	0	0	0	1.15\%	0	0	6098	0	0	0	\$188206	1	0	0	0
17569	0	1	0	0	0	1.09\%	0	0	7841	1	0	0	\$130 354	1	0	0	0
17570	0	1	0	0	0	1.14\%	0	1	3049	0	1	0	\$704340	1	0	0	0
17571	0	1	0	0	0	1.12\%	0	1	12197	0	0	0	\$690 862	1	0	0	0
17572	0	1	0	0	0	1.11\%	0	0	10454	0	0	1	\$299 223	1	0	0	0
17573	0	1	0	0	0	1.09\%	0	0	8276	0	0	1	\$230944	1	0	0	0
17574	0	1	0	0	0	1.14\%	0	0	4356	0	0	1	\$230 442	1	0	0	0
17575	0	1	0	0	0	1.12\%	0	0	6534	0	0	1	\$200 821	1	0	0	0
17576	0	1	0	0	0	1.18\%	0	0	7405	0	0	1	\$392 134	1	0	0	0
17577	0	1	0	0	0	1.10\%	0	0	7841	0	0	1	\$359 000	1	0	0	0
17578	0	1	0	0	0	1.18\%	0	0	5663	0	0	1	\$269 100	1	0	0	0
17579	0	1	0	0	0	1.18\%	0	0	5227	0	0	1	\$351437	1	0	0	0
17580	0	1	0	0	0	1.18\%	0	0	2614	0	0	1	\$326584	1	0	0	0
17581	0	1	0	0	0	1.63\%	1	0	43560	0	0	1	\$384403	1	0	0	0
17582	0	1	0	0	0	1.18\%	0	1	4792	1	0	0	\$125 698	1	0	0	0
17583	0	1	0	0	0	1.10\%	0	1	17860	1	0	0	\$35 775	1	0	0	0
17584	0	1	0	0	0	1.35\%	0	1	6534	1	0	0	\$110 203	1	0	0	0
17585	0	1	0	0	0	1.13\%	0	1	6098	0	0	0	\$156516	1	0	0	0
17586	0	1	0	0	0	1.15\%	0	1	29185	1	0	0	\$72 698	1	0	0	0
17587	0	1	0	0	0	1.08\%	0	1	4356	0	0	0	\$293617	1	0	0	0
17588	0	1	0	0	0	1.10\%	0	1	12632	1	0	0	\$102 602	1	0	0	0
17589	0	1	0	0	0	1.12\%	0	1	7405	0	0	0	\$120 104	1	0	0	0
17590	0	1	0	0	0	1.15\%	0	1	5227	0	0	1	\$438957	1	0	0	0
17591	0	1	0	0	0	1.18\%	0	1	3920	0	0	1	\$225000	1	0	0	0
17592	0	1	0	0	0	1.18\%	0	1	7405	0	1	0	\$456 309	1	0	0	0
17593	0	1	0	0	0	1.14\%	0	0	5900	0	0	1	\$304707	1	0	0	0
17594	0	1	0	0	0	1.15\%	0	0	5227	0	0	1	\$281 149	1	0	0	0
17595	0	1	0	0	0	1.09\%	0	0	6098	0	0	1	\$195 801	1	0	0	0
17596	0	1	0	0	0	1.13\%	0	1	4792	0	0	0	\$209 770	1	0	0	0
17597	0	1	0	0	0	1.10\%	0	1	21780	0	0	1	\$332408	1	0	0	0
17598	0	1	0	0	0	2.10\%	0	0	7841	0	0	1	\$257062	1	0	0	0
17599	0	1	0	0	0	1.13\%	0	1	6098	0	1	0	\$693 741	1	0	0	0
17600	0	1	0	0	0	1.13\%	0	1	6534	0	1	0	\$568 470	1	0	0	0
17601	0	1	0	0	0	1.09\%	0	1	15246	1	0	0	\$40 458	1	0	0	0
17602	0	1	0	0	0	1.18\%	0	1	4356	1	0	0	\$103 383	1	0	0	0
17603	0	1	0	0	0	1.13\%	0	0	5663	0	0	1	\$169 653	1	0	0	0
17604	0	1	0	0	0	1.14\%	0	0	4792	1	0	0	\$55037	1	0	0	0
17605	0	1	0	0	0	1.35\%	0	1	7841	1	0	0	\$93459	1	0	0	0
17606	0	1	0	0	0	1.09\%	0	1	2614	0	1	0	\$387955	1	0	0	0
17607	0	1	0	0	0	1.29\%	0	1	7841	1	0	0	\$91254	1	0	0	0
17608	0	1	0	0	0	1.16\%	0	1	5663	0	0	0	\$337254	1	0	0	0
17609	0	1	0	0	0	1.15\%	0	0	18731	0	0	1	\$227 145	1	0	0	0
17610	0	1	0	0	0	1.10\%	0	1	5663	1	0	0	\$35 775	1	0	0	0
17611	0	1	0	0	0	1.10\%	0	1	11330	0	0	1	\$214750	1	0	0	0
17612	0	1	0	0	0	1.56\%	1	1	56192	0	0	0	\$419525	1	0	0	0
17613	0	1	0	0	0	1.16\%	0	1	14810	0	0	0	\$126968	1	0	0	0
17614	0	1	0	0	0	1.11\%	0	1	18731	1	0	0	\$59924	1	0	0	0
17615	0	1	0	0	0	1.13\%	0	1	9148	0	0	1	\$34500	1	0	0	0

EXHIBIT 3

Empire Economics
 Dr. Joseph T. Janczyk
 Extensive Experience with Municipal Financings and Major Industry Contributor

Dr. Joseph T. Janczyk, president of Empire Economics, received his Doctorate in Economics from the University of California, and was a tenured Economics Professor at California State University where he taught courses in microeconomics, macroeconomics, regional economics, and computer modeling.

Dr. Janczyk focuses on assuring his public agency clients that the proposed developments are both efficient (that there is a real demand for the forthcoming residential, industrial and commercial office products) and equitable (that the public entity's reputation is protected in the marketplace by reducing the potential for foreclosures or defaults). He has an outstanding reputation for providing sound economic advice to the public sector, and minimizes the possibility for conflicts of interest by not providing services to the private sector, such as developers/builders.

Experience with Bond Financings

Empire Economics has performed consulting services on behalf of public entities for capital infrastructure and other related projects underlying the development of Planned Communities, Business Parks and Retail Centers as well as Toll Roads, resulting in $500+$ bond issues amounting to $\$ 12+$ billion.

Empire Economics’ experience with Mello Roos/Assessment District Financings, Mortgage Revenue Bond and other tax-exempt financings has been as follows:
\checkmark Mello-Roos/Assessment District Land Secured Financings for 420+ such bond issues amounting to $\$ 8.0+$ billion for Planned Communities which have 100-1,000+ housing units and Business Parks/Retail Centers which have 50-150+ commercial-industrial acres.
\checkmark Mortgage Revenue Bond Financings for some 80+ such bond issues with bonds amounting to \$2.0+ billion for single-family homes and apartments, to provide lower interest rate mortgage loans for qualified purchasers.
\checkmark Socioeconomic Forecasts/Market Studies for the $\$ 2.75$ billion refunding of the San Joaquin Hills and Foothill/Eastern Transportation Corridors' Toll Roads located in southern Orange County; the latter was designated as the Municipal Bond Issue of the Year for 1999.

Major Industry Contributions

Empire Economics has taken an active role in the municipal bond industry by participating in numerous events; some examples are as follows:
\checkmark UCLA Municipal Bond Financing Seminars - Featured Speaker
\checkmark Bond Buyer Conference - Panelist/Presenter
\checkmark Municipal Bond Industry Association - Panelist
\checkmark Best Practices for Continuing Disclosure - Panelist
\checkmark Appraisal Standards for Land Secured Financing by CDIAC - Panelist/Contributor
\checkmark Rating Agency and Bond Insurer Presentations - Numerous Trips to New York City
\checkmark Meetings with Municipal Bond Funds:
Bond Buyer Seminar Presentations in New York, Boston, and Chicago to 50+ Bond Funds

EMPIRE ECONOMICS

Real Estate Consulting Exclusively for the Public Sector

Empire Economics assisted various public entities with the phasing of infrastructure for the planned community of Aliso Viejo, California, which has some 20,000 residential units and 500 acres of commercial-industrial products by setting special taxes and forecasting absorption.

ABOUT US

Empire Economics performs research to provide public entities with information as to whether a CFD/Project meets their financing policy guidelines, and to identify potential risk factors that should be disclosed to prospective bond purchasers.
> Exclusive Commitment to the Public Sector: No Research Performed for Developers/Builders
> Exceeds Educational and Experience Requirements Set-Forth by CDIAC Guidelines
\rightarrow Extensive Experience with Municipal Financings and Industry Contributor: 500+ bond issues for \$12B+
> Unique Research Methods for Identifying Emerging Trends: Price Bubble Disclosure in Early 2005
> Proprietary Forecasting Model: Employment Growth and Housing Market Recovery

UNIQUE RESEARCH METHODS FOR IDENTIFYING EMERGING TRENDS:

PRICE BUBBLE DISCLOSURE IN OFFICIAL STATEMENTS STARTING IN 2005
For Example: Disclosed in CFD No. 2004-1, County of Orange (Ladera Ranch), January 19, 2005
Empire Economics extends its research beyond the conventional economic and real estate statistical models by conducting primary grass-roots surveys to identify newly emerging trends that, over time, have dramatic impacts on the real estate markets.

For example, Empire Economics became aware of the formation of a housing price bubble in early 2005 due to its on-going discussions with sales representatives at new residential projects and their mortgage lenders. By compiling and analyzing their observations, Empire Economics discovered that homeowners were only able to continue to purchase homes at significantly higher prices through the use of creative financing structures.

The following graph represents the primary economic concepts underlying Empire Economics' housing price model: the green line represents prices that households could afford based upon their incomes and conventional financing techniques while the orange/red lines represents actual housing prices.

TYPES OF CONSULTING SERVICES AND THEIR APPLICATIONS

Empire Economics' consulting services cover a broad array of issues related to municipal finance; each type of study provides guidance on a critical topic:

Price Point Study

Are the prices being used to set the Special Taxes for the CFD/Project representative of current market conditions, so that the prices for which the homeowners purchase the homes will have a tax burden that conforms to the issuer's policies, such as a maximum of 1.8% or 2.0\%?

Market Absorption Study

Is the rate of absorption for the forthcoming CFD/Project based upon probable economic and real estate conditions, so that the Appraised value represents the issuer's policy regarding a Value to Lien, typically a minimum of 3 to 1 ?

Mortgage Loan Characteristics-Homeowner Equity Study

What are the equity levels of the current homeowners in the CFD/Project, considering that homeowners with significant amounts of negative equity have much higher levels of mortgage duress and special tax delinquencies?

Assessed Value Projections Study

What are the amounts of Assessed Value (AV) growth for the public entity during the foreseeable future, based upon a comprehensive analysis of each of the relevant factors, including housing price changes and turnover rates as well as new development, and how can the AV forecast be integrated into a public entity's financial plan?

Evaluating the Competitiveness of the CFD/Project

For the remaining homes in a CFD/Project, how competitive are their prices in the marketplace, relative to other comparable new housing projects and also nearby existing homes that are for-sale, including homes that are under duress, such as foreclosures and bank owned?

Local Area Price Bubble and Economic Recovery

How did the housing price bubble for a particular public entity's geographic area, such as a City, compare to that of Southern California, as a whole, and how is the area's economy and housing market likely to recover, considering the composition of its economic base and level of its unemployment?

Monitoring Report for CFDs/ADs Bond Issues Study

How can a public entity provide increased disclosure to municipal bondholders regarding the development progress of the residential and commercial-business projects in its Community Facility Districts/Assessment Districts?

EXCEEDS EDUCATIONAL AND EXPERIENCE REQUIREMENTS SET-FORTH BY CALIFORNIA DEBT AND INVESTMENT ADVISORY COMMISSION GUIDELINES

The California Debt and Investment Advisory Commission (CDIAC) published Appraisal Standards for Land Secured Financings that have been utilized by California public entities as a basis for their land-secured financings under the Mello-Roos Act; these concepts, with regards to independence as well as qualifications and experience, are applicable to other types of municipal bond financings as well.

CDIAC Recommendations

1. Avoid Conflicts of Interest: Knowing that developers and builders may influence the outcome of a market absorption study, market absorption analysts should describe their business relations with developers and builders during the past three years in the market absorption study.
2. Educational Qualifications: The market absorption analysts should possess at least a Bachelor's degree but preferably an advanced degree with courses in real estate and economics.
3. Experience with Land-Secured Financings: The market absorption analysts should possess a minimum of five years of experience in performing market studies for land-secured financings.

Empire Economics

1A. Empire Economics conducts market absorption and other related studies EXCLUSIVELY for governmental entities, and this has provided numerous public entities with a high level of comfort.
1B. Empire Economics, as part of its study, signs a Certification of Independence stating that Empire Economics has NO contractual relationships with the developers/builders.
2. Dr. Joseph T. Janczyk, President of Empire Economics, received his Doctorate in Economics from the University of California. As a tenured Economics Professor at the California State University, he taught courses in microeconomics, macroeconomics, regional economics, and computer modeling.
3. During the past $25+$ years, Empire Economics has prepared studies for $500+$ Bond Issues, providing the comfort level required for numerous California counties, cities, school districts, water districts and other special districts to finance over $\$ 12$ billion worth of capital improvement projects.

EMPIRE ECONOMICS: SOUTHERN CALIFORNIA LAND-SECURED FINANCINGS

Contact Empire Economics with any questions or comments that you may have as we would be pleased to discuss them with you.

Joseph T. Janczyk, Ph.D.
Phone: (949) 661-7012

Email: joe@empireeconomics.com
Website: www.empireeconomics.com

September 12, 2012

Via Overnight Mail

Federal Housing Finance Agency
c/o Alfred M. Pollard, General Counsel
Eighth Floor, 400 Seventh Street, S.W.
Washington, D.C. 20024
(Comments/RIN 2590-AA53)

RE: Materials Cited in the Comments of the California Attorney General on the Federal Housing Finance Agency's Notice of Proposed Rulemaking re Property Assessed Clean Energy (RIN 2590-AA53)

Attached please find hard copies of materials cited in the comments of the California Attorney General's Office on the Federal Housing Finance Agency's Notice of Proposed Rulemaking concerning Property Assessed Clean Energy (PACE) programs. 77 Fed. Reg. 36086 (June 15, 2012).

These materials, downloaded or captured on August 7, 2012, are as follows:

- Bryan Bloom, Mary Ellen C. Nobe, and Michael D. Nobe, Valuing Green Home Designs: A Study of ENERGY STAR© Homes, 3 The Journal of Sustainable Real Estate (Apr. 2011), downloaded from http://www.costar.com/uploadedFiles/JOSRE/JournalPdfs/06.109_126.pdf. Attached.
- California Energy Commission, Database for Energy Efficient Resources (description of tool), downloaded from http://www.energy.ca.gov/deer/. Attached.
- California Public Utilities Commission, Database for Energy Efficient Resources (webbased tool), available at http://www.deeresources.com/. Page capture attached.
- California Public Utilities Commission, Database for Energy Efficient Resources 2011 Update, downloaded from

Page 2
http://www.deeresources.com/index.php?option=com content\&view=article\&id=68\&Itemid $=60$. Attached.

- California Energy Commission, Solar Advantage Value Estimator (web-based tool), available at http://www.gosolarcalifornia.org/tools/save.php. Page capture attached.
- City of New Orleans, Solar Calculator (web-based tool), available at http://neworleanssolarmap.org/. Page capture attached.
- Victoria Doyle, Building Industry Research Alliance, The Role of Appraisals in Energy Efficiency Financing (May 2012) (prepared for Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE)), downloaded from www.nrel.gov/docs/fy12osti/54329.pdf. Attached.
- Earth Advantage Institute (EAI), Certified Homes Outperform Non-Certified Homes for Fourth Year (June 8, 2011), downloaded from http://www.earthadvantage.org/resources/library/research/certified-homes-outperform-non-certified-homes-for-fourth-year/. Attached.
- Federal Home Loan Mortgage Corporation, California Single-Family Uniform Instrument, Deed of Trust, Form 3005 (Jan. 2001), downloaded from http://www.freddiemac.com/uniform/doc/3005-CaliforniaDeedofTrust.doc. Attached. (Also available at https://www.efanniemae.com/sf/formsdocs/documents/secinstruments/doc/3005w.doc.)
- Federal Housing Finance Agency, FHFA Statement on Certain Energy Retrofit Loan Programs (July 6, 2010), downloaded from www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf. Attached.
- Ann Griffin, Earth Advantage Institute, with Ben Kaufman, GreenWorks Realty and Sterling Hamilton, Hamilton Investments, LLC, Certified Home Performance: Assessing the Market Impacts of Third Party Certification on Residential Properties (May 2009), downloaded from http://www.earthadvantage.org/assets/uploads/Final report from web from greenresour cecouncil.org_site.pdf. Attached.
- Ben Hoen, Ryan Wiser, Peter Cappers and Mark Thayer, Lawrence, Berkeley National Laboratory, Environmental Energy Technologies Division, An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California (Apr. 2011), downloaded from http://eetd.lbl.gov/ea/emp/reports/lbnl-4476e.pdf. Attached.
- Jamie L. Johnson, Solar Power Electric, Geoffrey T. Klise, Sandia National Laboratories, PV Value ${ }^{\mathrm{TM}}$ User Manual v. 1.1 (Sept. 1, 2012), downloaded from http://energy.sandia.gov/?page id=8047. Attached.

Page 3

- Nils Kok, Maastricht University, Netherlands / University of California, Berkeley, and Matthew E. Kahn, University of California, Los Angeles, The Value of Green Labels in the California Housing Market / An Economic Analysis of the Impact of Green Labeling on the Sales Price of a Home (July 2012), downloaded from http://www.corporateengagement.com/files/publication/KK_Green_Homes_071912.pdf. Attached.
- National Renewable Energy Laboratory, PVWatts ${ }^{\text {TM }}$ calculator (web-based tool), available at http://www.nrel.gov/rredc/pvwatts/.
- North Carolina Energy Efficiency Alliance, Market Impacts of ENERGY STAR® Qualification for New Homes (2011), downloaded from http://ncenergystar.org/sites/ncenergystar.org/files/NCEEA_ENERGY_STAR_Market_I mpact Study.pdf. Attached.
- PACE Assessment Protection Act of 2011, H.R. 2599, 112th Cong. (2011), downloaded from http://www.gpo.gov/fdsys/pkg/BILLS-112hr2599ih/pdf/BILLS-112hr2599ih.pdf. Attached.
- Sandia National Laboratory, PV Value ${ }^{\mathrm{TM}}$ Photovoltaic Energy Valuation Model (webbased tool), available at http://energy.sandia.gov/?page id=8047. Page capture attached.
- Steven R. Schiller, Schiller Consulting, Inc., Model Energy Efficiency Program Impact Evaluation Guide (Nov. 2007), prepared for U.S. EPA, downloaded from http://www.epa.gov/cleanenergy/documents/suca/evaluation guide.pdf. Excerpt (pages 5-1 through 5-3) attached.
- Sonoma County Energy Independence Program, Annual Payment Calculator (web-based tool), available at http://www.sonomacountyenergy.org/lower.php?url=annual-paymentcalculator. Page capture attached.
- Sonoma County Energy Independence Program, Contractor Standards (June 28, 2011), downloaded from http://drivecms.com/uploads/sonomacountyenergy.org/Contractor_Standards.pdf. Attached.
- Sonoma County Energy Independence Program, Find a Contractor (web-based tool), available at http://www.sonomacountyenergy.org/lower.php?url=find-a-contractor. Page capture attached.
- Sonoma County Energy Independence Program, Main Page, downloaded from http://www.sonomacountyenergy.org/. Page capture attached.
- U.S. Department of Energy, Energy and Cost Savings Calculators for Energy-Efficient Products (compilation of web-based tools), available at http://www1.eere.energy.gov/femp/technologies/eep eccalculators.html. Page capture attached.

Federal Housing Finance Agency
September 12, 2012
Page 4

- U.S. Department of Energy, Estimating the Cost and Energy Efficiency of a Solar Water Heater (May 30, 2012), downloaded from
http://energy.gov/energysaver/articles/estimating-cost-and-energy-efficiency-solar-waterheater. Attached.
- U.S. Department of Energy, New Orleans Solar Calculator (description of program), downloaded from
http://www4.eere.energy.gov/solar/sunshot/resource center/resources/new orleans solar calculator. Attached.

We request that FHFA consider these materials, including the cited web-based tools, and include them as part of the rulemaking record.

> Sincerely,
/s/
JANILL RICHARDS
Supervising Deputy Attorney General JASON MALINSKY
Deputy Attorney General
For KAMALA D. HARRIS
Attorney General

Attachment

Valuing Green Home Designs: A Study of ENERGY STAR ${ }^{\circledR}$ Homes

Authors Bryan Bloom, MaryEllen C. Nobe, and Michael D. Nobe

Abstract

A number of researchers have attempted to isolate the incremental effect of energy efficiency on home value; however, few studies have benefited from the availability of a comprehensive and continuous indicator of home energy efficiency such as the ENERGY STAR ${ }^{\circledR}$ program. This case study builds on past research by comparing original sale prices between ENERGY STAR qualified homes and non-ENERGY STAR qualified homes in Fort Collins, Colorado. Sale prices were analyzed using hedonic regression analysis. Results indicate that ENERGY STAR homes originally sold for $\$ 8.66$ more per square foot than nonENERGY STAR homes.

Homebuyers in the United States play a significant role in reducing fuel consumption and the resulting carbon emissions. "The housing sector provides a number of opportunities to address two urgent national goals-reducing greenhouse gases and U.S. foreign oil dependence," (Fernald, 2009). Total energy consumption, including both primary energy and renewable energy, in the U.S. residential sector has averaged 18.093 quadrillion Btu between 1980 and 2005 according to the U.S. Energy Information Administration (EIA, 2010). Residential energy consumption was 15.759 quadrillion Btu in 1980; by 2005, it had increased 37% to 21.659 quadrillion Btu (EIA, 2010). In comparison, the commercial sector averaged 14.105 quadrillion Btu and the transportation sector averaged 23.249 quadrillion Btu per year between 1980 and 2005 (EIA, 2010). In 2005, the majority of residential energy consumption was for space and water heating (Elliot, Langer, and Nadel, 2006).

Beyond the impact of residential energy consumption on total U.S. energy consumption, the level of energy efficiency designed into a home also has a direct bearing on homeownership costs. According to the Consumer Expenditure Survey, 34% of homeowners' average annual expenditures were on housing in 2009 (Bureau of Labor Statistics, 2010). Of the amount spent by homeowners on their housing, 21.5% went to pay for utilities. In comparison, 13% of household annual expenditures were on food and 16% were for transportation costs in 2009. Since housing expenditures comprise such a significant portion of the average household budget, any reduction in operating and maintaining of homes will have direct benefits to homeowners in terms of reducing the overall cost of housing. By choosing to place more value on unseen amenities such as added insulation, infiltration reduction, duct sealing, or high efficiency furnaces versus other more visible amenities (i.e., marble flooring and granite counters), homeowners can realize significant reductions in utility requirements necessary to heat and cool
their homes (NAPEE, 2011). For example, homes designed and built to ENERGY STAR $^{\circledR}$ standards are at least 15% more energy efficient than homes built to the 2004 International Residential Code, while many are $20 \%-30 \%$ more efficient than standard homes ("Features and Benefits", n.d.; NAPEE, 2008). The result is both reduced homeownership costs and reductions in U.S. residential energy consumption and carbon emissions (Elliott, Langer, and Nadel, 2006; Fernald, 2009).

Although it is evident that energy-efficient homes can play a significant role in reducing U.S. energy consumption, greenhouse gas emissions, and home ownership expenses, widespread adoption and incorporation of energy-efficient designs and construction practices have been slow. Currently, energy-efficient homes only account for 21% of U.S. new home construction (2009 ENERGY STAR Qualified New Homes, 2010). Researchers have identified numerous reasons for this lack of implementation, including transaction costs, lack of information, uncertainty of energy savings, split incentives, and initial capital investment (Elliott, Langer, and Nadel, 2006; Fuller, 2009). Significant to this study are homebuilders' perceptions that initial capital investments for increased energy efficiency will not be recaptured through energy savings or capitalization of these investments when the home is sold (Galuppo and Tu, 2010). As long as these perceptions persist among homebuilders, they will remain reluctant to invest in these systems and the residential market will continue to be a significant contributor to U.S. greenhouse gas emissions (Lande, 2008). Ultimately, the value consumers place on energy-efficient residential design either encourages or hinders further incorporation of energy-efficient features into homes (Galuppo and Tu, 2010).

Compounding this issue is the relatively short periods for which U.S. homeowners own their homes. On average, U.S. homeowners tend to sell their home every eight years (Dacquisto, Emrath, Laquatra, and Laitner, 2001; Lande, 2008). Generally, for homeowners to justify additional design and construction costs related to increasing energy efficiency from an economic stand point, they must believe that they will recoup the added capital investments either through (1) reduced utility bills during the time they own their home, (2) an increased sales price, or (3) some combination thereof (Lande, 2008). Because payback periods for many energy efficient upgrades can easily exceed the duration homeowners typically own their homes, and little evidence exists to give them confidence that these costs will be capitalized into the sales price, many homeowners rationally conclude that added construction costs for increased energy efficiency are not economically justifiable.
Ultimately, homebuyers play a significant role in determining what role the residential sector will play in addressing U.S. energy consumption, greenhouse gas emissions, dependence on foreign oil, and home ownership costs. Through their purchasing behaviors, homebuyers either support or hinder progress within the residential sector in meeting the aforementioned objectives. If homebuyers are not willing to realize the capitalization of increased energy efficiency in the purchase of a home, builders will remain reluctant to include energy-efficient design and strategies in their projects. For energy-efficient building practices to
become more prevalent, it must be established that homebuyers are willing to pay more for energy-efficient homes, which is consistent with basic economic theory (Laquatra, Dacquisto, Emrath, and Laitner, 2002; Lande, 2008).

Incorporation of energy-efficient designs and construction techniques offer have the potential to offer immediate cash-flow benefits on monthly or yearly returns. As a result, buyers should be willing to pay more for homes with lower utility bills in anticipation of savings on future costs of operation, and consequently, sellers should attempt to charge more for homes with energy efficient features Laquatra, Dacquisto, Emrath, and Laitner, 2002). Mandell and Wilhelmsson (2011) found that homeowners are willing to pay for increased energy efficiency. Other studies, however, that have sought to provide empirical evidence that homebuyers are in fact paying more for energy-efficient homes have suffered from the challenges inherent in quantifying energy efficiency in a manner that is recognized in the marketplace (Dacquisto, Emrath, Laquatra, and Laitner, 2001). Homes are complex commodities; finding historical and observable data to support the hypothesis that energy efficiency positively impacts housing values is difficult, especially when numerous other aesthetically-pleasing features exist that presumably take precedence over utility bills. Previous research studies attempting to capture and report the incremental value of energy efficiency have not had the benefit of utilizing a comprehensive measure of home energy efficiency. Not until recently has an assessment tool existed that allows researchers to easily identify which homes are more energy efficient. When the Environmental Protection Agency (EPA) extended its ENERGY STAR rating to homes, it created an easily identifiable metric of residential energy efficiency based on a Home Energy Rating System (HERS) index. The purpose of this study is to extend previous research to approach a more accurate answer to the question of whether or not and to what extent housing markets capitalize the value of energy efficiency using ENERGY STAR labeling.
The research question guiding this study is: Do homes constructed with more energy-efficient building systems, as qualified by the ENERGY STAR labeling program, have higher market values than non-ENERGY STAR qualified homes? If so, how much more are they worth?
Based on this question, the following hypothesis was developed:
H_{1} : ENERGY STAR rated homes will have higher sales prices than comparable non-ENERGY STAR rated homes in the study area.

Review of Literature

The literature review focuses on prior studies of capitalization of energy efficiency within the residential markets. Although this topic has received considerable attention in the commercial real estate sector (both in the U.S. and internationally), there has been considerably less research relevant to this study conducted in the residential section. In 2001, the EPA sponsored a comprehensive analysis of published research literature titled The Value of Energy Efficiency in Housing:

JOSRE	Vol. 3	No. 1-2011

Review and Analysis of the Literature (Dacquisto, Emrath, Laquatra, and Laitner, 2001). The report presents a review of published research on the capitalization of energy efficiency in housing over a 20 -year history. Their report focused primarily on using past applications of hedonic regression analysis and, to a lesser extent, willingness-to-pay surveys to determine if energy efficiency is reflected in home values.

Sopranzetti (2010) explains hedonic regression as an analytical process that allows for the deconstruction of home prices into their component parts to determine how individual components contribute to the overall value. Similarly, Meese and Wallace (1997) define hedonic regression as a way of estimating the value of a complex commodity with a bundle of attributes, such as a house, by modeling the price of that commodity as a function of the particular set of attributes it possesses. Each attribute is valued independently and contributes its individual value to the overall value of the commodity, making it easier to observe the market value of each attribute by itself. For example, appraisers can use hedonic regression to determine the value of house attributes such as structural characteristics (e.g., square footage, number of rooms, number of bathrooms, and known defects), neighborhood characteristics (e.g., quality of the school system and/or neighborhood), or location within a given market (Sopranzetti, 2010). Energy efficiency, the attribute of most interest to this study, can also be identified and included as an analysis component in hedonic regression to determine its contribution to overall home value.

Hedonic Regression Studies

The literature on hedonic house price models reviewed for this study dates back two and a half decades and includes many different methodologies. A summary of studies reviewed is provided in Appendix A. The collective results of these studies (Exhibit 1) indicate varying levels of capitalization of energy efficiency when homes are sold (Nevin and Watson, 1998; Dacquisto, Emrath, Laquatra, and Laitner, 2001); yet, the body of research as a whole suffers from challenges associated with identifying levels of residential energy efficiency. This shortcoming hinders integration of these findings into property appraisals; as a result, homebuilders are reluctant to trust that additional cost for increased energy efficiency design/construction will be capitalized in the future.

Some consistency is evident in the studies among the attributes identified for inclusion in the hedonic regression analysis (see Appendix A for a summary table), although considerable variations are also apparent and worthy of review. While all studies reviewed attempted to control for the various factors contributing to home value, all did so to a different degree. Furthermore, the studies reviewed included a wide range of sample sizes and variables in an effort to best identify the incremental market value of energy efficiency (Laquatra, 2002). An overview of the methodologies utilized in the studies is provided in Appendix B. In total, eight studies were reviewed. All but one were limited to small geographic markets and short periods of time. Sample sizes for these studies ranged from 67 to more than 15,000 ; the majority of studies had sample sizes between 81 and 505 .

Exhibit 1 | Key Results From Hedonic Studies

Reference	Key Findings	R^{2}
Halvorsen (1981)	The 1974 spike in relative cost of fuel oil raised price differential between gas- and oil-heated houses to $\$ 761$ in 1974, and up to $\$ 4,597$ in the first half of 1975.	0.75
Corgel (1982)	Value of energy-efficient homes (with lower structural heat loss) was $\$ 3,248$ higher than inefficient homes.	0.73
Johnson (1983)	Home value increased by about $\$ 20.73$ for every $\$ 1$ in annual fuel bills.	0.80
Longstreth (1986)	A one inch increase in wall insulation increased home value by $\$ 1.90$ per square foot; a one inch increase in ceiling insulation increased home value by $\$ 3.37$ per square foot; high quality (energy efficient) windows increased home value by $\$ 1.63$ per square foot.	0.43
Laquatra (1989)	Home value increased by $\$ 2,510$ for each one-point decrease in thermal integrity factor.	0.67
Dinan (1989)	Home value increased by $\$ 11.63$ per $\$ 1$ decrease in fuel expenditures needed to maintain a home at 65 degrees F in average heating season.	n / a
Horowitz (1990)	Home value increased by about $\$ 12.52$ per $\$ 1$ decrease in electric bills, consistent with home buyers discounting savings at after-tax mortgage interest rate.	0.86
Nevin (1998)	Home value increased by about $\$ 20$ for every $\$ 1$ reduction in annual fuel bills.	0.41

Note: The sources are Nevin and Watson (1996) and Dacquisto, Emrath, Laquatra, and Laitner (2001).

Additionally, some of the samples looked strictly at new or nearly-new homes, some looked only at resale values, and others looked at all sales data within a given marketplace (Dacquisto, Emrath, Laquatra, and Laitner, 2001). Following is an overview of the variables used in each study reviewed.
Structural Variables. Structural variables account for the physical characteristics that contribute to home value (Sopranzetti, 2010). All of the studies reviewed included square footage as a structural variable while also controlling for property age to some degree. Additional structural variables most often included in the models were number of bathrooms, lot size, fireplaces, and garages. Only two of the eight studies reviewed account for all of the aforementioned variables. In some cases, the absence of certain variables may be the result of data limitations. Nevertheless, these variables have been found to have significant effects in the other regression analyses; failure to include these variables would compromise internal validity.
Neighborhood and Locational Variables. Neighborhood and locational variables represent the locational quality of a property within a community (Sopranzetti, 2010). The handling of neighborhood and locational variables differed significantly across the reviewed studies. These factors are not binary variables; they are not have or have-not items. As a result, it is not easy to quantify them
on a numerical scale, unlike size and age, making it difficult to measure the impact of their exclusion or mistreatment in a regression study. All but two of the reviewed studies included some degree of locational effects. For example, one study used distance to the central business district, while another used distance to the nearest interstate ramp. In smaller sample sizes with relatively few subdivisions, it may be easier to control for locational effects and more simplified criteria may suffice.
Energy Efficiency Variables. Energy efficiency variables represent different measures of energy conservation resulting from home design/construction. In the studies reviewed, significant differences existed on the approach used to identify energy efficiency. Some treated energy efficiency as a binary variable while others used utility bills as proxies for energy efficiency. For example, in one study energy efficiency was based solely on the type of fuel (natural gas or oil) that was used to heat the house. Another study based energy efficiency on roof temperatures as measured using infrared aerial photographs. All of these studies ignored other contributing factors to home energy efficiency, which is reflective of the difficulty inherent in identifying a single measure of energy efficiency. Because energy efficiency is clearly not a simple either-or phenomenon, it will be difficult to generalize results from studies employing this sort of methodology.

Other studies reviewed by Dacquisto, Emrath, Laquatra, and Laitner (2001) identify energy efficiency as the sum of four attributes: inches of wall insulation, inches of ceiling insulation, presence of storm windows and/or thermopane glass, and presence of wood/vinyl window frames. In these studies, separate coefficients are assigned to represent the implicit price of each of these features. A major limitation of this approach is that information on specific physical features contributing some level of energy efficiency may not be available in many data sets.

One particularly relevant study reviewed by Dacquisto, Emrath, Laquatra, and Laitner (2001) is the Laquatra (1986) study (Appendix B). Laquatra constructed a continuous variable called the "Thermal Integrity Factor" (TIF) to represent varying levels of energy efficiency. TIF assesses the annual heating load as measured in Btu per square foot of heated floor space per heating degree day, although it does not adjust for equipment efficiency, duct and distribution system losses, differences in fuel type, and energy usage for water heating, cooling, and other purposes. All of these deficiencies could result in differences in utility bills for houses with the same TIF and floor area (Dacquisto, Emrath, Laquatra, and Laitner, 2001). Application of this approach is also limited by the ability to obtain the data needed to calculate the TIF variable.

Based on the review of these studies, a minimal level of consistency can be identified with respect to which structural, neighborhood, and locational variables should be included in hedonic regression analysis of home values. Prior measures of energy efficiency, however, vary considerably. It is clear from the studies reviewed that identifying a usable measure of energy efficiency has been problematic. As a result, replication and application of study results have been limited, as evidenced by a general lack of application within the appraisal industry.

The measures of efficiency utilized in these studies were based on information that is simply not easily accessible to appraisers.

Improving Methodology

Despite the limitations of research investigating how housing markets capitalize the value of home energy improvements, it still remains consistent with economic theory that such a phenomenon occurs to some degree. Improved methodologies are needed to enable more reliable and implicit conclusions; hedonic regression models seem to be the most effective way of achieving these conclusions (Dacquisto, Emrath, Laquatra, and Laitner, 2001; Sopranzetti, 2010). While each regression study possesses its own set of weaknesses, the ones reviewed here do take significant steps toward employing a reliable analysis. Taken together, all of the models provide a seemingly comprehensive list of explanatory variables that should encourage future studies to include as many of them as possible. The challenge remaining is to incorporate better identifiers of energy efficiency that are also accessible to appraisers.

Since these studies were conducted, better measurements of energy efficiency have become available, such as ENERGY STAR labeling for homes, LEED for Homes, and the National Green Building Standard. Third-party ratings of homes as either green or energy efficient provides a paper trail for appraisers to incorporate into appraisals. This paper trail provides the documentation necessary to support the analysis of a high performance home and measurements of contributory value (Admoatis, 2010).

Green Home Assessment Tools

The green building industry has grown substantially in the last few decades. At the same time, several green home assessment tools have entered the residential market, providing consistent assessments of varying levels of energy efficiency and essentially creating a branding for energy-efficient homes that is readily identifiable. Current assessment tools for the residential market include the Environmental Protection Agency's (EPA) ENERGY STAR rating, the U.S. Green Building Council's LEED for Homes, and the National Association of Home Builders' National Green Building Standard. Each of these assessment tools sets forth various criteria to ensure that the homes certified met a minimum level of increased energy efficiency compared with more common building designs and construction practices. While each assessment tool has its strengths and weaknesses, it is not the purpose of this paper to provide an in-depth review of these assessment tools and the comparable levels of energy efficiency between assessments. Rather, the purpose is to access the impact of energy efficiency branding on the ability to isolate increases in home value as a result of increased energy efficiency. Since consumers are likely to be more familiar with the ENERGY STAR rating system, which has been in existence longer than the other two rating systems, this system was chosen for use in this study.
ENERGY STAR. In an attempt to reduce the emission of greenhouse gases, the EPA introduced the ENERGY STAR program in 1992. The purpose of this voluntary program was to identify and promote energy-efficient products designed

JOSRE	Vol. 3	No. 1-2011

to reduce greenhouse gas emissions. The ENERGY STAR label was initially listed only on items such as major appliances, office equipment, lighting, and home electronics. It has since expanded to include the construction of new homes, taking on a whole-house approach to measure energy efficiency. To qualify as ENERGY STAR labeled, a home must (a) meet the appropriate Home Energy Rating System (HERS) Index, (b) be verified and field-tested in accordance with the Residential Energy Services Network (RESNET) Standards by a RESNET-accredited provider, and (c) meet all applicable codes ("The Performance Path," n.d.).

Methodology

A sample of 300 homes in Fort Collins, Colorado were selected to test the research question and related hypothesis guiding this study. The sample consisted of 150 ENERGY STAR qualified homes and 150 non-ENERGY STAR qualified homes. While this sample selection limits the application of the results to a broader population, it is within the range of sample size commonly utilized for similar studies. Sample homes were identified using energy rating data available through E-Star Colorado and the county assessor's records. For each ENERGY STAR home included in the data set, a comparable home in the surrounding area was identified. To control for the considerable effect of location on home price, comparable homes were identified as close to the ENERGY STAR homes as possible based on address information. Generally comparable homes were at most 2-3 miles from the ENERGY STAR homes. It should be noted that although Fort Collins is a college town, all of the homes included in the study were in newer subdivisions that were located away from the campus community. Further, the study is delimited to single-family detached homes constructed during or after 1999 since newer homes have presumably higher levels of energy efficiency. Delimiting the study to nearly new homes also avoids the challenges of evaluating efficiency across homes of vastly different ages (Adomatis, 2010). Sales for all homes occurred between 1999 and 2005. When selecting comparable properties, it was also important to ensure that these properties were not infarct ENERGY STAR homes. To control for this, the builder name listed in the county assessor's records was cross-checked with the list of participating ENERGY STAR builders as listed on the ENERGY STAR website.

Data and Analysis

Consistent with related literature on hedonic regression, the regression used in this study contains several independent variables (Exhibit 2). Original sale price per square foot is the dependent variable. The expected relationship between each independent variable and the dependent variable is indicated under the heading Expected Relationship (Exhibit 2). All of the model variables, with the exception of BaseFin, Quality, CovProch, and ENERGYSTAR, are scale variables. Variables appearing with a subscript " d " are considered dummy variables. These variables were measured in binary terms, whether or not a feature is present. For dummy variables, a value of 1 was given if the feature was present and 0 if the feature

Exhibit 2 | Independent Variables and Expected Sign of Coefficient

Variable	Description	Expected Relationship
Age	Age of home in years	-
TotalSF	Total finished square feet of home	+
LotSF	Size of lot in square feet	+
BaseSF	Total basement square feet	+
BaseFin $_{(d)}$	Whether or not home has finished basement	+
Stories	Number of stories	+/-
Bedrooms	Number of bedrooms	+
Bathrooms	Number of bathrooms	+
Quality (d)	Superior quality of construction	+
CovPorch (d)	Whether or not home has covered porch	+
GarageSF	Total garage square feet	+
ENERGYSTAR ${ }_{(d)}$	Whether or not home is ENERGY STAR ${ }^{\text {® }}$ qualified	+

Note: A subscript d represents a dummy variable.

Exhibit $3 \mid$ Regression Coefficients and P-Values

Variable	Coeff.	p-Value
Age	$-3.981^{* * *}$	<. 001
LotSF	$0.002^{* *}$. 001
TotalSF	$-0.038^{* * *}$	<.001
BaseSF	$0.018^{* * *}$	<. 001
BaseFin $_{(d)}$	0.395	. 912
Stories	-6.594	. 069
Bedrooms	-0.065	. 969
Bathrooms	4.765	. 057
Quality	5.830**	. 013
$\mathrm{CovPorch}_{(d)}$	-3.141	. 362
GarageSF	$0.043^{* * *}$	<. 001
ENERGYSTAR $_{\text {(d) }}$	8.664**	. 005
R^{2}	73.5\%	

Notes: A subscript d represents a dummy variable.

* $p<.05$
** $p<.01$
*** $p<.001$
was absent. The variable Quality is based on the quality indicator included in the county assessor's records.

Independent variables with a positive Expected Relationship are expected to increase house value as buyers are expected to pay more for houses with these amenities. Age, the only variable with a negative coefficient, is expected to have a negative effect on house value as buyers are expected to pay less for older homes (Exhibit 3). Number of stories does not have a predictable coefficient as the decision to buy a ranch or two-story house is presumably a decision of preference, not superiority. The quality variable is a seemingly subjective judgment of home construction, yet it is expected to be a strong indicator of home value. Quality ratings were provided within the county assessor's data. Homes could be rated as poor, average, or good. All of the homes in the data set were rated as being either of average or good quality.

Results

The result of the regression analysis for the independent variables identified in Exhibit 2 and the dependent variable sales price was statistically significant at $p<.01$. The R^{2} value was .735 , indicating that 74% of the market valuation variation could be explained by the model. The effect size for the model was large ($r=.857$) and it had good internal reliability as evidenced by a Cronbach's alpha of .317 . The absolute coefficient (β) values for the independent variables included in the model ranged from a low of 0.018 to a high of 8.664. Independent variables with beta approaching zero essentially have minimal effect on the sales price, while variables with larger beta have a greater impact on sales price.
Almost all of the non-energy coefficients have the expected signs with the exception of TotalSF and Bedrooms; the latter of which is not statistically significant ($p=.969$). The coefficient of the ENERGYSTAR variable was statistically significant at $p<.01$. The beta of the ENERGY STAR variable is 8.664, higher than any other predictor variable.

TotalSF, one variable that would seem to be a strong predictor of home value, had a surprisingly negative coefficient, as well as a significant p-value. This may be because TotalSF is strongly correlated with other variables (e.g., LotSF and Quality) and that there might be a diminishing point of return for additional square footage (Nevin and Watson, 1998). Another possible reason for this result is that homebuyers that are more aware of the environmental impact of buildings may place more value on a smaller home that uses less materials and is more energy efficient. Bedrooms did not have a significant effect on sale price, even though this is typically a significant factor in residential pricing. Again, this may be due to inefficiency in recognizing collinearity. Future studies might benefit from considering and testing for collinearity and providing an approach to account for such correlation.

Two important limitations of these results were the exclusion of a location variable and the use of only ENERGY STAR rated homes. The model used in this study
did not address locational effects on home price. The data set used did not include quantifiable information on the market effect of locational variation. Instead, the researchers controlled for locational impacts by identifying comparables homes based proximity to ENERGY STAR certified homes. Had a locational variable been included in the data set, it is expected that the beta for ENERGYSTAR would be lessened but would not change from a positive to a negative relationship. Additionally, it would be expected that a significant amount of collinearity would exist between a locational variable and the ENERGYSTAR variable (and possibility $A G E)$ since all of the homes were located in fairly new neighborhoods. It is recommended that future studies include a locational variable.

Further, employing the ENERGY STAR label and accompanying home energy rating as the determinant and measure of home energy efficiency does not take into account that homes without the ENERGY STAR label may have an equal or greater degree of energy efficiency. The purpose of focusing on ENERGY STAR homes was simplify the identification of energy efficient homes as this was identified as a significant challenge in previous studies. Additionally, identification of energy-efficient homes without third-party certification by either homebuyers or appraisers would require thorough understanding of design and construction strategies by homebuyers (or appraisers) as homes may be marketed as energy efficient when in fact they are not (Adomatis, 2010). Therefore, this study focused only on ENERGY STAR labeled homes. The purpose of this study, however, was to test the impact of third-party certification of home energy efficiency on market prices paid by consumers. In the area where this study was conducted, the results provide further support for added contributory value in the assessment of a certified energy-efficient home.

Conclusion

Although significant awareness exists on the impact of energy consumption by the U.S. residential sector, adoption of energy-efficient residential designs has been slow. Of most concern to homebuilders is the perception that the added costs related to increased energy-efficient design and construction will not be recognized when the home is sold (Galuppo and $\mathrm{Tu}, 2010$). This concern has persisted even though prior studies have provided empirical evidence of consumers who recognize the contributory value of increased energy efficiency. These past studies, however, used measures of energy efficiency that were not easily replicable or recognizable by homebuyers, appraisers, or homebuilders. In recent years, several third-party certifications have become available that can be used to address this shortcoming of prior studies. Third-party certification can be used to document the incorporation of design and construction techniques (Adomatis, 2010). One well-established certification is the EPA's ENERGY STAR labeling for homes. By incorporating ENERGY STAR certification into a hedonic regression analysis of sales prices for homes in Fort Collins, Colorado, this study provides a much needed update on homebuyers' willingness to pay for increased energy efficiency.

The model tested in this study and which incorporated ENERGY STAR certification had an R^{2} of 74%, consistent with the range of R^{2} values for similar

JOSRE	Vol. 3	No. 1-2011

models (see Exhibit 1), which ranged from a low of 0.41 to a high of 0.86 . These results support the hypothesis that ENERGY STAR rated homes will have higher sales prices than comparable non-ENERGY STAR homes in the study area. Results indicate that ENERGY STAR homes originally sold for $\$ 8.66$ more per square foot than non-ENERGY STAR homes in the study area.
This study provides additional empirical evidence that homebuyers recognize the contributory value of increased energy efficiency. There is also evidence that the use of a third-party certification such as the ENERGY STAR rating system is valued by residential consumers. As similar assessment tools of residential energy efficiency (e.g., USGBC's LEED for Homes or the NAHB's National Green Building Standard) become more prevalent, similar cost premiums will be found for those homes as well. Further analysis, however will be needed to verify these predictions across other residential energy assessment tools. As additional studies are conducted, their combined results should strengthen the market for energyefficient homes that are third-party certified. This, in turn should result in an increased percentage of new homes that are designed and constructed to be more energy efficient and an overall reduction in the energy consumption of the U.S. residential sector.

Appendix A

Review of Hedonic Studies

		Market Area, Time Period, and Types of Homes Included	Sample Size	Age of Homes in Sample

Appendix A (continued)			
Review of Hedonic Stu dies			

Appendix B

Variables Used in Hedonic Studies

Reference	Halvorsen \& Pollakowski (1981)	Corgel, Goebel, \& Wade (1982)	 Kaserman (1983)	Longstreth (1986)	Laquatra (1986)	 Miranowski (1989)	 Haeri (1990)	 Watson (1998)
Dependent Variable	Sale Price	Sale Price	Sale Price	Sale Price / Sf	Sale Price	Sale Price	Sale Price	Occupant- Estimated Market Value
Independent Variables	-	Area (sf) Age (yrs) \# of bathrooms 2-car garage (D) Central air condifioning (D) Date (month of sale $=100-$ 112) Fireplace (D) Brick veneer (D) Cedar roof (D) Infra (D)	Util (\$/yr, ending) Size (sf) Age (yrs) \# of bathrooms Ranch (D) Split foyer (D) 2-Story (D) Brick (D) Carport (D) Garage-1car (D) Garage-2car+ (D) Patio (D) Deck (D) Paved drive (D) Fireplace (D) Unit air (D) Central air (D) A index (D) Census increase from 78\% black within census tract Population density City lot (sf)	House size (sf) \# of bathrooms \# of stories House age (yrs) Distance to central business district Pupils per teacher Sale year Ceiling insulation Wall insulation Wood or vinyl window frames	Area (sf) Lot size (sf) Duplex (D) Attached (D) Thermal integrity factor Median house value for census tract Per pupil expenditure Mean commute for census tract Distance to interstate ramp	Floor area (sf) \# of bedrooms \# of bathrooms Family room (D) Dining room Lot (100 sf) Dishwasher (D) Central air conditioning (D) Window air conditioning (D) Garage-1 car Garage-2 car Garage (D) Fireplace (D) Age (yrs) Census income Basement (D) Miles from central business district	Floor area (sf) Heat pump (D) \# of bathrooms Fireplace (D) Wood/tile roof (D) Note: A second regression with different sample used to estimate electricity use: Model Conservation Standards (D) Floor area (sf) Household size Household income Wood stove (D) Electric blanket or bed heaters (D) Central thermostat (D) Dishwasher (D) Electric dryer (D) \# TVs/computers Electric water for tub/sauna (D)	Unit (sf) Lot size (sf) Age (years) \# of rooms Total utilities (all fuels) Lot size Unit size times total utility \# of rooms times total utility Garage (D) Porch (D) Central air conditioning (D) South (D) West (D) Midwest (D) Urban (D) Rural (D)

```
Appendix B (continued)
Variables Used in Hedonic Studies
```

Reference	 Pollakowski (1981)	Corgel, Goebel, \& Wade (1982)	 Kaserman (1983)	Longstreth (1986)	Laquatra (1986)	 Miranowski (1989)	 Haeri (1990)	 Watson (1998)
Dependent Variable	Sale Price	Sale Price	Sale Price	Sale Price / Sf	Sale Price	Sale Price	Sale Price	Occupant- Estimated Market Value
Method of Measuring Energy Efficiency	Fuel type used to heat home (natural gas or oil)	Existence of either a cold roof lenergy efficient) or a warm roof (not energy efficient)	Utility bills	Inches of insulation, presence of storm windows and/or thermopane glass, presence of wood/vinyl window frames	Thermal Integrity Factor $=$ annual heating load for the house, measured in $\mathrm{Btu} / \mathrm{sf}$ of heated floorspace / heating degree day	Utility bills/sf	Construction to meet Model Conservation Standards	Utility bills

Notes: The source is Dacquisto, Emrath, Laquatra, and Laitner (2001).
sf = square feet
yrs $=$ years
$\mathrm{D}=$ Dummy, or indicator variable

References

2009 ENERGY STAR ${ }^{\circledR}$ Qualified New Homes Market Indices for States. (2011, May). Retrieved from http://www.energystar.gov/index.cfm?fuseaction=qhmi. showHomesMarketIndex.
Adomatis, S.K. Valuing High Performance Houses. The Appraisal Journal, 2010, 195-201.
Blanchard, S. and P. Reppe. Life Cycle Analysis of a Residential Home in Michigan. University of Michigan, School of Natural Resources and Environment, 1998. Retrieved from http://css.snre.umich.edu/css_doc/CSS98-05.pdf.
Bureau of Labor Statistics. Consumer Expenditure Survey. October 5, 2010. [On-line data file]. Retrieved from http://www.bls.gov/cex/.
Carliner, M., L. Bowles, and J. Nebbia. The Valuation of Energy Efficiency in Homes. Report prepared for: Washington, DC: U.S. Department of Housing and Urban Development, December 2008.
Corgel, J.B., P.R. Goebel, and C.E. Wade. Measuring Energy Efficiency for Selection and Adjustment of Comparable Sales. The Appraisal Journal, 1982, 50:1, 71-8.
Dacquisto, D.J., P. Emrath, J. Laquatra, J.A. Laitner. The Value of Energy Efficiency in Housing: Review and Analysis of the Literature. Washington, DC: U.S. Environmental Protection Agency, 2001.
Dinan, T.M. and J.A. Miranowski. Estimating the Implicit Price of Energy Efficiency Improvements in the Residential Housing Market: A Hedonic Approach. Journal of Urban Economics, 1989, 25, 52-67.
Elliott, R.N., T. Langer, and S. Nadel. Reducing Oil Use through Energy Efficiency: Opportunities beyond Cars and Light Trucks. Report No. E061. Washington, DC: American Council for an Energy-Efficient Economy, January 2006.
EIA (U.S. Energy Information Administration). Total Energy. August 19, 2010. Retrieved from http://www.eia.gov/totalenergy/data/annual/index.cfm\#consumption.
Features and Benefits of ENERGY STAR ${ }^{\circledR}$ Qualified New Homes. (n.d.). Retrieved from http://www.energystar.gov/index.cfm?c=new_homes.nh_features.
Fernald, M. (ed.). The State of the Nation's Housing 2009. Cambridge, MA: Harvard University, Joint Center for Housing Studies, 2009.
Fuller, M. Enabling Investments in Energy Efficiency: A Study of Energy Efficiency Programs that Reduce First-cost Barriers in the Residential Sector. Berkeley, CA: California Institute for Energy and Environment at University of California, May 21, 2009.
Galuppo, L.A., and C. Tu. Capital Markets and Sustainable Real Estate: What are the Perceived Risks and Barriers? Journal of Sustainable Real Estate, 2010, 2:1, 144-59.
Halvorsen, R. and H.O. Pollakowski. The Effects of Fuel Prices on House Prices. Urban Studies, 1981, 18;2, 205-11.
History of ENERGY STAR $^{\circledR}$. (n.d.). Retrieved from http://www.energystar.gov/ index.cfm?c=about.ab_history.
Horowitz, M.J. and H. Haeri. Economic Efficiency v. Energy Efficiency-Do Model Conservation Standards Make Good Sense? Energy Economics, 1990, 12:2, 122-31.
Johnson, R.C. and D.L. Kaserman. Housing Market Capitalization of Energy-saving Durable Good Investments. Economic Inquiry, 1983, 21, 374-86.
Lande, C.D. Homeowner Views on Housing Market Valuation of Energy Efficiency: An Empirical Investigation. Unpublished doctoral dissertation, University of Montana, Montana, 2008.

Laquatra, J. Housing Market Capitalization of Thermal Integrity. Energy Economics, 1986, 8:3, 134-38.
-_. The Value of Energy Efficiency. Housing and Home Environment News. Winter 2002. Retrieved from http://housing.cce.cornell.edu/f-sht-pdf\ libraries/hhe-nEWS-LETTERS/HHE-news-winter-02.pdf.
Laquatra, J., D.J. Dacquisto, P. Emrath, and J.A. Laitner. August 2002. Housing market capitalization of energy efficiency revisited. Proceedings of the 2002 American Council for an Energy Efficient Economy (ACEEE) Summer Study on Energy Efficiency in Buildings. Retrieved from http://www.reneuer.com/upload/RENEUER-ClHouse-040.pdf.
Longstreth, M. Impact of Consumers' Personal Characteristics on Hedonic Prices of Energy-Conserving Durables. Energy, 1986, 11:9, 893-905.
Mandell, S. and M. Wilhelmsson. Willingness to Pay for Sustainable Housing. Journal of Housing Research, 2011, 20:1, 35-51.
Meese, R.A. and N.E. Wallace. The Construction of Residential Housing Price Indices: A Comparison of Repeat Sales, Hedonic Regression, and Hybrid Approaches. Journal of Real Estate Finances and Economics, 1997, 14, 51-73.
NAPEE (National Action Plan for Energy Efficiency). November 2008. Vision for 2025: A Framework for Change. Washington, DC: U.S. Environmental Protection Agency and U.S. Department of Energy. Retrieved from www.epa.gov/eeactionplan.

Nevin, R. and G. Watson. Evidence of Rational Market Valuations for Home Energy Efficiency. The Appraisal Journal, 1998, 66:4, 401-09.
RESNET. (n.d.). About RESNET. Retrieved from http://www.natresnet.org/about/ default.htm.
Smith, M.T. and P. Jones. The Impact of Energy Efficient House Construction on Homeownership Costs: A Comparative Study in Gainesville, Florida. Family and Consumer Research Journal, 2003, 32:1, 76-98.
Sopranzetti, B.J. Chapter 78: Hedonic Regression Analysis in Real Estate Markets: A Primer. In: C.F. Cheng-Few and J. Lee (eds.), Handbook of Quantitative Finance and Risk Management, 2010.
The Performance Path: A Home Energy Rating. (n.d.) Retrieved from http://www. energystar.gov/index.cfm?c=bldrs_lenders_raters.nh_performance
USGBC. LEED for Homes. Retrieved from http://www.usgbc.org/ShowFile.aspx? DocumentID=3912.
USGBC. LEED for Homes Overview. Retrieved from http://www.usgbc.org/ ShowFile.aspx?DocumentID $=3638$.
What is the HERS Index? (n.d.) Retrieved from http://www.energystar.gov/ index.cfm?c=bldrs_lenders_raters.nh_HERS.

Bryan Bloom, Colorado State University, Fort Collins, CO 80523.
MaryEllen C. Nobe, Colorado State University, Fort Collins, CO 80523 or Mary.Nobe@colostate.edu.
Michael D. Nobe, Colorado State University, Fort Collins, CO 80523.

```
Energy Efficiency
Electricity Supply Analysis
```


Related Links

California Demand-Side Measurement and Evaluation Committee (CALMAC)

Home \Rightarrow deer

DEER - Database for Energy Efficient Resources

The Database for Energy Efficient Resources (DEER) is a California Energy Commission and California Public Utilities Commission (CPUC) sponsored database designed to provide well-documented estimates of energy and peak demand savings values, measure costs, and effective useful life (EUL) all with one data source. The users of the data are intended to be program planners, regulatory reviewers and planners, utility and regulatory forecasters, and consultants supporting utility and regulatory research and evaluation efforts. DEER has been has been designated by the CPUC as its source for deemed and impact costs for program planning.

How to Obtain the DEER

To obtain the DEER go to: www.deeresources.com
User ID: DEER
Password: 2008

For more information, please contact:
E-MAIL: DEER-Questions@itron.com

MAIN MENU

* Home
* DEER2011 for 13-14
- 2010-12 Frozen non-

DEER Ex Ante Values

- DEER2008 for 09-11

Planning/Reporting

- DEER2008 for 06-07

Updates

- DEER2005
* Other Resources

LOGIN

Database for Energy Efficient Resources

WHO'S ONLINE

We have 4 guests and 1 member online

The Database for Energy Efficient Resources (DEER) contains information on selected energy-efficient technologies and measures. The DEER provides estimates of the energy-savings potential for these technologies in residential and nonresidential applications. The database contains information on typical measures -- those commonly installed in the marketplace -- and data on the costs and benefits of more energy-efficient measures. Energy-efficient measures provide the same energy services using less energy, but they usually cost slightly more.

The 2008 versions of the Database for Energy Efficiency Resources (DEER) have been developed by the California Public Utilities Commission (CPUC) with funding provided by California ratepayers.

Last Updated (Wednesday, 14 October 2009 08:43)

DEER Database for Energy-Efficient Resources
 Version 20114.01
 For Use in the California IOU 2013-14 Energy Efficiency Planning

Regulatory Background

Abstract

The 17 November 2011 ALJ ruling in R.09-11-014 entered the contents of the draft 2011 DEER version 4.00 update into the official record via its Exhibit B. On May 10th 2012 the CPUC voted out the "Decision Providing Guidance on 2013-2014 Energy Efficiency Porfolios and 2012 Marketing, Education and Outreach". The 2013-2014 Guidance Decision directed that Energy Division make a number of changes to the draft 2011 DEER version 4.0 and adopted DEER 2011 including the directed changes, for use by the California Investor Owned Utilities in developing their 20132014 Energy Efficiency Portfolio applications.

The changes directed by the 2013-2014 Guidance Decision are detailed in Section 4.3 DEER 2011 Update, Several Ordering Paragraphs (see highlighted OP's 8-11, 14-15 and 44), and Attachment A. The 2011 DEER 4.01 available on this site is to fully reflect the changes to the the draft 2011 DEER version 4.00 ordered by the 2013-2014 Guidance Decision.

DEER2011 Update Documentation

DEER 2011 Update Report and the DEER2011 Update Report Appendices A report describing the DEER2011 value changes and additions relative to DEER2008 (PDF files posted 8 November 2011 - an update to reflect 2013-2014 Guidance Decision being finalized)

DEER 2011 Report Appendix A - Summary of changes to the measure content, modeling methods, and model input parameters (PDF file updated 16 May 2012)

The documents below contain a description of changes and additions to the DEER2008 (version 2.05) that are contained in this DEER2011 (version 4.01).

Support documents for the above summary of content, methods and parameters document Several Excel workbooks which show the data used in the DEER modeling activity. (a zip archive updated 16 May 2012)

DEER2011 Database format A description of the data format Energy Division developed for use in standardized reporting which includes ex-ante data tables. The DEER2011 measure and energy impacts data are compliant with this new data format. (a zip archive posted 8 November 2011)

Documentation errata and added information
The DEER2011 Update Net-To-Gross table compiled from the DEER2011 Update Report with changes directed by the 2013-2014 Guidance Decision. This table is also contained in the database available via READI. This table replaces the DEER 20082.05 NTG table. (Dated 16 May 2012 updated 23 May 2012 - one NTG value error fix in red font)

There were some mistakes identified in the above DEER 2011 Update Report and its appendices. An errata sheet is now available (posted 7 December 2011) The Appendix A update posted above supersedes the version in the November report and these errata.

HVAC interactive effects (HVAC IE) are developed for internal load changing measures such as interior lighting and appliances and other plug loads measures. These effects can alter the "direct" electric and gas impacts for those measure due to resulting changes in heating and cooling HVAC system energy use. HVAC IE factors are available from the READI tool below but we have extracted those values for residential and non-residential lighting and make them available here in a workbook. (update posted 23 May 2016 - links on Summary tab fixed)

DEER electric savings load shapes here in an archive of workbooks for use in TRC and PAC cost-effectiveness calculations. These values are used in conjunction with the CPUC adopted avoided cost values and annual energy savings estimates for individual measures. Both the load shapes and the avoided costs are arrays of 8760 hourly values that when multiplied together provide a per kilowatt hour dollar valuation for an energy efficiency measure. (posted 16 May 2012)

DEER2011 Database Tool to View and Download Data

All of the DEER2011 Unit Energy Savings (UES) values and measure data are stored in a PostgresQL database hosted by an Energy Division cloud based server which also hosts this website. A database access tool has been developed that provides live access to the database. The tool, READI (Remote Ex-Ante Database Interface) connects to the database over the internet utilizing a secure and encrypted connection over port 22 or a standard remote database connection over port 5432. The program allows users to view and download all of the data associated with the DEER2011 update. Use the following link to get the latest version of the program:

READI (Version 0.99.6) This zip file contains the program (READI.exe) and two "keys" that are used to make a secure connection to the database server. Unzip the files into any directory on your computer and launch the READI program by double-clicking on the EXE file. View the "About" screen in the READI help section for notes on program and database updates (or click here).

Note: The Net-to-gross value changes and additions listed in the above update report are not yet viewable from READI. The NTG values will be viewable in a few days. Additionally, a table of installation rates and gross savings adjustments will be added for viewing via READI soon.

Technology and Measure Cost Data/Effective and Remaining Useful Life (EUL/RUL) Values

Cost data for the DEER2011 update have not changed. The following links are from the 2008 DEER for 09/11 Planning web page:

Cost Values and Summary Documentation (updated 6/2/2008 - NR linear fluorescent labor costs typo)
Technology and Measure Cost comments with DEER Team/Energy Division responses (added 6/2/2008)
EUL/RUL values for the DEER2011 update have not changed. The following links are from the 2008 DEER for 09/11 Planning web page:

EUL/RUL Values (Updated 10 October 2008)
EUL/RUL Summary Documentation (Posted April 2008)

Questions about DEER database and READI: READI Help
Energy Savings Modeling: JJ Hirsch \& Associates

Last Updated (Wednesday, 23 May 2012 17:06)

NEWSLETTER
SEARCH
most popular
e-mail address
SU\&かCMME
(अ)

Calculators
Calendar
Calif. Energy Performance Benchmarking for Commercial Buildings

Find A Contractor, Seller, or Installer
Find A New Solar Home
Marketing Materials
Solar Statistics

Home > tools > save.php

SAVE Online Training Schedule

4th Series July - September (PDF)

Solar Advantage Value Estimator

Solar Advantage Value Estimator (SAVE) is a tool designed to estimate the Present Value of a solar photovoltaic (PV) system including the estimated value in annual energy savings. The results provided by SAVE are estimates only and do not take into consideration real estate market factors that may affect the overall valuation of the property and/or solar installation. We recommend that you contact your real estate professional when determining the value of your solar installation.

If you are considering investing in your own solar PV system, we recommend using the clean Power Estimator

For more information about the Solar Value Estimation Tool. Please access our online Help System.

SAVE Website Disclaimer

SAVE Webtool
Terms of Use and Conditions
Please read these terms of use carefully before using the SAVE Webtool.
The SAVE Webtool (Tool) is operated by the California Energy Commission (Energy Commission), an agency of the State of California, as a component of the Go Solar Californiar white By using http://www.gosolarcalifornia.org/use.php, and the specific conditions set forth below. User expressly acknowiedges that use of the Tool is at user's sole risk. ESTIMATED VALUATION OF PHOTO VOLTAIC (PV) SYSTEMS:
The Tool only provides information concerning PV systems located on real property (PV Systems). The information contained in the Tool is derived from information obtained by the Energy Commission through coordinated efforts with utilities, installiers of PV systems, property owners and their respective agents. Thus, depending on he quality, accuracy, and currency of the information provided to the Energy Commission, the Tool's estimated valuation of a PV system may not reflect the actual value of the PV System. The calculation of PV system value, as estimated by the Tool, is not based upon visual examination or inspection of PV systems.

I have read and agree with the SAVE Website Disclaimer

The Role of Appraisals in Energy Efficiency Financing

Victoria Doyle and Abhay Bhargava Building Industry Research Alliance

This report received minimal editorial review at NREL

notice

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy
and its contractors, in paper, from:
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831-0062
phone: 865.576.8401
fax: 865.576 .5728
email: mailto:reports@adonis.osti.gov
Available for sale to the public, in paper, from:
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
phone: 800.553.6847
fax: 703.605.6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm
Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste

The Role of Appraisals in Energy Efficiency Financing

Prepared for:
Building America
Building Technologies Program
Office of Energy Efficiency and Renewable Energy
U.S. Department of Energy
Prepared by:
Victoria Doyle and Abhay Bhargava
Building Industry Research Alliance
7407 Tam O'Shanter Drive
Stockton, CA 95205
NREL Technical Monitor: Chuck Booten
Prepared Under Subcontract No. KNDJ-0-40343-00

May 2012

Acknowledgments

This work is sponsored by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Building America Program under cooperative agreement number DEFC26-06NT42767. This support does not constitute DOE endorsement of the views expressed in this report.

Contents

Acknowledgments iv
List of Figures vi
List of Tables vi
Definitions vii
Executive Summary viii
1 Introduction 1
2 Overview 2
2.1 Status of Energy Efficiency Financing 2
2.2 Energy Appraisals 4
3 Current Status of the Appraisal and Financing Industries 6
3.1 Barriers to Appraising Energy Efficiency 6
3.1.1 Limited Interactions Between Stakeholders (Lenders, Appraisers, and Homeowners) 6
3.1.2 Lack of Comparables and Valuation Data 7
3.1.3 Current Housing Market and National Economic Hardship 7
3.1.4 Downturn in Housing Market 7
3.1.5 Variabiations in Occupant Behaviors and Weather Conditions 7
3.1.6 Knowledge Gaps in the Lending and Housing Industries 7
3.1.7 Lack of Energy Efficiency Appraisal Training and Education 8
3.1.8 Resistance to Change: Traditional Home Appraisal Methods 8
3.1.9 True Cost of Ownership 8
3.2 Appraisal Industry Developments for Valuing Energy Efficiency 8
3.2.1 Dodd-Frank Wall Street Reform and Consumer Protection Act (HR 4173) 9
3.2.2 Introduction of Sustainable Building Science Education and Certification 9
3.2.3 Green MLS Tool Kit 9
3.2.4 Appraisal Institute Addendum 10
3.2.5 Sensible Accounting to Value Energy Act 10
3.3 Improving Energy Efficiency Valuation Methods 11
3.3.1 Identify Renewable Energy and Energy Efficiency Measures 11
3.3.2 Obtain a Home Energy Evaluation Report 11
3.3.3 Assess the Value of Energy Efficiency Measures 12
3.4 Learning From Models Used in Commercial Appraisals 12
3.4.1 Comparison With Documented Historical Data 12
3.4.2 Factoring in Operating Costs 13
4 Discussion 14
4.1 Next Steps Toward Market Transformation 14
4.1.1 Increase Interactions Between Stakeholders 14
4.1.2 Close Knowledge Gaps in Lender and Housing Industry 15
4.1.3 Develop and Expand Appraiser Education 15
4.1.4 Update Traditional Home Appraisals Methods 15
4.1.5 Develop Comparables and Valuation Database 16
4.1.6 Understand Associated Risks of Variations in Occupant Behaviors, Plug Loads, and Weather 16
4.2 Current Opportunities to Ensure the Proper Valuation of an Energy-Efficiency Retrofit 17
4.2.1 Request Quality Green Building Competence 17
4.2.2 Require Access to Valuation Guides 18
4.2.3 Provide Adequate Reporting 18
5 Conclusions 19
References 20
Appendix A: Appraisal Regulations and Standards 22

List of Figures

Figure 1. Average annual homeowner costs in 2008: Energy costs are homeowner's second largest annual housing expenses (if mortgage payments are included as well)
 3

Figure 2. Example of monthly costs before and after energy efficiency retrofit: The incremental costs for financing an energy efficiency retrofit can provide homeowners a net positive cash flow. 4

List of Tables

Table 1. True Cost of Homeownership: An Example of Typical Home Costs Compared to a Home With an Energy Efficiency Retrofit 8
Table 2. Recommended Minimum Criteria for State Licensed/Certified Appraisers 22

Definitions

AMC
BIRA
Fannie Mae
FHA
Freddie Mac
HUD
HVCC
LEED
MLS
NAR
PACE
SAVE

Appraiser Management Companies
Building Industry Research Alliance
Federal National Mortgage Association (FNMA)
Federal Housing Authority
Federal Home Loan Mortgage Corporation (FHLMC)
U.S. Department of Housing and Urban Development

Home Valuation Code of Conduct
Leadership in Energy and Environmental Design
Multiple listing service
National Association of Realtors
Property-assessed clean energy
Sensible Accounting to Value Energy Act

Executive Summary

As the U.S. Department of Energy's Building America program continues to research all facets of the residential building industry and develop cost-effective, energy-efficient building strategies and measures, there is a need to address one of the major barriers to the implementation of these measures and strategies in the field-homeowners' ability and motivation to finance these in new construction as well as retrofits. The current energy efficiency financing options are being driven (and in turn limited) by first being able to identify energy efficiency improvements, understanding the potential added value of implementing these measures and strategies, and then accounting for these in the home appraisal report. Homeowners are thus challenged with securing financing for energy efficiency improvements, often because home appraisal reports do not document energy efficiency improvements, and do not associate added value from energy efficiency improvements.

There is a cyclical interdependence of numerous industry stakeholders and factors toward shaping the market - both the value and the perception. Appraisers cannot create value and market demand directly; however, they are key stakeholders for successful market transformation.

This research identifies these barriers and challenges, current industry status (including several key appraisal industry developments for identifying and valuing energy efficiency), critical obstacles to documenting and assessing the potential added value from energy efficiency improvements, current opportunities to support and standardize reporting about energy efficiency and to ensure proper valuation, and next steps toward enabling energy efficiency financing market transformation. Evaluations of current and pending industry regulations, policies, and standards indicate that critical concerns from stakeholders are being addressed. These are efforts to increase opportunities to identify and properly valuate energy efficiency, and to improve market uptake of and secure financing for energy efficiency retrofits.

1 Introduction

This Building Industry Research Alliance (BIRA) report addresses the current challenges, issues, and recommended next steps to address one of the major barriers to the implementation of energy efficiency strategies and measures in homes-energy efficiency financing, and its accounting in home appraisals. BIRA has conducted industry research about the relationship between appraising the value of energy efficiency in homes and financing energy efficiency upgrades to homes. This report includes a brief background on home appraisals and retrofit financing, summarizes finding from industry research, and discusses barriers to identifying and valuing energy efficiency improvements, and recommended next steps. Due to the extensive breadth and depth of this topic, this report addresses appraisals and financing for existing, singlefamily, detached homes only. BIRA has also identified issues driving homeowners' ability and motivation to finance energy-efficient features and strategies in home energy retrofits.

In this report, improving energy efficiency refers to reductions in energy consumption for the whole house, including heating, cooling, lighting, and appliances, over a certain period of time. The likely benefits to homeowners of increasing their homes' energy efficiency include reduced energy bills, increased comfort and indoor air quality, and lowered carbon footprints. Simple and affordable financing options would help to encourage homeowners to improve the energy efficiency in the approximately 130 million homes in the United States. However, currently the home appraisal process does not customarily recognize energy efficiency measures (EEMs) or account for the potential added value (e.g., cost savings) from energy efficiency improvements. Without documenting the EEM and accounting for the energy efficiency cost benefits and value, lenders are often not able to provide the homeowner adequate financing options for making energy efficiency improvements. To fully realize the value of energy-efficient homes, homeowners and lenders need to engage with appraisers, documenting and demonstrating the financial benefits and risks of energy efficiency improvements.

2 Overview

Energy efficiency retrofit financing is a means of purchasing home improvements that will increase the energy efficiency of the home and thereby lower monthly utility bills. Energy efficiency retrofit financing can be part of a large financing transaction (e.g., mortgage refinance), or a relatively small, standalone loan (e.g., a personal line of credit) to pay for energy efficiency improvements in the home.

2.1 Status of Energy Efficiency Financing

In early 2011, BIRA researched various financing programs in order to provide homeownerseither directly or through a contractor, program administrator or other energy efficiency industry parties-guidelines covering the available energy efficiency retrofit financing options with details to access them. This research reviewed and documented the barriers, technical data requirements, tradeoffs, risks, and underwriting opportunities for Energy Efficient Mortgage Refinance; FHA 203(k) Rehabilitation Mortgage; HUD Title I Home Improvement Loans; Power Purchase Agreements; Revolving Loan Funds; Property Assessed Clean Energy; On-Bill Financing; third-party loans; and general lines of credits/unsecured home improvement loans. Despite the availability of numerous energy efficiency retrofit financing products, such as those listed here, homeowners are often still not able to obtain the expected increase in home values when completing an energy efficiency retrofit, and consequently are not encouraged to invest in energy efficiency.

Currently, financing for energy efficiency retrofits of existing homes is limited by the current methodology used for loan risk analysis. Customary underwriting is commonly summarized as an assessment of three factors: (1) the prospective borrower's creditworthiness (usually represented by borrower's credit history of paying other accounts on time); (2) an assessment of property value to confirm and assess resale value in the event of default; and (3) an assessment of the borrower's ability to make the mortgage payments on time-net income and assets that can be called on to make the monthly payments. Current underwriting and home appraisals do not consider certain costs of homeownership, specifically energy costs.

Current underwriting methods and guidelines were predominantly developed in the 1940s, and have not evolved significantly since then. During the initial development of the traditional underwriting process, energy costs were relatively low and steady and were therefore not seen to be important enough to be accounted for in the process. Furthermore, most houses were similarly constructed without investments in energy efficiency. The current energy and housing markets do not reflect these conditions anymore. The energy costs of a house represent a significant portion of a homeowner's monthly budget (see Figure 1).

Figure 1. Average annual homeowner costs in 2008: Energy costs are homeowner's second largest annual housing expenses (if mortgage payments are included as well).
(Institute for Market Transformation 2008)
No longer are energy costs relatively low, or even steady. Energy costs have risen steeply over the past 60 years and are expected to continue rising. Moreover, building codes with efficiency requirements have raised awareness in the housing market about the comfort and cost differences between highly energy-efficient homes and regular homes.

Thus, in light of this evolution of the energy and housing markets, the current methods for home appraisals are no longer sufficient to appropriately account for these significant changes. An underwriter uses the data presented in the appraisal report to determine optimal loan value. Typically, loan amounts are limited to the value stated in the appraisal report. Current appraisal reports do not account for energy costs of a house-an unavoidable cost of homeownership, and energy efficiency retrofit loans often receive limited financing as a result. Furthermore, when a more energy-efficient home (with energy-efficient features installed) is put up for sale, the home value from the appraisal report hinders the seller's ability to receive a return on investment from an energy efficiency improvement. Homeowners are thus challenged with securing financing for energy efficiency improvements, often because home appraisals do not account for the added value from energy efficiency improvements. However, the added value of energy efficiency can be seen from the positive net cash flow (see Figure 2) to the homeowner, after an energy efficiency retrofit.

Figure 2. Example of monthly costs before and after energy efficiency retrofit: The incremental costs for financing an energy efficiency retrofit can provide homeowners a net positive cash flow.
Figure 2 illustrates an example of the effects of installing and financing energy efficiency improvements. A homeowner will be responsible for repaying the energy efficiency loan, but the resulting energy savings can correspond to significant month utility bill savings. Any cumulative, monthly cost differences from before the energy efficiency retrofit to after, are cost savings to the homeowners. Cost savings will vary based on factors including the energy efficiency and the cost of the retrofit measures, loan parameters (such as interest rates and terms), as well as the homeowner's energy consumption behavior. The left bar represents the energy utility costs alone prior to retrofit, and the right bar represents the reduced utility costs, the monthly financing cost of the retrofits, and the potential for monthly savings, given a retrofit optimized for cash flow. For example, a homeowner can invest $\$ 12,000$ in an energy efficiency retrofit, financed with a 30 -year loan at 5.5% interest, resulting in a $\$ 70$ month loan payment. If the retrofit results in a reduction in energy cost by two thirds, the average home energy costs could be reduced to $\$ 62$, and the net difference in monthly homeowner cash flow is positive.

2.2 Energy Appraisals

Appraisers play a pivotal role in lending and financing decisions. An appraiser's valuation of a home and accompanying assessment of home improvements provide the necessary independent third-party assessment. These appraisals serve as a qualifying mechanism on which a lender decides to approve or deny a loan, and accompanying variables-loan amount, period, and interest rates. A home appraisal is a survey and analysis of a home by a licensed professional appraiser for an assessment of the property market value. In many cases, an appraisal is requested by a financial lender when a home is being evaluated for a home improvement loan. The home appraisal results in a detailed report that looks at items such as the condition of the
home, its neighborhood, what similar homes are selling for, and how quickly similar homes sell. A home appraisal report provides lenders with documented evidence and data about current market preferences and estimates of home value, both before and after any intended home improvements.

The role of the appraiser is to be a translator and to provide an independent third-party perspective. A home appraisal requires the appraiser to identify, comprehend, and communicate the features (currently excluding EEMs) of the property, the benefits that accrue from those features, and the market acceptance, all of which contribute to the opinion of market value. Appraisers do not create value; they only analyze and report the market's direction and perceptions based on industry evidence and data. Lenders use the appraiser's market value opinion as an objective observation of the home and the marketplace.

The appraiser will evaluate the home by reviewing information retrieved from a physical site inspection, the property's tax records, and multiple listing service (MLS) databases. The appraiser analyzes and accounts for a number of factors such as the condition of the home, the neighborhood, what similar homes are selling for, and how quickly similar homes are sold.

There are three customary methods for valuing a home: (1) the cost approach (the cost to replicate the house in its current location); (2) the sales comparison analysis (compares the home values from similar local homes); and 3) the income method (typically used only if the home is in an area with a significant number of rental properties). Currently all three methods are being used without factoring in the energy efficiency impacts or energy cost savings resulting from the energy efficiency improvements in the homes.

3 Current Status of the Appraisal and Financing Industries

The dynamic relationship between home appraisals and energy efficiency financing has proved be a multifaceted issue, with varying concerns from both industries. As BIRA's research showed, financing tools are available for energy efficiency retrofits, but are limited (BIRA 2011a). One of the primary gaps in financing energy efficiency retrofits for homeowners is obtaining proper valuation for energy efficiency improvements. In the appraisal industry, research indicates the challenges to providing proper valuation of an energy-efficient home are numerous as well.

As a significant part of BIRA's appraisal and financing industry research, BIRA hosted a Building America Expert Meeting on June 21, 2011 (BIRA 2011b). This meeting provided a forum for presentations and discussions about the relationship between appraising the value of energy efficiency in homes and financing energy efficiency upgrades to a home. Information and industry knowledge collected from the meeting were leveraged for this report. Following the expert meeting, significant industry research was performed by BIRA about the status of industry developments and barriers to the proper valuation of energy efficiency improvements.

3.1 Barriers to Appraising Energy Efficiency

To successfully implement energy efficiency improvements in the residential sector on a nationwide scale, there are several barriers that will need to be addressed. Appraisers depend on the industry's ability to provide adequate resources (e.g., valuation data, standardize assessment methods, and education).

The financing industry depends on the appraisal industry's ability to ascertain the expected market value for any and all homes, including those with energy efficiency improvements. Given this interdependent and dynamic relationship, it is important to recognize that the barriers to proper valuation of energy efficiency improvements stem from both industries. Without accessible resources, appraisers will not be able to properly value energy efficiency, and financing will in turn not be able to supply sufficient loans for energy efficiency improvements. Current industry barriers include:

3.1.1 Limited Interactions Between Stakeholders (Lenders, Appraisers, and Homeowners)

Despite the strong interdependence of the appraisal and financing industries, such restricting standards as the Home Valuation Code of Conduct (HVCC) prohibited homeowners and lenders from communicating directly with appraiser (FHFA 2008). Although effectively replaced with the Dodd-Frank Wall Street Reform and Consumer Protection Act (Frank 2009) (more information in Section 3.2), the HVCC had essentially required all communication to be channeled through an Appraiser Management Company (AMC). It is then the responsibility of the AMC to evaluate competency and assign appraisal jobs based on knowledge and skills sets. Unfortunately, this is often not the case and the AMC typically selects an appraiser from a preapproved list with little to no regard for areas of expertise or competency. In most AMCs, jobs are offered on a rotational basis. This issue represents a significant barrier to ensuring energy efficiency improvements are properly valued.

3.1.2 Lack of Comparables and Valuation Data

An appraiser relies heavily on market evidence to estimate value. Comparable sales, surveys of property performance, and return expectations are currently unavailable in most markets. Objective data will enable an appraiser to assess the source and impact of the data without hesitation. In the current market with limited data, appraisers have resorted to assessing arbitrary values for energy efficiency improvements. For example, in Tallahassee, Florida, the appraisal standard is to add $\$ 3,000$ to a home's market value if it has an energy efficiency certification, irrespective of its size or specific features.

3.1.3 Current Housing Market and National Economic Hardship

The current housing market and economic hardship have resulted in significant lowering of the value of homes. Homeowners and appraisers are still coming to terms with the lower valuations.

3.1.4 Downturn in Housing Market

The downturn in the housing market has resulted in a decrease in demand for appraisals. Professionals who have been able to secure income from appraisals are often struggling to do so and cannot afford or justify additional training and education for assessing energy efficiency improvements. The national economic hardship has affected everyone, but has been especially challenging to homeowners, as average home values decreased substantially. Homeowners are still challenged with a restrictive credit market. With the loss of home equity, homeowners requesting home improvement (e.g., energy efficiency improvement) loans are often turned away by lenders.

3.1.5 Variabiations in Occupant Behaviors and Weather Conditions

Appraisers and lenders are concerned about the multiple variables associated with energy efficiency estimates. Variations in occupant behaviors, plug loads, and weather conditions can all have significant impacts on the actual energy consumption of a home. Typical energy simulations account for such variables based on regional averages. For analysis purposes, the average variation is acceptable; however, for appraisers concerned with liability and lenders concerned with return on investments, the variation can present too much risk. It is important for those in the industry to recognize the level of risk associated with energy modeling and to factor the risk appropriately.

3.1.6 Knowledge Gaps in the Lending and Housing Industries

It is the appraiser's responsibility to assess the market value of a home; it is the underwriter's responsibility to understand and use the appraisal data and market value estimate appropriately. The underwriter will be assessing the risk; therefore, it is vital that he or she is trained and educated about the benefits of energy efficiency improvements. Also, professionals directly involved in the housing market, such as real estate professionals (agents) and general contractors, should be well versed in fundamental building science and have a working knowledge of energy efficiency principles. Although there have been (and continue to be) significant advances made in the appraisal industry about regulations and standards for valuing energy efficiency, the other interdependent industries (e.g., financing and housing) have not raised significant awareness about these changes. Currently these industries are not knowledgeable about energy efficiency and consequently cannot provide adequate support for valuing and financing energy efficiency improvements.

Energy Efficiency \& Renewable Energy

3.1.7 Lack of Energy Efficiency Appraisal Training and Education

Based on industry research, an ongoing barrier to appraising energy efficiency improvements is lack of training and education for the appraiser. Often, appraisers are confused about the various green and energy efficient construction programs, the functionality of the Home Energy Rating System (HERS) scores, where they can receive information about energy efficiency, and how to provide a value comparison. All states require education, experience, and licensing for appraisers, but energy efficiency requires a different kind of knowledge and appraiser licensing does not recognize this specialty as distinct. Moreover, the lack of accessible education about energy efficiency causes some appraisers to be disgruntled by some of the new standards and requirements for assessing energy efficiency. The housing industry is already depressed and some appraisers believe that it is not acceptable to expect appraisers to be experts in the everevolving energy-efficient housing market.

3.1.8 Resistance to Change: Traditional Home Appraisal Methods

The current method has not changed substantially since its development in the 1940s. Appraisers have been trained to provide market valuations for aesthetic and structural improvements. Until recently, the industry did not recognize energy efficiency as a factor in homeownership cost or property value. The customary method currently used for home appraisals fails to take into account the long-term economic benefits of energy efficiency improvements. This limitation leads to hindered financing and lower sales listing prices. It is vital that the appraisal industry recognizes true homeownership costs.

3.1.9 True Cost of Ownership

The true cost of home ownership (i.e., factoring in cash flow) for an energy-efficient home can be less than the true cost of homeownership for a comparable home. Shown in Table 1, the energy-efficient home price is higher than that of an older home; however, the reduced utility bill cost offsets the energy improvement costs, resulting in total monthly saving for the homeowner.
Table 1. True Cost of Homeownership: An Example of Typical Home Costs Compared to a Home With an Energy Efficiency Retrofit

	Older Existing Home	Same Home With Energy Improvements
Home Price	$\$ 150,000$	$\$ 154,816$
$\mathbf{9 0 \%}$ mortgage, 8\% interest)	$\$ 135,000$	$\$ 139,334$
Loan Amount	$\$ 991$	$\$ 1,023$
Monthly Payment	$+\$ 186$	$+\$ 140$
Utility Bills	$\$ 1,177$	$\$ 1,163$
The True Monthly Cost of Home		$\$ 15$
Ownership		

3.2 Appraisal Industry Developments for Valuing Energy Efficiency

Within the past year, significant industry developments have been achieved for the proper valuation of energy efficiency improvements. The following recent events and regulatory reforms are being recognized by the appraisal and financing industries as the leading drivers of ensuring energy efficiency improvements are being accounted for in the home appraisal process.
3.2.1 Dodd-Frank Wall Street Reform and Consumer Protection Act (HR 4173)

On January 1, 2011, the Dodd-Frank Wall Street Reform and Consumer Protection Act (HR 4173) became a federal law (Frank 2009). The purpose of HR 4173 is to revamp the country's financial services regulatory system with more stringent institutional controls. It will serve as the first federal update of the country's real estate appraisal regulations since the Financial Institutions Reform, Recovery and Enforcement Act. HR 4173 has a significant impact on the appraisal industry, as it requires AMCs to collect competency information on all of their appraisers and keep it on file.

An additional requirement under HR 4173 that will have a significant impact on the proper valuation of energy efficiency improvements is that the homeowner must be provided with appraisal reports. Prior to HR 4173, it was up to the homeowner to request the report, and even then the appraiser was not obligated to provide this document. Now, however, the data and analysis of the home as listed in the appraisal report are transparent. Consequently, the homeowner has the opportunity to verify accuracy and check for errors or omissions.

3.2.2 Introduction of Sustainable Building Science Education and Certification

Since the implementation of HR 4173, the industry has begun to offer various educational training programs to encourage professionals in the housing, financing, and appraisal industries to gain more knowledge of sustainable building practices and learn how to recognize and properly assess energy efficient measures.

One such program is provided through the Appraisal Institute. The Valuation of Sustainable Buildings Professional Development Program offers appraisers (and any other industry professionals) three courses: Introduction to Green Buildings, Case Studies in Appraising Residential Green Buildings, and Case Studies in Appraising Commercial Green Buildings (Appraisal Institute). Also well regarded in the housing industry, the National Association of Realtors (NAR) has expanded its curriculum for the General Accredited Appraiser program to include an introduction to energy-efficient homes. For real estate practitioners (e.g., realtors), NAR also now offers "Green Designation" to provide ongoing education, resources, and tools so that those in the industry can successfully seek out, understand, and market residential and commercial properties with green features (NAR 2011a).

The development of green building training programs will be a continuous process, as more standards are implemented to support the proper valuation of energy efficiency measures, and concurrently, as more homeowners seek energy efficiency improvements. The development of all five industry improvements, HR 4371 (Frank 2009), Green MLS Tool Kit (NAR 2011b), Uniform Mortgage Data Program (Fannie), Appraisal Institute Addendum (Appraisal b), and Sustainable Building Education and Training (BIRA b), are interdependent with each other. Without each of these improvements, the industry would not be able to support valuations of energy efficiency improvements.

3.2.3 Green MLS Tool Kit

In April 2010, the NAR launched its Green MLS Tool Kit, which provides a step-by-step process that regional MLS databases can follow to include sustainable measures in their listings. The purpose of a Green MLS is to support the flow of sustainable home information in the ENERGY
marketplace and provide an educational resource for homebuyers, homeowners, realtors, and appraisers to use to develop a better understanding of sustainable homes.

Current MLSs neglect sustainable measures (including energy efficiency improvements). The tool kit provides a recommended process to build a Green MLS (or improve a current MLS) that allows listings of sustainable measures. A key concern from the housing, financing, and appraisal industries is the lack of data or access to supporting documentation for valuing energy efficiency improvements. A Green MLS would remediate this concern. The Green MLS Toolkit advises that documentation of a home's energy-efficient features become a part of the data exchange, captured in a Green MLS and/or a disclosure agreement with the home appraiser. Documentation is key to ensuring the proper valuation of energy efficiency improvements. Without documentation, the appraiser is limited to items that are visible and apparent. This would exclude many high-impact energy efficiency improvements such as wall insulation and low-e windows. As these items are often very cost effective, it is vital that such documentation is accessible.

The development of the Green MLS Tool Kit is pivotal for the proper valuation of energy efficiency. For homeowners interested in completing energy efficiency improvements, a Green MLS would enable them to see what types of improvements are common in the region and determine an estimate of value for said improvements. For appraisers, a Green MLS would support an apples-to-apples comparison for energy-efficient features. Without a Green MLS, the appraiser does not have sufficient information and data to support an assessment of energy efficiency improvements.

3.2.4 Appraisal Institute Addendum

In late September 2011, an addendum was issued by the Appraisal Institute for use with the Uniform Residential Appraisal Report (Appraisal A). The three-page form provides appraisers an opportunity to formally recognize energy efficiency improvements as a part of a home valuation assessment.

The addendum addresses not only energy efficiency, but also covers sustainable improvements such as water conservation measures and public transportation. The addendum will allow a homeowner to fill out a form, along with any supporting documentation (e.g., energy performance labels such as ENERGY STAR ${ }^{\circledR}$, or a HERS report) which indicates to the appraiser the expected energy savings. This provides a significant advantage over the traditional noninteractive appraisal process, especially for items such as insulation, which are not viewable at the time of appraisal.

As a key part of coming up with a valuation, appraisers using the new addendum will now be better equipped to identify accurate, recent "comparable" sales in the area. By using the addendum for a house with extensive energy efficiency improvements, an appraiser can look for prices of houses that were sold recently with and without energy efficiency improvements for assessing the home's true market value.

3.2.5 Sensible Accounting to Value Energy Act

The Sensible Accounting to Value Energy (SAVE) Act (Appendix B) was formally introduced on October 19, 2011, and at the time of publication was still under review by Congress. The SAVE Act is proposed legislation to improve the accuracy of underwriting used by federal
lending agencies by ensuring that energy costs are included in the underwriting process. The SAVE act will require adding expected energy costs to the principal, interest, taxes, and insurance now entered into the equation when qualifying a borrower for a mortgage or a home improvement loan. The SAVE act is supported by a diverse coalition of organizations, including the U.S. Chamber of Commerce, the Appraisal Institute, the U.S. Green Building Council, and the Natural Resources Defense Council.

The SAVE Act would help revitalize the hardest hit sectors of the economy by providing financing for cost-effective energy improvements, enabling homeowners to recover the cost of efficiency investments and enabling better federal underwriting while lowering utility bills. With a more accurate analysis of repayment risk and the expect costs of homeownership, lenders will be better equipped to support the dispersal of energy efficiency improvement loans.

Moreover, the SAVE act will also greatly accelerate the demand for energy-efficient new homes. By consistently and accurately accounting for energy costs in appraisals, homebuilders and homeowners will be encouraged and enabled to invest in energy efficiency improvements.

3.3 Improving Energy Efficiency Valuation Methods

The major gap in financing energy efficiency retrofits for homeowners is properly valuing efficiency improvements. Until very recently, the appraisal industry has not had a set of industryvetted policies and practices for valuing energy efficiency in homes. Even with new policies and industry standards, without an established method to collect data and calculate the increase in the value of the home, lenders have difficulty determining how to consider the lower utility bills and the associated increase in property value when underwriting loans to homeowners. Thus, to ensure appropriate valuation and accounting of EEMs and strategies deployed, the appraiser should follow and account for the following:

3.3.1 Identify Renewable Energy and Energy Efficiency Measures

Before an appraiser can provide an increased valuation, he or she must be able to recognize the various renewable energy measures and EEMs in a home. Although all home appraisers are trained to identify types of building materials and how to assess items such as granite countertops, they are less likely to be knowledgeable about what constitutes an EEM and thus be able to accurately document those measures in a home. Green education and training will therefore be very beneficial to appraisers in developing this skill. It will be important for an appraiser to quickly and easily identify measures such as a photovoltaic system. Although the industry does not expect the appraiser to personally determine the energy savings estimates from such items, it is vital that appraisers are able to collaborate with those who do, such as home energy raters. A critical part of properly valuing energy efficiency is to determine the resulting energy cost savings. The appraiser should be able to view a home energy evaluation report and be able to identify and verify the items listed.

3.3.2 Obtain a Home Energy Evaluation Report

An appraiser of an energy-efficient home should obtain a home energy evaluation report. A home energy evaluation analyzes how a home is working as a system. Rather than reviewing the energy impacts of each component of the home separately, the operation of the home is analyzed by considering all of its energy-related components and how they interact. A trained and certified home energy assessor, also called a home energy rater, will inspect and perform the appropriate
series of diagnostic tests on the home. The evaluation will consider the interactions of all measures and determine the whole-house performance as a system. The resulting home energy evaluation report will provide an appraiser an energy cost savings estimate.

3.3.3 Assess the Value of Energy Efficiency Measures

Currently, loans are made to homeowners for improvements that will have a predictable impact on home value and expenses. Homeowners' incomes include their investments, of which the home is generally the largest. If a homeowner would like to remodel the kitchen and add a deck to the rear of the house, a lender can turn to an appraiser to calculate the increase in the value of the home that will result from the improvements using the appraisal industry practices and rules based on long experience and historical data. The increase in home value translates to a future increase in income for a homeowner and results in a predictable level of risk for the lender. Without the ability to assess the value of energy efficiency improvements, a homeowner cannot receive the full benefit of the investment, as an increase in home value will not be applied and will likely not receive adequate lending opportunities because an unfair risk level is associated with the energy efficiency investment. Appraisers can and should use all available valuation data sources to assess the impact of an energy efficiency improvement.

The value of energy efficiency improvements could be assessed by unifying and integrating the many existing evaluation reports and components that are currently being used to support energy upgrades. Industry-accepted valuation tools include home energy evaluation reports and sustainable/energy efficiency certification standards (e.g., LEED, ENERGY STAR Home). The evaluation reports provide the appraiser an accurate estimate of expected energy cost savings. Using a standard return on investment analysis, the increased home value could be recognized as the difference between the incremental cost of the energy efficiency improvements and lifetime energy cost savings.

3.4 Learning From Models Used in Commercial Appraisals

Energy consumption in commercial and industrial buildings can be modeled and predicted more precisely because of more consistent and predictable occupancy patterns and behaviors. Because energy use in these types of buildings is predictable, the expected utility bill savings rendered through energy efficiency improvements can be much more accurately estimated.

Although most commercial appraisal methods are not used in the residential sector, there is potential to successfully extract and refine certain commercial appraisal practices and use them as tools in the ongoing improvement of the appraisal process in the residential sector on a large scale. These include the following two methods widely employed in commercial appraisals:

3.4.1 Comparison With Documented Historical Data

Commercial appraisals rely heavily on documented historical data (e.g., utility bill history), but this type of information may not always be available in the residential sector. For example, if an existing building is recently purchased (and the new building owner would like to complete an energy efficiency improvement) and no prior utility cost data are available, an appraiser, using a standard commercial appraisal practice, could rely on costs seen in similar buildings, or on data collected and published by recognized market sources. In the commercial sector, the Building Owners and Managers Association Experience Exchange Report or Institute of Real Estate Management Income/Expense Analysis Reports are two such examples.

3.4.2 Factoring in Operating Costs

It is a well-established and widely used concept that operational costs are relevant to the value of an asset such as a house or building. In fact, for commercial buildings, adjustments to asset value typically result directly from changes to expected future operating costs. Dissimilarly, the residential financing industry traditionally has not examined the energy costs of a house in connection with determining the value of the house. This should be corrected to improve the reliability and integrity of both underwriting and valuation.

4 Discussion

There is a cyclical interdependence of numerous industry stakeholders and factors in shaping the market - the market perception, market value, and market demand toward the inclusion of energy efficiency in the valuation and appraisal process. Appraisers cannot (and should not be expected to) create value and market demand directly and on their own; however, they are key stakeholders for successful market transformation. For energy efficiency to be recognized, the appraisal industry will need to support and standardize the documentation of energy efficiency improvement measures in reports. The market cannot begin to account for energy costs as an element in a property valuation if energy efficiency measures are not recognized and recorded as a standard part of appraisal reports. Although a valuation of all EEMs may be premature based on the current market status and the fact that energy efficiency improvements are not yet widely recognized in the market, nonetheless appraisal reports could provide the appropriate starting point for market transformation. The purpose of this research is not to discuss how the market must change so that the appraiser can report added value for energy efficiency improvements, but to identify through industry research what the current appraisal sector can do to help promote the market uptake of energy efficiency and the subsequent energy cost savings (less the increment measure costs) as potential added value.

Research results have indicated the residential appraisal industry has made-and continues to make-great strides toward establishing standard practices and methods for assessing the proper value of EEMs. However, there are still significant barriers to implementing and securing these improvements on an industry-wide scale. The first step to overcoming the barriers is to recognize the immediate issues and identify the source of the obstacles. Once done, a customized strategy can be developed to address the issues and the obstacles. Even while solutions are still being developed, there are current opportunities to ensure energy efficiency improvements are properly valued.

4.1 Next Steps Toward Market Transformation

The challenges to providing proper valuation of an energy-efficient home are numerous. There are concerns from appraisers about finding suitable comparable homes, having access to valuation data, and accounting for energy variables. The financing industry has difficulty assessing the risk of energy efficiency improvements and using the appraisal reports appropriately.

Overcoming these barriers will result in more energy-efficient homes and less overall energy consumption; lower utility bills for homeowners; improved underwriting practices; reduced risk of defaults; and the creation of green jobs in the real estate, home construction, and retrofit markets. Upon reviewing industry feedback and research, the following actions are recommended to standardize the valuation of energy efficiency improvements and increase the opportunity for financing of energy efficiency improvements.

4.1.1 Increase Interactions Between Stakeholders

Homeowners, underwriters, and appraisers can effectively resolve potential issues about lack of data or inaccurate risk assessments. The optimal method of communication is through the dissemination of energy efficiency reports and documentation (e.g., supporting data and evidence of energy efficiency improvements). Energy models, commissioning reports, energy audits,
energy benchmarking scores, and other indicators of building performance and costs should be brought to the stakeholders' attention. Reports certified and vetted by third parties are especially valuable in this regard, as is information about potential utility or governmental incentives. It is the homeowner's responsibility to interact with the lender, the lender's responsibility to interact with the AMC, and the AMC's responsibility to interact with the appraiser.

Although direct communication and interaction between all stakeholder would be ideal, with the HVCC and HR 4173 restrictions, the best method of ensuring the energy efficiency improvements are recognized is to provide evidence to the appropriate point of contact. Homeowners can remind their lenders' of their responsibility, and suggest that as part of that responsibility, they ensure their appraisers (or AMC) has access to the provided documents and reports.

4.1.2 Close Knowledge Gaps in Lender and Housing Industry

There are several misconceptions about energy efficiency improvements in the financing and housing industries. For example, a common misunderstanding is that energy-efficient homes are not cost effective. However, energy-efficient homes are often more cost effective than homes built using traditional construction practice. By implementing education and training for professionals in the financing and housing industries, they will be better equipped to assess the true impacts of energy efficiency improvements. Increased knowledge of building science fundamentals will enable those in the industries to not only support, but also leverage energy efficiency improvements during the financing process.

4.1.3 Develop and Expand Appraiser Education

The appraisal and finance industries have been directly impacted by the new appraisal standards. With significant changes to the industries, it is vital that energy efficiency training and education is not only offered, but either required for licensing or provides a significant benefit (e.g., specific designation, certificate, or membership). As the appraisal industry expands its recognition of this issue, appraisers can expect to see several new courses and seminars to support their ongoing education for the valuation of energy efficiency.

4.1.4 Update Traditional Home Appraisals Methods

Prior to the creation of the Uniform Residential Appraisal Report addendum, the standard appraisal form was inadequate for capturing the information related to valuing and lending on energy-efficient homes. The new form has a provision for recording the type of energy efficiency certification, the year certified, if the home is third-party verified, and the home energy performance score, among other components. With the introduction of the addendum, the industry has provided an opportunity for appraisers to collect information and data about EEMs. Updates to the customary method of home appraisal will increase the likelihood that the addendum will be used.

Current appraisal methods rely heavily on market comparisons and industry data for valuations. Improvements will need to address how appraisers will process and factor in the valuation of energy efficiency improvements, building on the use of comparisons or significant data. New appraisal methods for energy efficiency will need to include an energy cost savings assessment for the proper valuation of homes. The updated appraisal methods should account for the savings from energy efficiency improvements to offset the cost of the investment. Unlike the process of
assessing market value by using comparison to analysis of how the market is responding to specific building features (e.g., granite countertops), the expected annual energy cost savings (less the incremental costs of the energy efficiency improvements) can be a direct added value. To implement this update, adequate energy efficiency improvement cost databases will still need to be developed and implemented to support the appraiser analysis of the incremental cost for the EEMs.

4.1.5 Develop Comparables and Valuation Database

Appraisers must have access to reliable, verifiable data to support and defend their valuations of energy-efficient homes. MLSs provide appraisers a database of home parameters and corresponding values. Currently most MLS databases do not support the inclusion of energyefficient building features or home performance labels. The Green MLS Tool Kit was developed to support the industry's need for access to such data. However, the implementation and successful use of the tool kit are vital, and additional research is needed to understand the functionality and viability of improving MLS databases.

Searchable fields within MLS databases will be essential for appraisers to search for energyefficient comparisons and identify various energy-efficient building features or performance values. The current quality of energy efficiency data available on some MLS databases is suspect, as there are no standards for data uploading or modification. "Reduced days on market" can tell as powerful a story as premiums (evidence) for appraisers that consumers value EEMs. A green MLS that has searchable fields for energy-efficient entries will help appraisers to identify the market's response to energy-efficient items.

In support of developing and improving energy efficiency valuation databases, BIRA is currently participating in an academic research study, led by Lawrence Berkeley National Laboratory and the University of California, Berkeley for the development of methodologies for valuing green building labels. The study is evaluating if labeled homes demand a price premium in the marketplace. Under a nondisclosure agreement, U.C. Berkley has been provided BIRA's database of ENERGY STAR-labeled homes. This database represents more than 12,000 homes built since 2003. In brief, the research study will look at sales records of these homes and compare them to conventional homes to assess market value. The study results will provide supporting evidence and statistical data about the valuation of energy-efficient homes. This information can be used by the industry (e.g., the National Appraisers Institute) to leverage the development and enhancement of the appraisal process for energy-efficient homes.

4.1.6 Understand Associated Risks of Variations in Occupant Behaviors, Plug Loads, and Weather

Variations in occupant behaviors, plug loads, and weather conditions are considered substantial risks for lenders and appraisers. The level of risk associated with these issues is often not fully understood by the financing and appraisal industries. In the energy industry, significant research and analysis have been completed about the impacts of variations in occupant behaviors, plug loads, and weather. Energy modeling uses normalized data for such uncertainties. The variation in energy modeling and actual energy consumption has been accepted as a marginal difference in the building and energy industries.

In 2006, BIRA evaluated the actual energy performance of near-zero energy homes against estimates using the simulation tools and best assumptions that were available at the time of construction. Equipped with updated information, models were revised to more closely simulate as-built and customer use information. BIRA found that electricity use was within 2% of expectations; actual gas use was overestimated by 25% using energy modeling and Building America benchmark assumptions for appliance, lighting, and miscellaneous energy use.

The financing and appraisal industries should be provided access to such studies and documentation of risk. Once lenders and appraisers become knowledgeable of the industryvetted energy modeling methodology, their confidence in using energy cost savings (as determined through energy modeling) will increase.

4.2 Current Opportunities to Ensure the Proper Valuation of an EnergyEfficiency Retrofit

At this time, there are limited regulations and standards for the valuation of energy efficiency improvements. However, homeowners and lenders can still leverage key appraisal standards and requirements to address the proper valuation of energy efficiency improvements.

4.2.1 Request Quality Green Building Competence

A homeowner or lender may ask for an appraiser who has experience in appraising green or energy-efficient homes or has received green building valuation training and certification from a nationally recognized appraisal entity (such as the Appraisal Institute or National Association of Real Estate Appraisers). Builders, lenders, and homebuyers legally can (and should) demand that AMCs assign only educated, experienced appraisers to energy-efficient homes. If in doubt, the client has the right to request a second opinion from another appraiser.

- Section 202(f) of the National Housing Act mandates that all appraisers chosen or approved to conduct appraisals of properties that will be security for FHA-insured mortgages must: (1) be certified by the state in which the property to be appraised is located; or by a nationally recognized professional appraisal organization; and (2) have demonstrated verifiable education in the appraisal requirements established by FHA. Additionally, it is important to note that when an appraiser signs a residential appraisal report form for a home with an FHA-insured mortgage, the appraiser is also certifying the following: "I have knowledge and experience appraising this type of property in this market area."
- Federal agencies such as Fannie Mae have guidelines in place that advise lenders (and AMCs) not to assume that an appraiser is competent:

A lender must not assume - simply based on the fact that an appraiser is statelicensed or state-certified - that the appraiser is qualified and knowledgeable about a market area or is aware of the appropriate market data sources for the area and will be able to obtain access to them. If an appraiser is not knowledgeable about a particular location, is not experienced in appraising a particular type of property or is not familiar with (or does not have access to) the appropriate data sources, a lender should not give the appraiser assignments in that market area or for that particular type of property.

4.2.2 Require Access to Valuation Guides

Homeowners and lenders may require the appraiser to have access to green valuation guides such as the Marshall \& Swift Green Construction Cost Guide or other similar forms of energy efficiency valuation guides and databases for reference, including a Green MLS database. These provide valuable guidelines to assist with the appraisal process; for example, the Marshall \& Swift Green Construction Cost Guide includes real estate valuations studies that indicate an approximate $\$ 20$ home value should be added for each dollar saved annually on energy. An appraiser could use the estimated energy savings from a home's energy audit report (e.g., HERS report) to determine the approximate increase in home value.

4.2.3 Provide Adequate Reporting

Homeowners and lenders should provide to the AMC or appraiser any home energy performance reports and scores, as well as documentation of a home's green certification (e.g., ENERGY STAR or LEED). Until recently, standard appraisal forms did not adequately capture the information to value and lend on green homes. Appraisers are now equipped with improved forms (e.g., Form 1004 addendum) that can be used in conjunction with energy efficiency reports and documentation as evidence to support an increased home value.

5 Conclusions

The financing and appraisal industries' momentum is shifting to recognize and value energyefficient homes. Research shows that the industries continue to make significant progress toward implementing a more granular approach to account for an important cost of homeownership, energy. With a better understanding of the role of energy in the true cost of homeownership, appraisers and lenders can recognize the lack of accounting for energy as a significant barrier to the proper valuation and financing of energy efficiency improvements.

There is a cyclical interdependence of numerous industry stakeholders and factors in shaping the market demand, value, and perception of including energy efficiency as an integral part of valuation and home appraisals. Appraisers cannot create the market demand or the value on their own; however, they are key stakeholders for successful market transformation.

Numerous challenges lie ahead for the development of adequate valuation for energy efficiency, but there are equally significant opportunities to continue industry progress and close the gap for homeowners obtaining proper valuation and financing for energy efficiency. Some improvement opportunities directly target specific issues (such as the lack of valuation sources for energy efficiency improvements); others would work to heighten collaboration between stakeholders. The result of identifying and responding to the barriers for the proper valuation of energy efficiency will impact more than just the financing and appraisal industry. With increased valuation of energy efficiency improvements and increase in financing opportunities, more homeowners will become interested in completing energy efficiency improvements and lowering their monthly energy costs. Consequently, proper valuation will also encourage investment in energy efficiency, create jobs, and increase energy independence benefits.

References

Appraisal Foundation, Uniform Standards of Professional Appraisal Practice. http://www.uspap.org/

Appraisal Institute, The Appraisal of Real Estate, 13th Edition
Appraisal Institute, Residential Green and Energy Efficient Addendum, http://www.appraisalinstitute.org/education/downloads/AI_82003_ReslGreenEnergyEffAddendu m.pdf

Appraisal Institute, Valuation of Sustainable Buildings Professional Development Program, http://www.appraisalinstitute.org/education/green/default.aspx

Barris, J. (2008) An expert system for appraisal by the method of comparison. PhD Thesis, UPC, Barcelona

Baum, A. and Mackmin, D. (1995) The Income Approach to Property Valuation (3rd Edition). Routledge, London

BIRA, Guide to Financing Strategies for Residential Energy Efficiency Retrofits, January 2011, Stockton, CA, Building Industry Research Alliance

BIRA, Final Expert Meeting Report: The Role of Appraisals in Retrofit Financing, September 2011, Stockton, CA, Building Industry Research Alliance, http://www.bira.ws/energy-retrofitfinancing.php

BIRA, Occupied Home Evaluation Results Report, November 2006, Sacramento, CA, Building Industry Research Alliance, http://www.bira.ws/files/reports/Final_Report_16D2_OccupiedHomeEvaluationResults.pdf

Brown, G.R. and Matysiak, G.A. (1999) Real Estate Investment: A Capital Market Approach. Financial Times, London

Faesy, Richard (2000), "Understanding and Overcoming the Energy Mortgage Barrier," ACEEE Summer Study on Energy Efficiency in Building.

Fannie Mae, Form 1004: Uniform Residential Appraisal Report, https://www.efanniemae.com/sf/formsdocs/forms/1004.jsp

Federal Housing Finance Agency (FHFA), Home Valuation Code of Conduct, 2008, http://www.fhfa.gov/webfiles/2302/HVCCFinalCODE122308.pdf

Fannie Mae, Uniform Mortgage Data Program, https://www.efanniemae.com/sf/lqi/umdp/
Frank, Barney, H.R. 4173: Dodd-Frank Wall Street Reform and Consumer Protection Act, http://www.govtrack.us/congress/bill.xpd?bill=h111-4173

Institute for Market Transformation, Average U.S. Homeowner Costs 2008 Energy Property Tax, http://www.imt.org/files/

Isaac, D. (2002) Property Valuation Principles, Palgrave, London
Kane, S., Linne, M. and Johnson, J. (2004) Practical Applications in Appraisal Valuation Modeling. Appraisal Institute, Chicago

Maliene, V., Deveikis, S., Kirsten, L. and Malys, N. (2010). "Commercial Leisure Property Valuation: A Comparison of the Case Studies in UK and Lithuania". International Journal of Strategic Property Management 14 (1): 35-48. doi:10.3846/ijspm.2010.04.

National Association of Realtors (2011), Green Designation, http://www.greenresourcecouncil.org/earn_nars_green_designation.cfm

National Association of Realtors (2011), The Green MLS Tool Kit, http://greenthemls.org/
Rees, W.H. and Hayward, R.E.H. (ed.) (2000) Valuation: Principles into Practice (5th edition). Estates Gazette

Sensible Accounting to Value Energy Act of 2011, rhttp://www.gpo.gov/fdsys/pkg/BILLS-112s1737is/pdf/BILLS-112s1737is.pdf

Simons, Robert (2007) When Bad Things Happen to Good Property Environmental Law Institute, Washington, DC
U.S. Census Bureau, 2009 American Community Survey

Appendix A: Appraisal Regulations and Standards

The home appraisal industry has several collaborative professional organization and regulating entities which work together to provide performance standards and recommended practices. One of the most prevalent and influential appraisal organizations is the Appraisal Foundation, whose mission is to promote professionalism in appraising. Although not federally-funded, the Appraisal Foundation is responsible for providing recommendations to congress regarding the following minimum criteria for state licensed/certified real property appraisers.

Table 2. Recommended Minimum Criteria for State Licensed/Certified Appraisers

Type	Experience	Education	Exam
Licensed Residential	2,000 hours	150 hours	Yes
Certified Residential	2,500 hours	200 hours	Yes
Certified General	3,000 hours	300 hours	Yes

Moreover, the Appraisal Foundation's Appraisal Standards Board promulgates the performance standards of the appraisal profession, known as the Uniform Standards of Professional Appraisal Practice. Also, a part of the Appraisal Foundation, the Appraiser Qualifications Board is responsible for developing and maintaining appraisal criteria. The criterion outlines minimum requirements in the areas of education, experience and continuing education. The federal government mandates that each state's appraiser regulatory agencies must use the Criteria adopted by of the Appraisal Foundation when issuing certificates to individuals.

Although minor variations exist, most requirements, governing regulations, and standards are consistent across all states. Appraisers are required to be licensed or certified through their state. Individuals seeking to become state licensed or certified appraisers must pass a comprehensive state examination that has been reviewed and approved by the Appraiser Qualifications Board. As a professional appraiser, they are required to adhere to the National Association of Real Estate Appraisers Code of Ethics and the performance standards of the Uniform Standards of Professional Appraisal Practice.

Prior to the introduction of the Frank-Dodd Wall Street Reform and Consumer Protection Act (HR 4173 Act), an additional requirement for all appraisal of homes with federal loans (include those sold to Fannie Mae or Freddie Mac) was the HVCC. The HVCC mandated that lenders separate anyone on the sales side of the business (loan originators, loan officers and loan processors) from appraisers. As a "prudent safeguard" to ensure that an appraiser's valuation analysis is not influenced, "Appraisal Management Companies" (MCs) were developed for the sole purpose of separating the appraiser from the lender.

Certified Homes Outperform Non-Certified Homes for Fourth Year

Existing Homes with a Certification Earn 30\% More

PORTLAND, Ore., June 8, 2011 - Earth Advantage Institute, a nonprofit green building resource, announced the results of its annual certified home analysis in the Portland metropolitan region for the 2010 to 2011 year. The study is part of the organization's research efforts that include gathering data on green building valuation.

Existing homes with a sustainable certification sold for 30 percent more than homes without such a designation, according to sales data provided by the Portland Regional Multiple Listing Service (RMLS) to Earth Advantage Institute. This finding is based on the sale of existing homes between May 1, 2010 and April 30, 2011 in Multnomah, Clackamas, Columbia, and Washington Counties in Oregon, and Clark County in Washington.

Better sales prices were also seen for newly constructed homes with a sustainability certification. As a group, new homes with a sustainability certification in the six-county Portland metropolitan area sold for 8 percent more than new non-certified homes.

This result continues a four-year trend in which new homes with a third-party certification for sustainable construction and energy performance have consistently sold for more than newly constructed homes that had not been certified. The term "certified home" includes homes that received an Earth Advantage New Homes, ENERGY STAR, or a LEED ${ }^{\circledR}$ for Homes designation, or a combined Earth Advantage/ENERGY STAR certification. Sales information is reported by participating real estate brokers to RMLS. The Portland metropolitan area region includes Multnomah, Clackamas, Columbia, Washington and Yamhill Counties in Oregon and Clark County in Washington. There were no certified new home sales in Columbia and Yamhill Counties that enable comparisons in those areas.

Differences clearly exist among the counties within the metropolitan area. The county exhibiting the greatest difference between new certified and new non-certified homes was Clackamas, where homes with a certification sold for 23.3 percent more than non-certified new homes. Clark County was the one area in the metropolitan region where newly constructed certified homes did not sell for more. However, certified existing homes in Clark County did perform better than their non-certified counterparts. As a group, existing homes with a sustainability certification in Clark County sold for an average of $\$ 288,400$ versus $\$ 222,900$ for homes without such a certification, or 29 percent more. Table One summarizes the information received, for both new and existing homes, across the metro region.

| New Homes | Clackamas | Columbia | Multnomah | Washington | Yamhill | Clark County WA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Non certified | $\$ 305,647$ | $\$ 200,732$ | $\$ 292,837$ | $\$ 313,040$ | $\$ 239,147$ | $\$ 296,567$ |
| Certified home | $\$ 376,763$ | N/A | $\$ 348,240$ | $\$ 329,810$ | N/A | $\$ 254,172$ |

Price premium	23.27%	N/A	18.92%	5.36%	N/A	-14.30%
Existing Homes						
Non certified	$\$ 299,696$	$\$ 174,144$	$\$ 277,449$	$\$ 259,835$	$\$ 209,264$	$\$ 222,918$
Certified home	$\$ 372,591$	$\$ 138,000$	$\$ 448,886$	$\$ 354,245$	$\$ 315,000$	$\$ 288,363$
Price premium	24.32%	-20.76%	61.79%	36.33%	50.53%	29.36%

Source: RMLS Portland May 2011
Portland RMLS was the first regional multiple listing service in the country to provide sales information for homes with green certification, at the request of Earth Advantage Institute. RMLS began tracking information in 2007.

Two important trends are shown by the four years of sales data. First, the market share of certified homes among all newly constructed homes stayed consistent, with 18 percent of the new homes in the Portland market receiving a sustainability certification. Second, a notable price premium for certified homes as a group was observed in each year.

	Number of certified new homes sold	Total New homes sold	Market share among all new homes	Price premium
May 1, 2007 to April 30, 2008	833	6125	13.6%	20.5%
May 1, 2008 to April 30, 2009	674	4135	16.3%	12%
May 1, 2009 to April 30, 2010	118	597	19.8%	14%
May 1,2010 to April 30,2011	408	2237	18.2%	18.9%

"This is important news for builders and home buyers alike," said Dakota Gale, the sustainable finance program manager at the Earth Advantage Institute. "While it must be noted that the data are supplied by real estate agents themselves through standard RMLS forms, and are based on averages, not comparables, we can still see a consistent trend that third-party certification continues to result in a higher sales price, even during the past year when home sales were down."

About Earth Advantage Institute

Earth Advantage Institute works with the building and design industry to help implement sustainable building practices. Its nonprofit mission is to create an immediate, practical and cost-effective path to sustainability and carbon reduction in the built environment. The organization achieves its objectives through a range of innovative certification, education and technical services programs.

For more information contact:
Tom Breunig
Earth Advantage Institute
(503) 968-7160
.(JavaScript must be enabled to view this email address)
Dakota Gale
Sustainable Finance Program Manager
(503) 968-7160 x28
.(JavaScript must be enabled to view this email address)
.

After Recording Return To:
\qquad
\qquad
\qquad
[Space Above This Line For Recording Data]

DEED OF TRUST

DEFINITIONS

Words used in multiple sections of this document are defined below and other words are defined in Sections 3, 11, 13, 18, 20 and 21. Certain rules regarding the usage of words used in this document are also provided in Section 16.
(A) "Security Instrument" means this document, which is dated \qquad ,
\qquad

``` together with all Riders to this document.
(B) "Borrower" is
```

\qquad .
Borrower is the trustor under this Security Instrument.
(C) "Lender" is \qquad .
Lender is a \qquad organized and existing under the laws
of \qquad . Lender's address is \qquad . Lender is the
beneficiary under this Security Instrument.
(D) "Trustee" is \qquad .
(E) "Note" means the promissory note signed by Borrower and dated _, \qquad . The Note states that Borrower owes
Lender
Dollars (U.S. \$) plus interest. Borrower has promised to pay this debt in regular Periodic Payments and to pay the debt in full not later than
(F) "Property" means the property that is described below under the heading "Transfer of Rights in the Property."
(G) "Loan" means the debt evidenced by the Note, plus interest, any prepayment charges and late charges due under the Note, and all sums due under this Security Instrument, plus interest.
(H) "Riders" means all Riders to this Security Instrument that are executed by Borrower. The following Riders are to be executed by Borrower [check box as applicable]:
\square Adjustable Rate Rider
Balloon Rider
1-4 Family Rider
4-
(I) "Applicable Law" means all controlling applicable federal, state and local statutes, regulations, ordinances and administrative rules and orders (that have the effect of law) as well as all applicable final, non-appealable judicial opinions.
(J) "Community Association Dues, Fees, and Assessments" means all dues, fees, assessments and other charges that are imposed on Borrower or the Property by a condominium association, homeowners association or similar organization.
(K) "Electronic Funds Transfer" means any transfer of funds, other than a transaction originated by check, draft, or similar paper instrument, which is initiated through an electronic terminal, telephonic instrument, computer, or magnetic tape so as to order, instruct, or authorize a financial institution to debit or credit an account. Such term includes, but is not limited to, point-of-sale transfers, automated teller machine transactions, transfers initiated by telephone, wire transfers, and automated clearinghouse transfers.
(L) "Escrow Items" means those items that are described in Section 3.
(M) "Miscellaneous Proceeds" means any compensation, settlement, award of damages, or proceeds paid by any third party (other than insurance proceeds paid under the coverages described in Section 5) for: (i) damage to, or destruction of, the Property; (ii) condemnation or other taking of all or any part of the Property; (iii) conveyance in lieu of condemnation; or (iv) misrepresentations of, or omissions as to, the value and/or condition of the Property.
(N) "Mortgage Insurance" means insurance protecting Lender against the nonpayment of, or default on, the Loan.
(O) "Periodic Payment" means the regularly scheduled amount due for (i) principal and interest under the Note, plus (ii) any amounts under Section 3 of this Security Instrument.
(P) "RESPA" means the Real Estate Settlement Procedures Act (12 U.S.C. §2601 et seq.) and its implementing regulation, Regulation X (24 C.F.R. Part 3500), as they might be amended from time to time, or any additional or successor legislation or regulation that governs the same subject matter. As used in this Security Instrument, "RESPA" refers to all requirements and restrictions that are imposed in regard to a "federally related mortgage loan" even if the Loan does not qualify as a "federally related mortgage loan" under RESPA.
(Q) "Successor in Interest of Borrower" means any party that has taken title to the Property, whether or not that party has assumed Borrower's obligations under the Note and/or this Security Instrument.

TRANSFER OF RIGHTS IN THE PROPERTY

This Security Instrument secures to Lender: (i) the repayment of the Loan, and all renewals, extensions and modifications of the Note; and (ii) the performance of Borrower's covenants and agreements under this Security Instrument and the Note. For this purpose, Borrower irrevocably grants and conveys to Trustee, in trust, with power of sale, the following described property located in the \qquad of
[Type of Recording Jurisdiction]
[Name of Recording Jurisdiction]
which currently has the address of \qquad
[Street]
$\frac{[\text { City }]}{}$ [Street $]$ California \quad [Zip Code $] \quad$ ("Property Address"):

TOGETHER WITH all the improvements now or hereafter erected on the property, and all easements, appurtenances, and fixtures now or hereafter a part of the property. All replacements and additions shall also be covered by this Security Instrument. All of the foregoing is referred to in this Security Instrument as the "Property."

BORROWER COVENANTS that Borrower is lawfully seised of the estate hereby conveyed and has the right to grant and convey the Property and that the Property is unencumbered, except for encumbrances of record. Borrower warrants and will defend generally the title to the Property against all claims and demands, subject to any encumbrances of record.

THIS SECURITY INSTRUMENT combines uniform covenants for national use and non-uniform covenants with limited variations by jurisdiction to constitute a uniform security instrument covering real property.

UNIFORM COVENANTS. Borrower and Lender covenant and agree as follows:

1. Payment of Principal, Interest, Escrow Items, Prepayment Charges, and Late

Charges. Borrower shall pay when due the principal of, and interest on, the debt evidenced by the Note and any prepayment charges and late charges due under the Note. Borrower shall also pay funds for Escrow Items pursuant to Section 3. Payments due under the Note and this Security Instrument shall be made in U.S. currency. However, if any check or other instrument received by Lender as payment under the Note or this Security Instrument is returned to Lender unpaid, Lender may require that any or all subsequent payments due under the Note and this Security Instrument be made in one or more of the following forms, as selected by Lender: (a) cash; (b) money order; (c) certified check, bank check, treasurer's check or cashier's check, provided any such check is drawn upon an institution whose deposits are insured by a federal agency, instrumentality, or entity; or (d) Electronic Funds Transfer.

Payments are deemed received by Lender when received at the location designated in the Note or at such other location as may be designated by Lender in accordance with the notice provisions in Section 15. Lender may return any payment or partial payment if the payment or partial payments are insufficient to bring the Loan current. Lender may accept any payment or partial payment insufficient to bring the Loan current, without waiver of any rights hereunder or prejudice to its rights to refuse such payment or partial payments in the future, but Lender is not obligated to apply such payments at the time such payments are accepted. If each Periodic Payment is applied as of its scheduled due date, then Lender need not pay interest on unapplied funds. Lender may hold such unapplied funds until Borrower makes payment to bring the Loan current. If Borrower does not do so within a reasonable period of time, Lender shall either apply such funds or return them to Borrower. If not applied earlier, such funds will be applied to the outstanding principal balance under the Note immediately prior to foreclosure. No offset or claim which Borrower might have now or in the future against Lender shall relieve Borrower from making payments due under the Note and this Security Instrument or performing the covenants and agreements secured by this Security Instrument.
2. Application of Payments or Proceeds. Except as otherwise described in this Section 2, all payments accepted and applied by Lender shall be applied in the following order of priority: (a) interest due under the Note; (b) principal due under the Note; (c) amounts due under Section 3. Such payments shall be applied to each Periodic Payment in the order in which it became due. Any remaining amounts shall be applied first to late charges, second to any other amounts due under this Security Instrument, and then to reduce the principal balance of the Note.

If Lender receives a payment from Borrower for a delinquent Periodic Payment which includes a sufficient amount to pay any late charge due, the payment may be applied to the delinquent payment and the late charge. If more than one Periodic Payment is outstanding, Lender may apply any payment received from Borrower to the repayment of the Periodic Payments if, and to the extent that, each payment can be paid in full. To the extent that any excess exists after the payment is applied to the full payment of one or more Periodic Payments, such excess may be applied to any late charges due. Voluntary prepayments shall be applied first to any prepayment charges and then as described in the Note.

Any application of payments, insurance proceeds, or Miscellaneous Proceeds to principal due under the Note shall not extend or postpone the due date, or change the amount, of the Periodic Payments.
3. Funds for Escrow Items. Borrower shall pay to Lender on the day Periodic Payments are due under the Note, until the Note is paid in full, a sum (the "Funds") to provide for payment of amounts due for: (a) taxes and assessments and other items which can attain priority over this Security Instrument as a lien or encumbrance on the Property; (b) leasehold payments or ground rents on the Property, if any; (c) premiums for any and all insurance required by Lender under Section 5; and (d) Mortgage Insurance premiums, if any, or any sums payable by Borrower to Lender in lieu of the payment of Mortgage Insurance premiums in accordance with the provisions of Section 10. These items are called "Escrow Items." At origination or at any time during the term of the Loan, Lender may require that Community Association Dues, Fees, and Assessments, if any, be escrowed by Borrower, and such dues, fees and assessments shall be an Escrow Item. Borrower shall promptly furnish to Lender all notices of amounts to be paid under this Section. Borrower shall pay Lender the Funds for Escrow Items unless Lender waives Borrower's obligation to pay the Funds for any or all Escrow Items. Lender may waive

Borrower's obligation to pay to Lender Funds for any or all Escrow Items at any time. Any such waiver may only be in writing. In the event of such waiver, Borrower shall pay directly, when and where payable, the amounts due for any Escrow Items for which payment of Funds has been waived by Lender and, if Lender requires, shall furnish to Lender receipts evidencing such payment within such time period as Lender may require. Borrower's obligation to make such payments and to provide receipts shall for all purposes be deemed to be a covenant and agreement contained in this Security Instrument, as the phrase "covenant and agreement" is used in Section 9. If Borrower is obligated to pay Escrow Items directly, pursuant to a waiver, and Borrower fails to pay the amount due for an Escrow Item, Lender may exercise its rights under Section 9 and pay such amount and Borrower shall then be obligated under Section 9 to repay to Lender any such amount. Lender may revoke the waiver as to any or all Escrow Items at any time by a notice given in accordance with Section 15 and, upon such revocation, Borrower shall pay to Lender all Funds, and in such amounts, that are then required under this Section 3.

Lender may, at any time, collect and hold Funds in an amount (a) sufficient to permit Lender to apply the Funds at the time specified under RESPA, and (b) not to exceed the maximum amount a lender can require under RESPA. Lender shall estimate the amount of Funds due on the basis of current data and reasonable estimates of expenditures of future Escrow Items or otherwise in accordance with Applicable Law.

The Funds shall be held in an institution whose deposits are insured by a federal agency, instrumentality, or entity (including Lender, if Lender is an institution whose deposits are so insured) or in any Federal Home Loan Bank. Lender shall apply the Funds to pay the Escrow Items no later than the time specified under RESPA. Lender shall not charge Borrower for holding and applying the Funds, annually analyzing the escrow account, or verifying the Escrow Items, unless Lender pays Borrower interest on the Funds and Applicable Law permits Lender to make such a charge. Unless an agreement is made in writing or Applicable Law requires interest to be paid on the Funds, Lender shall not be required to pay Borrower any interest or earnings on the Funds. Borrower and Lender can agree in writing, however, that interest shall be paid on the Funds. Lender shall give to Borrower, without charge, an annual accounting of the Funds as required by RESPA.

If there is a surplus of Funds held in escrow, as defined under RESPA, Lender shall account to Borrower for the excess funds in accordance with RESPA. If there is a shortage of Funds held in escrow, as defined under RESPA, Lender shall notify Borrower as required by RESPA, and Borrower shall pay to Lender the amount necessary to make up the shortage in accordance with RESPA, but in no more than 12 monthly payments. If there is a deficiency of Funds held in escrow, as defined under RESPA, Lender shall notify Borrower as required by RESPA, and Borrower shall pay to Lender the amount necessary to make up the deficiency in accordance with RESPA, but in no more than 12 monthly payments.

Upon payment in full of all sums secured by this Security Instrument, Lender shall promptly refund to Borrower any Funds held by Lender.
4. Charges; Liens. Borrower shall pay all taxes, assessments, charges, fines, and impositions attributable to the Property which can attain priority over this Security Instrument, leasehold payments or ground rents on the Property, if any, and Community Association Dues, Fees, and Assessments, if any. To the extent that these items are Escrow Items, Borrower shall pay them in the manner provided in Section 3.

Borrower shall promptly discharge any lien which has priority over this Security Instrument unless Borrower: (a) agrees in writing to the payment of the obligation secured by the lien in a manner acceptable to Lender, but only so long as Borrower is performing such agreement; (b) contests the lien in good faith by, or defends against enforcement of the lien in, legal proceedings which in Lender's opinion operate to prevent the enforcement of the lien while those proceedings are pending, but only until such proceedings are concluded; or (c) secures from the holder of the lien an agreement satisfactory to Lender subordinating the lien to this Security Instrument. If Lender determines that any part of the Property is subject to a lien which can attain priority over this Security Instrument, Lender may give Borrower a notice identifying the lien. Within 10 days of the date on which that notice is given, Borrower shall satisfy the lien or take one or more of the actions set forth above in this Section 4.

Lender may require Borrower to pay a one-time charge for a real estate tax verification and/or reporting service used by Lender in connection with this Loan.
5. Property Insurance. Borrower shall keep the improvements now existing or hereafter erected on the Property insured against loss by fire, hazards included within the term "extended coverage," and any other hazards including, but not limited to, earthquakes and floods, for which Lender requires insurance. This insurance shall be maintained in the amounts (including deductible levels) and for the periods that Lender requires. What Lender requires pursuant to the preceding sentences can change during the term of the Loan. The insurance carrier providing the insurance shall be chosen by Borrower subject to Lender's right to disapprove Borrower's choice, which right shall not be exercised unreasonably. Lender may require Borrower to pay, in connection with this Loan, either: (a) a one-time charge for flood zone determination, certification and tracking services; or (b) a one-time charge for flood zone determination and certification services and subsequent charges each time remappings or similar changes occur which reasonably might affect such determination or certification. Borrower shall also be responsible for the payment of any fees imposed by the Federal Emergency Management Agency in connection with the review of any flood zone determination resulting from an objection by Borrower.

If Borrower fails to maintain any of the coverages described above, Lender may obtain insurance coverage, at Lender's option and Borrower's expense. Lender is under no obligation to purchase any particular type or amount of coverage. Therefore, such coverage shall cover Lender, but might or might not protect Borrower, Borrower's equity in the Property, or the contents of the Property, against any risk, hazard or liability and might provide greater or lesser coverage than was previously in effect. Borrower acknowledges that the cost of the insurance coverage so obtained might significantly exceed the cost of insurance that Borrower could have obtained. Any amounts disbursed by Lender under this Section 5 shall become additional debt of Borrower secured by this Security Instrument. These amounts shall bear interest at the Note rate from the date of disbursement and shall be payable, with such interest, upon notice from Lender to Borrower requesting payment.

All insurance policies required by Lender and renewals of such policies shall be subject to Lender's right to disapprove such policies, shall include a standard mortgage clause, and shall name Lender as mortgagee and/or as an additional loss payee and Borrower further agrees to generally assign rights to insurance proceeds to the holder of the Note up to the amount of the outstanding loan balance. Lender shall have the right to hold the policies and renewal certificates. If Lender requires, Borrower shall promptly give to Lender all receipts of paid
premiums and renewal notices. If Borrower obtains any form of insurance coverage, not otherwise required by Lender, for damage to, or destruction of, the Property, such policy shall include a standard mortgage clause and shall name Lender as mortgagee and/or as an additional loss payee and Borrower further agrees to generally assign rights to insurance proceeds to the holder of the Note up to the amount of the outstanding loan balance.

In the event of loss, Borrower shall give prompt notice to the insurance carrier and Lender. Lender may make proof of loss if not made promptly by Borrower. Unless Lender and Borrower otherwise agree in writing, any insurance proceeds, whether or not the underlying insurance was required by Lender, shall be applied to restoration or repair of the Property, if the restoration or repair is economically feasible and Lender's security is not lessened. During such repair and restoration period, Lender shall have the right to hold such insurance proceeds until Lender has had an opportunity to inspect such Property to ensure the work has been completed to Lender's satisfaction, provided that such inspection shall be undertaken promptly. Lender may disburse proceeds for the repairs and restoration in a single payment or in a series of progress payments as the work is completed. Unless an agreement is made in writing or Applicable Law requires interest to be paid on such insurance proceeds, Lender shall not be required to pay Borrower any interest or earnings on such proceeds. Fees for public adjusters, or other third parties, retained by Borrower shall not be paid out of the insurance proceeds and shall be the sole obligation of Borrower. If the restoration or repair is not economically feasible or Lender's security would be lessened, the insurance proceeds shall be applied to the sums secured by this Security Instrument, whether or not then due, with the excess, if any, paid to Borrower. Such insurance proceeds shall be applied in the order provided for in Section 2.

If Borrower abandons the Property, Lender may file, negotiate and settle any available insurance claim and related matters. If Borrower does not respond within 30 days to a notice from Lender that the insurance carrier has offered to settle a claim, then Lender may negotiate and settle the claim. The 30-day period will begin when the notice is given. In either event, or if Lender acquires the Property under Section 22 or otherwise, Borrower hereby assigns to Lender (a) Borrower's rights to any insurance proceeds in an amount not to exceed the amounts unpaid under the Note or this Security Instrument, and (b) any other of Borrower's rights (other than the right to any refund of unearned premiums paid by Borrower) under all insurance policies covering the Property, insofar as such rights are applicable to the coverage of the Property. Lender may use the insurance proceeds either to repair or restore the Property or to pay amounts unpaid under the Note or this Security Instrument, whether or not then due.
6. Occupancy. Borrower shall occupy, establish, and use the Property as Borrower's principal residence within 60 days after the execution of this Security Instrument and shall continue to occupy the Property as Borrower's principal residence for at least one year after the date of occupancy, unless Lender otherwise agrees in writing, which consent shall not be unreasonably withheld, or unless extenuating circumstances exist which are beyond Borrower's control.
7. Preservation, Maintenance and Protection of the Property; Inspections. Borrower shall not destroy, damage or impair the Property, allow the Property to deteriorate or commit waste on the Property. Whether or not Borrower is residing in the Property, Borrower shall maintain the Property in order to prevent the Property from deteriorating or decreasing in value due to its condition. Unless it is determined pursuant to Section 5 that repair or restoration is not economically feasible, Borrower shall promptly repair the Property if damaged to avoid
further deterioration or damage. If insurance or condemnation proceeds are paid in connection with damage to, or the taking of, the Property, Borrower shall be responsible for repairing or restoring the Property only if Lender has released proceeds for such purposes. Lender may disburse proceeds for the repairs and restoration in a single payment or in a series of progress payments as the work is completed. If the insurance or condemnation proceeds are not sufficient to repair or restore the Property, Borrower is not relieved of Borrower's obligation for the completion of such repair or restoration.

Lender or its agent may make reasonable entries upon and inspections of the Property. If it has reasonable cause, Lender may inspect the interior of the improvements on the Property. Lender shall give Borrower notice at the time of or prior to such an interior inspection specifying such reasonable cause.
8. Borrower's Loan Application. Borrower shall be in default if, during the Loan application process, Borrower or any persons or entities acting at the direction of Borrower or with Borrower's knowledge or consent gave materially false, misleading, or inaccurate information or statements to Lender (or failed to provide Lender with material information) in connection with the Loan. Material representations include, but are not limited to, representations concerning Borrower's occupancy of the Property as Borrower's principal residence.
9. Protection of Lender's Interest in the Property and Rights Under this

Security Instrument. If (a) Borrower fails to perform the covenants and agreements contained in this Security Instrument, (b) there is a legal proceeding that might significantly affect Lender's interest in the Property and/or rights under this Security Instrument (such as a proceeding in bankruptcy, probate, for condemnation or forfeiture, for enforcement of a lien which may attain priority over this Security Instrument or to enforce laws or regulations), or (c) Borrower has abandoned the Property, then Lender may do and pay for whatever is reasonable or appropriate to protect Lender's interest in the Property and rights under this Security Instrument, including protecting and/or assessing the value of the Property, and securing and/or repairing the Property. Lender's actions can include, but are not limited to: (a) paying any sums secured by a lien which has priority over this Security Instrument; (b) appearing in court; and (c) paying reasonable attorneys' fees to protect its interest in the Property and/or rights under this Security Instrument, including its secured position in a bankruptcy proceeding. Securing the Property includes, but is not limited to, entering the Property to make repairs, change locks, replace or board up doors and windows, drain water from pipes, eliminate building or other code violations or dangerous conditions, and have utilities turned on or off. Although Lender may take action under this Section 9, Lender does not have to do so and is not under any duty or obligation to do so. It is agreed that Lender incurs no liability for not taking any or all actions authorized under this Section 9.

Any amounts disbursed by Lender under this Section 9 shall become additional debt of Borrower secured by this Security Instrument. These amounts shall bear interest at the Note rate from the date of disbursement and shall be payable, with such interest, upon notice from Lender to Borrower requesting payment.

If this Security Instrument is on a leasehold, Borrower shall comply with all the provisions of the lease. If Borrower acquires fee title to the Property, the leasehold and the fee title shall not merge unless Lender agrees to the merger in writing.
10. Mortgage Insurance. If Lender required Mortgage Insurance as a condition of making the Loan, Borrower shall pay the premiums required to maintain the Mortgage Insurance in effect. If, for any reason, the Mortgage Insurance coverage required by Lender ceases to be available from the mortgage insurer that previously provided such insurance and Borrower was required to make separately designated payments toward the premiums for Mortgage Insurance, Borrower shall pay the premiums required to obtain coverage substantially equivalent to the Mortgage Insurance previously in effect, at a cost substantially equivalent to the cost to Borrower of the Mortgage Insurance previously in effect, from an alternate mortgage insurer selected by Lender. If substantially equivalent Mortgage Insurance coverage is not available, Borrower shall continue to pay to Lender the amount of the separately designated payments that were due when the insurance coverage ceased to be in effect. Lender will accept, use and retain these payments as a non-refundable loss reserve in lieu of Mortgage Insurance. Such loss reserve shall be nonrefundable, notwithstanding the fact that the Loan is ultimately paid in full, and Lender shall not be required to pay Borrower any interest or earnings on such loss reserve. Lender can no longer require loss reserve payments if Mortgage Insurance coverage (in the amount and for the period that Lender requires) provided by an insurer selected by Lender again becomes available, is obtained, and Lender requires separately designated payments toward the premiums for Mortgage Insurance. If Lender required Mortgage Insurance as a condition of making the Loan and Borrower was required to make separately designated payments toward the premiums for Mortgage Insurance, Borrower shall pay the premiums required to maintain Mortgage Insurance in effect, or to provide a non-refundable loss reserve, until Lender's requirement for Mortgage Insurance ends in accordance with any written agreement between Borrower and Lender providing for such termination or until termination is required by Applicable Law. Nothing in this Section 10 affects Borrower's obligation to pay interest at the rate provided in the Note.

Mortgage Insurance reimburses Lender (or any entity that purchases the Note) for certain losses it may incur if Borrower does not repay the Loan as agreed. Borrower is not a party to the Mortgage Insurance.

Mortgage insurers evaluate their total risk on all such insurance in force from time to time, and may enter into agreements with other parties that share or modify their risk, or reduce losses. These agreements are on terms and conditions that are satisfactory to the mortgage insurer and the other party (or parties) to these agreements. These agreements may require the mortgage insurer to make payments using any source of funds that the mortgage insurer may have available (which may include funds obtained from Mortgage Insurance premiums).

As a result of these agreements, Lender, any purchaser of the Note, another insurer, any reinsurer, any other entity, or any affiliate of any of the foregoing, may receive (directly or indirectly) amounts that derive from (or might be characterized as) a portion of Borrower's payments for Mortgage Insurance, in exchange for sharing or modifying the mortgage insurer's risk, or reducing losses. If such agreement provides that an affiliate of Lender takes a share of the insurer's risk in exchange for a share of the premiums paid to the insurer, the arrangement is often termed "captive reinsurance." Further:
(a) Any such agreements will not affect the amounts that Borrower has agreed to pay for Mortgage Insurance, or any other terms of the Loan. Such agreements will not increase the amount Borrower will owe for Mortgage Insurance, and they will not entitle Borrower to any refund.
(b) Any such agreements will not affect the rights Borrower has - if any - with respect to the Mortgage Insurance under the Homeowners Protection Act of 1998 or any other law. These rights may include the right to receive certain disclosures, to request and obtain cancellation of the Mortgage Insurance, to have the Mortgage Insurance terminated automatically, and/or to receive a refund of any Mortgage Insurance premiums that were unearned at the time of such cancellation or termination.
11. Assignment of Miscellaneous Proceeds; Forfeiture. All Miscellaneous Proceeds are hereby assigned to and shall be paid to Lender.

If the Property is damaged, such Miscellaneous Proceeds shall be applied to restoration or repair of the Property, if the restoration or repair is economically feasible and Lender's security is not lessened. During such repair and restoration period, Lender shall have the right to hold such Miscellaneous Proceeds until Lender has had an opportunity to inspect such Property to ensure the work has been completed to Lender's satisfaction, provided that such inspection shall be undertaken promptly. Lender may pay for the repairs and restoration in a single disbursement or in a series of progress payments as the work is completed. Unless an agreement is made in writing or Applicable Law requires interest to be paid on such Miscellaneous Proceeds, Lender shall not be required to pay Borrower any interest or earnings on such Miscellaneous Proceeds. If the restoration or repair is not economically feasible or Lender's security would be lessened, the Miscellaneous Proceeds shall be applied to the sums secured by this Security Instrument, whether or not then due, with the excess, if any, paid to Borrower. Such Miscellaneous Proceeds shall be applied in the order provided for in Section 2.

In the event of a total taking, destruction, or loss in value of the Property, the Miscellaneous Proceeds shall be applied to the sums secured by this Security Instrument, whether or not then due, with the excess, if any, paid to Borrower.

In the event of a partial taking, destruction, or loss in value of the Property in which the fair market value of the Property immediately before the partial taking, destruction, or loss in value is equal to or greater than the amount of the sums secured by this Security Instrument immediately before the partial taking, destruction, or loss in value, unless Borrower and Lender otherwise agree in writing, the sums secured by this Security Instrument shall be reduced by the amount of the Miscellaneous Proceeds multiplied by the following fraction: (a) the total amount of the sums secured immediately before the partial taking, destruction, or loss in value divided by (b) the fair market value of the Property immediately before the partial taking, destruction, or loss in value. Any balance shall be paid to Borrower.

In the event of a partial taking, destruction, or loss in value of the Property in which the fair market value of the Property immediately before the partial taking, destruction, or loss in value is less than the amount of the sums secured immediately before the partial taking, destruction, or loss in value, unless Borrower and Lender otherwise agree in writing, the Miscellaneous Proceeds shall be applied to the sums secured by this Security Instrument whether or not the sums are then due.

If the Property is abandoned by Borrower, or if, after notice by Lender to Borrower that the Opposing Party (as defined in the next sentence) offers to make an award to settle a claim for damages, Borrower fails to respond to Lender within 30 days after the date the notice is given, Lender is authorized to collect and apply the Miscellaneous Proceeds either to restoration or repair of the Property or to the sums secured by this Security Instrument, whether or not then due.
"Opposing Party" means the third party that owes Borrower Miscellaneous Proceeds or the party against whom Borrower has a right of action in regard to Miscellaneous Proceeds.

Borrower shall be in default if any action or proceeding, whether civil or criminal, is begun that, in Lender's judgment, could result in forfeiture of the Property or other material impairment of Lender's interest in the Property or rights under this Security Instrument. Borrower can cure such a default and, if acceleration has occurred, reinstate as provided in Section 19, by causing the action or proceeding to be dismissed with a ruling that, in Lender's judgment, precludes forfeiture of the Property or other material impairment of Lender's interest in the Property or rights under this Security Instrument. The proceeds of any award or claim for damages that are attributable to the impairment of Lender's interest in the Property are hereby assigned and shall be paid to Lender.

All Miscellaneous Proceeds that are not applied to restoration or repair of the Property shall be applied in the order provided for in Section 2.
12. Borrower Not Released; Forbearance By Lender Not a Waiver. Extension of the time for payment or modification of amortization of the sums secured by this Security Instrument granted by Lender to Borrower or any Successor in Interest of Borrower shall not operate to release the liability of Borrower or any Successors in Interest of Borrower. Lender shall not be required to commence proceedings against any Successor in Interest of Borrower or to refuse to extend time for payment or otherwise modify amortization of the sums secured by this Security Instrument by reason of any demand made by the original Borrower or any Successors in Interest of Borrower. Any forbearance by Lender in exercising any right or remedy including, without limitation, Lender's acceptance of payments from third persons, entities or Successors in Interest of Borrower or in amounts less than the amount then due, shall not be a waiver of or preclude the exercise of any right or remedy.
13. Joint and Several Liability; Co-signers; Successors and Assigns Bound. Borrower covenants and agrees that Borrower's obligations and liability shall be joint and several. However, any Borrower who co-signs this Security Instrument but does not execute the Note (a "co-signer"): (a) is co-signing this Security Instrument only to mortgage, grant and convey the co-signer's interest in the Property under the terms of this Security Instrument; (b) is not personally obligated to pay the sums secured by this Security Instrument; and (c) agrees that Lender and any other Borrower can agree to extend, modify, forbear or make any accommodations with regard to the terms of this Security Instrument or the Note without the cosigner's consent.

Subject to the provisions of Section 18, any Successor in Interest of Borrower who assumes Borrower's obligations under this Security Instrument in writing, and is approved by Lender, shall obtain all of Borrower's rights and benefits under this Security Instrument. Borrower shall not be released from Borrower's obligations and liability under this Security Instrument unless Lender agrees to such release in writing. The covenants and agreements of this Security Instrument shall bind (except as provided in Section 20) and benefit the successors and assigns of Lender.
14. Loan Charges. Lender may charge Borrower fees for services performed in connection with Borrower's default, for the purpose of protecting Lender's interest in the Property and rights under this Security Instrument, including, but not limited to, attorneys' fees, property inspection and valuation fees. In regard to any other fees, the absence of express authority in this Security Instrument to charge a specific fee to Borrower shall not be construed as
a prohibition on the charging of such fee. Lender may not charge fees that are expressly prohibited by this Security Instrument or by Applicable Law.

If the Loan is subject to a law which sets maximum loan charges, and that law is finally interpreted so that the interest or other loan charges collected or to be collected in connection with the Loan exceed the permitted limits, then: (a) any such loan charge shall be reduced by the amount necessary to reduce the charge to the permitted limit; and (b) any sums already collected from Borrower which exceeded permitted limits will be refunded to Borrower. Lender may choose to make this refund by reducing the principal owed under the Note or by making a direct payment to Borrower. If a refund reduces principal, the reduction will be treated as a partial prepayment without any prepayment charge (whether or not a prepayment charge is provided for under the Note). Borrower's acceptance of any such refund made by direct payment to Borrower will constitute a waiver of any right of action Borrower might have arising out of such overcharge.
15. Notices. All notices given by Borrower or Lender in connection with this Security Instrument must be in writing. Any notice to Borrower in connection with this Security Instrument shall be deemed to have been given to Borrower when mailed by first class mail or when actually delivered to Borrower's notice address if sent by other means. Notice to any one Borrower shall constitute notice to all Borrowers unless Applicable Law expressly requires otherwise. The notice address shall be the Property Address unless Borrower has designated a substitute notice address by notice to Lender. Borrower shall promptly notify Lender of Borrower's change of address. If Lender specifies a procedure for reporting Borrower's change of address, then Borrower shall only report a change of address through that specified procedure. There may be only one designated notice address under this Security Instrument at any one time. Any notice to Lender shall be given by delivering it or by mailing it by first class mail to Lender's address stated herein unless Lender has designated another address by notice to Borrower. Any notice in connection with this Security Instrument shall not be deemed to have been given to Lender until actually received by Lender. If any notice required by this Security Instrument is also required under Applicable Law, the Applicable Law requirement will satisfy the corresponding requirement under this Security Instrument.
16. Governing Law; Severability; Rules of Construction. This Security Instrument shall be governed by federal law and the law of the jurisdiction in which the Property is located. All rights and obligations contained in this Security Instrument are subject to any requirements and limitations of Applicable Law. Applicable Law might explicitly or implicitly allow the parties to agree by contract or it might be silent, but such silence shall not be construed as a prohibition against agreement by contract. In the event that any provision or clause of this Security Instrument or the Note conflicts with Applicable Law, such conflict shall not affect other provisions of this Security Instrument or the Note which can be given effect without the conflicting provision.

As used in this Security Instrument: (a) words of the masculine gender shall mean and include corresponding neuter words or words of the feminine gender; (b) words in the singular shall mean and include the plural and vice versa; and (c) the word "may" gives sole discretion without any obligation to take any action.
17. Borrower's Copy. Borrower shall be given one copy of the Note and of this Security Instrument.
18. Transfer of the Property or a Beneficial Interest in Borrower. As used in this Section 18, "Interest in the Property" means any legal or beneficial interest in the Property, including, but not limited to, those beneficial interests transferred in a bond for deed, contract for deed, installment sales contract or escrow agreement, the intent of which is the transfer of title by Borrower at a future date to a purchaser.

If all or any part of the Property or any Interest in the Property is sold or transferred (or if Borrower is not a natural person and a beneficial interest in Borrower is sold or transferred) without Lender's prior written consent, Lender may require immediate payment in full of all sums secured by this Security Instrument. However, this option shall not be exercised by Lender if such exercise is prohibited by Applicable Law.

If Lender exercises this option, Lender shall give Borrower notice of acceleration. The notice shall provide a period of not less than 30 days from the date the notice is given in accordance with Section 15 within which Borrower must pay all sums secured by this Security Instrument. If Borrower fails to pay these sums prior to the expiration of this period, Lender may invoke any remedies permitted by this Security Instrument without further notice or demand on Borrower.
19. Borrower's Right to Reinstate After Acceleration. If Borrower meets certain conditions, Borrower shall have the right to have enforcement of this Security Instrument discontinued at any time prior to the earliest of: (a) five days before sale of the Property pursuant to any power of sale contained in this Security Instrument; (b) such other period as Applicable Law might specify for the termination of Borrower's right to reinstate; or (c) entry of a judgment enforcing this Security Instrument. Those conditions are that Borrower: (a) pays Lender all sums which then would be due under this Security Instrument and the Note as if no acceleration had occurred; (b) cures any default of any other covenants or agreements; (c) pays all expenses incurred in enforcing this Security Instrument, including, but not limited to, reasonable attorneys' fees, property inspection and valuation fees, and other fees incurred for the purpose of protecting Lender's interest in the Property and rights under this Security Instrument; and (d) takes such action as Lender may reasonably require to assure that Lender's interest in the Property and rights under this Security Instrument, and Borrower's obligation to pay the sums secured by this Security Instrument, shall continue unchanged. Lender may require that Borrower pay such reinstatement sums and expenses in one or more of the following forms, as selected by Lender: (a) cash; (b) money order; (c) certified check, bank check, treasurer's check or cashier's check, provided any such check is drawn upon an institution whose deposits are insured by a federal agency, instrumentality or entity; or (d) Electronic Funds Transfer. Upon reinstatement by Borrower, this Security Instrument and obligations secured hereby shall remain fully effective as if no acceleration had occurred. However, this right to reinstate shall not apply in the case of acceleration under Section 18.
20. Sale of Note; Change of Loan Servicer; Notice of Grievance. The Note or a partial interest in the Note (together with this Security Instrument) can be sold one or more times without prior notice to Borrower. A sale might result in a change in the entity (known as the "Loan Servicer") that collects Periodic Payments due under the Note and this Security Instrument and performs other mortgage loan servicing obligations under the Note, this Security Instrument, and Applicable Law. There also might be one or more changes of the Loan Servicer unrelated to a sale of the Note. If there is a change of the Loan Servicer, Borrower will be given written notice of the change which will state the name and address of the new Loan Servicer, the address
to which payments should be made and any other information RESPA requires in connection with a notice of transfer of servicing. If the Note is sold and thereafter the Loan is serviced by a Loan Servicer other than the purchaser of the Note, the mortgage loan servicing obligations to Borrower will remain with the Loan Servicer or be transferred to a successor Loan Servicer and are not assumed by the Note purchaser unless otherwise provided by the Note purchaser.

Neither Borrower nor Lender may commence, join, or be joined to any judicial action (as either an individual litigant or the member of a class) that arises from the other party's actions pursuant to this Security Instrument or that alleges that the other party has breached any provision of, or any duty owed by reason of, this Security Instrument, until such Borrower or Lender has notified the other party (with such notice given in compliance with the requirements of Section 15) of such alleged breach and afforded the other party hereto a reasonable period after the giving of such notice to take corrective action. If Applicable Law provides a time period which must elapse before certain action can be taken, that time period will be deemed to be reasonable for purposes of this paragraph. The notice of acceleration and opportunity to cure given to Borrower pursuant to Section 22 and the notice of acceleration given to Borrower pursuant to Section 18 shall be deemed to satisfy the notice and opportunity to take corrective action provisions of this Section 20.
21. Hazardous Substances. As used in this Section 21: (a) "Hazardous Substances" are those substances defined as toxic or hazardous substances, pollutants, or wastes by Environmental Law and the following substances: gasoline, kerosene, other flammable or toxic petroleum products, toxic pesticides and herbicides, volatile solvents, materials containing asbestos or formaldehyde, and radioactive materials; (b) "Environmental Law" means federal laws and laws of the jurisdiction where the Property is located that relate to health, safety or environmental protection; (c) "Environmental Cleanup" includes any response action, remedial action, or removal action, as defined in Environmental Law; and (d) an "Environmental Condition" means a condition that can cause, contribute to, or otherwise trigger an Environmental Cleanup.

Borrower shall not cause or permit the presence, use, disposal, storage, or release of any Hazardous Substances, or threaten to release any Hazardous Substances, on or in the Property. Borrower shall not do, nor allow anyone else to do, anything affecting the Property (a) that is in violation of any Environmental Law, (b) which creates an Environmental Condition, or (c) which, due to the presence, use, or release of a Hazardous Substance, creates a condition that adversely affects the value of the Property. The preceding two sentences shall not apply to the presence, use, or storage on the Property of small quantities of Hazardous Substances that are generally recognized to be appropriate to normal residential uses and to maintenance of the Property (including, but not limited to, hazardous substances in consumer products).

Borrower shall promptly give Lender written notice of (a) any investigation, claim, demand, lawsuit or other action by any governmental or regulatory agency or private party involving the Property and any Hazardous Substance or Environmental Law of which Borrower has actual knowledge, (b) any Environmental Condition, including but not limited to, any spilling, leaking, discharge, release or threat of release of any Hazardous Substance, and (c) any condition caused by the presence, use or release of a Hazardous Substance which adversely affects the value of the Property. If Borrower learns, or is notified by any governmental or regulatory authority, or any private party, that any removal or other remediation of any Hazardous Substance affecting the Property is necessary, Borrower shall promptly take all
necessary remedial actions in accordance with Environmental Law. Nothing herein shall create any obligation on Lender for an Environmental Cleanup.

NON-UNIFORM COVENANTS. Borrower and Lender further covenant and agree as follows:
22. Acceleration; Remedies. Lender shall give notice to Borrower prior to acceleration following Borrower's breach of any covenant or agreement in this Security Instrument (but not prior to acceleration under Section 18 unless Applicable Law provides otherwise). The notice shall specify: (a) the default; (b) the action required to cure the default; (c) a date, not less than 30 days from the date the notice is given to Borrower, by which the default must be cured; and (d) that failure to cure the default on or before the date specified in the notice may result in acceleration of the sums secured by this Security Instrument and sale of the Property. The notice shall further inform Borrower of the right to reinstate after acceleration and the right to bring a court action to assert the nonexistence of a default or any other defense of Borrower to acceleration and sale. If the default is not cured on or before the date specified in the notice, Lender at its option may require immediate payment in full of all sums secured by this Security Instrument without further demand and may invoke the power of sale and any other remedies permitted by Applicable Law. Lender shall be entitled to collect all expenses incurred in pursuing the remedies provided in this Section 22, including, but not limited to, reasonable attorneys' fees and costs of title evidence.

If Lender invokes the power of sale, Lender shall execute or cause Trustee to execute a written notice of the occurrence of an event of default and of Lender's election to cause the Property to be sold. Trustee shall cause this notice to be recorded in each county in which any part of the Property is located. Lender or Trustee shall mail copies of the notice as prescribed by Applicable Law to Borrower and to the other persons prescribed by Applicable Law. Trustee shall give public notice of sale to the persons and in the manner prescribed by Applicable Law. After the time required by Applicable Law, Trustee, without demand on Borrower, shall sell the Property at public auction to the highest bidder at the time and place and under the terms designated in the notice of sale in one or more parcels and in any order Trustee determines. Trustee may postpone sale of all or any parcel of the Property by public announcement at the time and place of any previously scheduled sale. Lender or its designee may purchase the Property at any sale.

Trustee shall deliver to the purchaser Trustee's deed conveying the Property without any covenant or warranty, expressed or implied. The recitals in the Trustee's deed shall be prima facie evidence of the truth of the statements made therein. Trustee shall apply the proceeds of the sale in the following order: (a) to all expenses of the sale, including, but not limited to, reasonable Trustee's and attorneys' fees; (b) to all sums secured by this Security Instrument; and (c) any excess to the person or persons legally entitled to it.
23. Reconveyance. Upon payment of all sums secured by this Security Instrument, Lender shall request Trustee to reconvey the Property and shall surrender this Security Instrument and all notes evidencing debt secured by this Security Instrument to Trustee. Trustee shall reconvey the Property without warranty to the person or persons legally entitled to it. Lender may charge such person or persons a reasonable fee for reconveying the Property, but only if the
fee is paid to a third party (such as the Trustee) for services rendered and the charging of the fee is permitted under Applicable Law. If the fee charged does not exceed the fee set by Applicable Law, the fee is conclusively presumed to be reasonable.
24. Substitute Trustee. Lender, at its option, may from time to time appoint a successor trustee to any Trustee appointed hereunder by an instrument executed and acknowledged by Lender and recorded in the office of the Recorder of the county in which the Property is located. The instrument shall contain the name of the original Lender, Trustee and Borrower, the book and page where this Security Instrument is recorded and the name and address of the successor trustee. Without conveyance of the Property, the successor trustee shall succeed to all the title, powers and duties conferred upon the Trustee herein and by Applicable Law. This procedure for substitution of trustee shall govern to the exclusion of all other provisions for substitution.
25. Statement of Obligation Fee. Lender may collect a fee not to exceed the maximum amount permitted by Applicable Law for furnishing the statement of obligation as provided by Section 2943 of the Civil Code of California.

BY SIGNING BELOW, Borrower accepts and agrees to the terms and covenants contained in this Security Instrument and in any Rider executed by Borrower and recorded with it.

Witnesses:
\qquad

- Borrower
\qquad
- Borrower
[Space Below This Line for Acknowledgment]

FEDERAL HOUSING FINANCE AGENCY

STATEMENT

For Immediate Release
July 6, 2010

Contact: Corinne Russell
(202) 414-6921

Stefanie Mullin
(202) 414-6376

FHFA Statement on Certain Energy Retrofit Loan Programs

After careful review and over a year of working with federal and state government agencies, the Federal Housing Finance Agency (FHFA) has determined that certain energy retrofit lending programs present significant safety and soundness concerns that must be addressed by Fannie Mae, Freddie Mac and the Federal Home Loan Banks. Specifically, programs denominated as Property Assessed Clean Energy (PACE) seek to foster lending for retrofits of residential or commercial properties through a county or city's tax assessment regime. Under most of these programs, such loans acquire a priority lien over existing mortgages, though certain states have chosen not to adopt such priority positions for their loans.

First liens established by PACE loans are unlike routine tax assessments and pose unusual and difficult risk management challenges for lenders, servicers and mortgage securities investors. The size and duration of PACE loans exceed typical local tax programs and do not have the traditional community benefits associated with taxing initiatives.

FHFA urged state and local governments to reconsider these programs and continues to call for a pause in such programs so concerns can be addressed. First liens for such loans represent a key alteration of traditional mortgage lending practice. They present significant risk to lenders and secondary market entities, may alter valuations for mortgage-backed securities and are not essential for successful programs to spur energy conservation.

While the first lien position offered in most PACE programs minimizes credit risk for investors funding the programs, it alters traditional lending priorities. Underwriting for PACE programs results in collateral-based lending rather than lending based upon ability-to-pay, the absence of Truth-in-Lending Act and other consumer protections, and uncertainty as to whether the home improvements actually produce meaningful reductions in energy consumption.

Efforts are just underway to develop underwriting and consumer protection standards as well as energy retrofit standards that are critical for homeowners and lenders to understand the risks and rewards of any energy retrofit lending program. However, first liens that disrupt a fragile housing finance market and long-standing lending priorities, the absence of robust underwriting standards to protect homeowners and the lack of energy retrofit standards to assist homeowners, appraisers, inspectors and lenders determine the value of retrofit products combine to raise safety and soundness concerns.

On May 5, 2010, Fannie Mae and Freddie Mac alerted their seller-servicers to gain an understanding of whether there are existing or prospective PACE or PACE-like programs in jurisdictions where they do business, to be aware that programs with first liens run contrary to the Fannie Mae-Freddie Mac Uniform Security Instrument and that the Enterprises would provide additional guidance should the programs move beyond the experimental stage. Those lender letters remain in effect.

Today, FHFA is directing Fannie Mae, Freddie Mac and the Federal Home Loan Banks to undertake the following prudential actions:

1. For any homeowner who obtained a PACE or PACE-like loan with a priority first lien prior to this date, FHFA is directing Fannie Mae and Freddie Mac to waive their Uniform Security Instrument prohibitions against such senior liens.
2. In addressing PACE programs with first liens, Fannie Mae and Freddie Mac should undertake actions that protect their safe and sound operations. These include, but are not limited to:

- Adjusting loan-to-value ratios to reflect the maximum permissible PACE loan amount available to borrowers in PACE jurisdictions;
- Ensuring that loan covenants require approval/consent for any PACE loan;
- Tightening borrower debt-to-income ratios to account for additional obligations associated with possible future PACE loans;
- Ensuring that mortgages on properties in a jurisdiction offering PACE-like programs satisfy all applicable federal and state lending regulations and guidance.

Fannie Mae and Freddie Mac should issue additional guidance as needed.
3. The Federal Home Loan Banks are directed to review their collateral policies in order to assure that pledged collateral is not adversely affected by energy retrofit programs that include first liens.

Nothing in this Statement affects the normal underwriting programs of the regulated entities or their dealings with PACE programs that do not have a senior lien priority. Further, nothing in these directions to the regulated entities affects in any way underwriting related to traditional tax programs, but is focused solely on senior lien PACE lending initiatives.

FHFA recognizes that PACE and PACE-like programs pose additional lending challenges, but also represent serious efforts to reduce energy consumption. FHFA remains committed to working with federal, state, and local government agencies to develop and implement energy retrofit lending programs with appropriate underwriting guidelines and consumer protection standards. FHFA will also continue to encourage the establishment of energy efficiency standards to support such programs.

[^22]
Certified Home Performance:

Assessing the Market Impacts of Third Party Certification on Residential Properties

Ann Griffin, Earth Advantage Institute

> with

Ben Kaufman, GreenWorks Realty and Sterling Hamilton, Hamilton Investments, LLC

May 29, 2009

Contents

I. Acknowledgements 3
II. Abstract 4
III. Executive Summary 5
IV. Project History and Summary of Key Findings 8
V. Residential Property Analysis - Portland and Seattle Metropolitan Areas 12
VI. Consumer Surveys - Input from Residents of Certified Homes 17
VII. Builder Interviews and Surveys 23
VIII. Western Washington Marketing Analysis 31
IX. Conclusions and Recommended Next Steps 33
X. References 35

I. Acknowledgements

The investigative research in this report was guided by a collaborative Steering Committee and Residential Review Board. The 2008-2009 Steering Committee (known as the Green Building Value Initiative Steering Committee) includes Aaron Adelstein (Master Builders Association of King and Snohomish Counties), Fiona Douglas Hamilton (SEEC LLC), Ann Griffin (Earth Advantage Institute), Julie McBride (Olympia Master Builders), Brandon Smith (Cascadia Region Green Building Council), and Tiffany Speir (Master Builders Association of Pierce County). Many thanks to all members for their work.

I would like to thank Ben Kaufman of GreenWorks Realty for his hard work and partnership. We would also like to acknowledge the contributions provided by Theddi Wright Chappell (Cushman Wakefield of WA), Chris Corps (Vancouver Valuation Accord), Sterling Hamilton (Hamilton Investments), Rachel Jamison (Washington State Department of Ecology) and Sean Penrith (Earth Advantage Institute).

The members of the Residential Review Board generously contributed time and expertise: Dr. Gerard Mildner, Ph.D., Director, Center for Real Estate, Portland State University, George Rolfe, Director of the Runstad Center for Real Estate Studies at the University of Washington, Teresa St. Martin, Eco-Broker and Windermere Real Estate agent, and Matthew Larrabee, President of Real Estate Services, Inc. and current President of the Oregon Chapter of the American Appraisal Institute. Their efforts are much appreciated.

Special recognition and thanks go to Taylor Watkins of Watkins and Associates for his work in developing the basic appraisal methodology and for his role as the project appraiser for the Portland metro area analysis. Bruce Sullivan and Bill Jones of Earth Advantage Institute each contributed their review and suggestions to the preliminary draft of this report. Thanks also to Ryan Shanahan of Earth Advantage Institute and Doug Loqa for their efforts and contributions.

Earth Advantage Institute (EAI) would like to thank the Portland Multiple Listing Service, particularly Natalie Middleton, and the Willamette Valley MLS for providing access to sales data. Wendy Adkisson of the Garner Group Realtors and Developers, LLC, volunteered her research efforts and provided critical information concerning property comparison sales in Central Oregon.

EAI also extends its appreciation to Energy Trust of Oregon for its continued support.

Ann Griffin, Earth Advantage Institute

Study sponsors include:

Built Green Washington
Cascadia Region Green Building Council
Earth Advantage Institute
MBA of King Snohomish Counties
MBA of Pierce County
Northwest Eco-Building Guild

II. Abstract

The report presents an analysis of the market performance of third-party certified sustainable residential properties in the Portland and Seattle metropolitan areas. In each location, a sample of third-party certified homes was selected and comparable homes were found. The author documents that certified homes in the Seattle metro area sold at a price premium of 9.6% when compared to noncertified counterparts, based on a sample of 68 certified homes. In the Portland metro area, certified homes sold at a price premium ranging between 3% and 5%. In addition, the certified homes stayed on the market for 18 days less than noncertified homes. These results are based on a sample of 92 certified homes and comparable properties approved by a project appraiser.

This investigative research effort also includes surveys and interviews with the builders of thirdparty certified homes and their residents. The author discusses the inherent limitations of current valuation practices for homes with sustainable features. Finally, the report includes a synopsis of related research on the relationship between marketing initiatives and the sale price of third-party certified properties.

III. Executive Summary

Certified homes are worth more. This report explains the basis for this statement, using an analysis of third-party certified sustainable homes in the Seattle and Portland metropolitan areas. Moreover, the report shows that there are several important issues inherent in this seemingly simple statement. The report concludes with recommendations to further expand the study of the market performance of third-party certified sustainable homes. It supports heightened collaboration among residential appraisers, real estate brokers, homebuilders, and sustainable building advocates to improve a common understanding of the multiple issues involved in home valuation and communicating the results to a larger audience.

How one defines a building's value may vary. Market sales information is based on standard approaches to building appraisal that do not account for performance-based cost savings. Further, standard approaches do not consider resident health or broader environmental benefits that result from the measures required to achieve third-party sustainable certification. Public understanding of general sustainability concepts has certainly improved in the past 5 years. At the same time, more homebuilders recognize the potential market advantages of building certified homes. However, for many consumers and some homebuilders, the connection between quality home construction and sustainability is not always understood.

Comparable Property Study Results

Earth Advantage Institute selected Taylor Watkins of Watkins \& Associates in Portland to serve as the project appraiser for the comparable property analysis. Watkins recommended the parameters for defining a comparable home and reviewed suggested comparables for their suitability. The parameters used to identify a comparable home are listed in the study. The goal was to test the hypothesis that certified homes would demonstrate improved market performance in terms of sales price and time on market than comparable, noncertified homes.

In Portland, a sample of 92 certified homes and 340 comparable homes was compiled. The certified homes were built between 2000 and 2008, with a majority sold in 2006 and 2007. Most certified homes were matched with 3 or 4 comparables. Certified homes were geographically distributed throughout the metro area. The Portland study found that:

- Certified homes sold 18 days faster than noncertified homes.
- Certified homes sold for 3% to 5% more than noncertified homes. In a statistical analysis with a 95% level of confidence, the overall price difference was found to be 4.2%.

In Seattle, a sample of 68 certified homes and 207 comparable residences was determined. Like the Portland sample, most certified homes were matched with 3 or 4 comparable homes. The Seattle analysis also documented superior market performance in terms of the sales price achieved.

- The expected percentage change for sales price was found to be 9.6% more for the thirdparty sustainable certified homes.
- The certified homes did not sell faster, and stayed on the market an average of 5 days longer (or 40% more time on the market).

These findings are positive factors that will work to the benefit of sustainable home builders and consumers, providing welcome news during a time of reduced home market activity.

Consumer Input

The same issues that determine how much someone is willing to pay for a house - location, amenities, and size - are involved whether one is shopping for a certified sustainable home or not. However, residents living in third-party certified homes should also understand the sustainable features and the positive impact of those features on the longevity of their homes. The study recommends public education so that current and future residents of certified homes will have a greater understanding of those benefits.

Earth Advantage Institute, Master Builders Association of Pierce County, and Olympia Master Builders conducted surveys of residents living in either Earth Advantage ${ }^{\circledR}$ or Built Green ${ }^{\circledR}$ certified homes. Residents value the sustainable attributes of their homes, particularly energy efficiency and improved indoor air quality. Of those surveyed, 90% reported that they would choose a certified versus a noncertified home for their next residence if all other factors were equal. Collectively, the residents also agreed that they would pay more in order to continue to live in a sustainable home. Eighty percent of the survey respondents living in a third-party certified home reported that they would pay up to 5% more in order to move into a home that had been certified as sustainable versus one that had not.

Self-certified and third-party certification. Consumer surveys were taken from residents living in both self-certified and third-party certified homes. In many respects, their answers were similar. Both groups agreed that energy efficiency and indoor air quality were extremely important. In one area of difference, residents of self-certified homes reported that sustainable certification
was less of an influencing factor in their decisions to buy a particular home than did residents of third-party certified homes. (Thirty-one percent of residents in self-certified versus 61% of residents in third-party certified homes reported that the certification was an influence in their decisions to buy their homes). Additionally, 56% of third-party certified home residents reported that their utility bills had been lowered by moving into a certified home versus 46% of noncertified home residents.

Homebuilder Input

Thirty-five builders responded to an online survey and an additional 10 Earth Advantage homebuilders provided in-person interviews. The home builders answered questions regarding any costs associated with building a third-party sustainable certified home and trends in those costs over the past five years. They were also asked to assess current appraisal methodologies.

Home builders responded that awareness for sustainable features in a home had grown sigificantly over the past five years. Despite this, however, demand for third-party certified sustainable homes had not directly increased as a result.

The survey asked if there were added costs associated with building a sustainable residence. The majority of the responsents - 74\% - indicated that building a home to certification standards was more expensive than building a home to code. However, they also noted that the change in cost is coming down. (See Table 5.4.) The increase in construction costs was observed to be between 5 and 10%. As builders become more experienced with the specifications of a given program, and as their networks of sub-contractors and other knowledgeable professionals become more extensive, they have seen some of these cost increases go down. Home builders join the call for increased public awareness related to sustainable building practices and increased collaboration among sustainable building advocages

Recommendations for Action

The interviews and surveys conducted for this research clearly point to a number of recommended actions. The following list is further detailed in the body of the report:

1) Increase tracking of third-party certified sustainable homes
2) Conduct property comparable work in other areas of Oregon and Washington
3) Develop and support professional training opportunities
4) Work with homebuilder and professional realtor associations to increase consumer knowledge about sustainable homes
5) Develop additional educational tools (e.g., a glossary of terms related to green building, an online resource guide)

IV. Project History and Summary of Key Findings

The Pacific Northwest is a stronghold for sustainable building and design. The region has earned a national and international reputation for public policy and public sentiment that supports sustainable living. Several green building and energy efficiency certification programs are available to prospective property owners in the region, including Built Green, Earth Advantage ${ }^{\circledR}$, ENERGY STAR®, and LEED for Homes $®$. As of September 2008, there were close to 10,000 third-party Earth Advantage certified homes in Oregon and Washington. An additional 10,000 homes in Washington have achieved Built Green Home certification, including self-certified and third-party certified homes.

However, while demand for green buildings has increased appreciably over the past 10 years, many financial, appraisal, and real estate professionals do not have an adequate understanding of sustainable building practices (Jamison, 2007). This has resulted in a lack of consistent measurement and the potential undervaluing of sustainably built projects.

The Green Building Value Initiative (GBVI) started in the summer of 2007 when a number of leading green building and local government organizations in the Pacific Northwest met to discuss a growing need: demonstrating the practical value of sustainable certification for residential and commercial properties. According to Rachel Jamison of the Washington State Department of Ecology,

GBVI was created to determine whether green building certification truly adds value to residential and commercial real estate projects. If so, the GBVI will determine the most effective method of communicating this to the real estate finance, appraisal, lending, and investment communities.

In 2009, a coalition of private industry, nonprofit and government organizations will release a series of papers examining certified residential and commercial properties through case studies, property comparisons, interviews, and surveys. This report is part of that effort.

Investigative research into the value of property certification and the valuation of sustainable building practices can be traced back to the efforts of the Vancouver Valuation Accord in 2007. In March of that year, leaders of valuation groups from throughout North and Latin America, Europe, and various Pacific countries met in 2007 in Vancouver, BC, to discuss the valuation implications of sustainability and how they should be approached on a global basis. The result of that meeting was the Vancouver Valuation Accord, a document that was signed by representatives from 20 countries and that adopted the definition of sustainable development created for the United Nations by the Brundtland Commission in 1987:
...development that meets the needs of the present without compromising the ability of future generations to meet their own needs.

Research related to market performance of high performance buildings has followed two tracts: residential and commercial. This report presents the findings related to the residential sector in Oregon and Washington. Specific research activities included:

- residential property comparables (specific comparison between certified and comparable non-certified homes as determined by a certified appraiser)
- home builder surveys and interviews
- residential appraiser interviews
- surveys of residents living in certified homes
- study on the impact of marketing and consumer education to home sales performance
- residential property case studies (published separately)
- commercial property case studies (published separately)

The property comparison work focuses on Portland and Seattle. In each metro area, comparable homes were identified for a large number of certified homes. The sample sizes of certified homes were 92 and 68 in the Portland and Seattle metropolitan areas, respectively. Additional property comparison work on smaller samples of homes was completed in central Oregon and in the Willamette Valley. ${ }^{1}$

Sustainable Building Valuation

The Green Building Value Initiative recognizes the importance of value in discussions related to sustainable property development and certification. The value that is assigned to a single- or multi-family home may vary depending on the context of the assessment. Residential appraisers are responsible for determining the worth of a home in a given real estate market. Appraisal reference guides commonly offer three different approaches to defining value (sales comparison, cost approach, and income approach, although these are more frequently associated with commercial appraisals). The term market value is generally defined as the price that could be obtained for the sale of a given item in current market conditions. This study does not choose one specific definition of value over another. Rather, it points to the lack of a common, comprehensive definition of value as a primary obstacle in recognizing the contributions of sustainable home features. Measuring the added value to a home resulting from sustainable features, or from third-party sustainable certification as a whole, remains a challenge.

Sustainable building advocates face a challenge when trying to document the market value or performance of sustainable buildings. This is partially due to the lack of existing certified projects. This challenge has been less evasive as the number of certified properties in the United States has increased. However, the tools that property appraisers customarily use have not been modified to reflect the more complex valuation required for a sustainable or triple-bottom line approach. Valuation professionals "need to rely more heavily upon thorough analysis of sustainability attributes at the property level to ensure accurate identification of costs, benefits and risk" (Chappell, 2007).

Another consideration stems from the fact that a building cannot simply be labeled sustainable. Green building certifications vary in terms of the building elements that are evaluated under and the performance metrics associated with them. Many builders may not pursue certification at all but will incorporate one or more sustainable or high performance building features into their

[^23]projects. In some respects, the residential sector has lagged behind the commercial sector in terms of understanding property value implications related to sustainable certification (Pitts \& Jackson, 2008). The Pacific Northwest may be at an advantage in this regard, as the region has more sustainable certified homes than any other U.S. region. As in the commercial sector, residential appraisers will become better able to evaluate properties as the number of completed projects grows.

Studies on the relationship between energy efficiency and resulting home values have shown that home values do increase as efficiency improvements are made (Nevin, 1998). Nevin suggests that home values increase by $\$ 11$ to $\$ 21$ for every dollar reduction in annual fuel expenditures. Homeowners obviously review a number of factors before buying a new home. Anticipated home energy savings is one factor that may be considered, particularly as domestic energy prices increase or become more uncertain. Similar to other sustainable characteristics in certified homes, energy efficient components can only be valued according to current industry norms and understanding.

A key challenge in assessing the value implications of energy management strategies is gauging the market's acceptance of those strategies. This factor, coupled with the knowledge that the appraisal community relies heavily upon empirical data, means new or unorthodox approaches to building construction and operations will require a greater burden of proof to support performance projections. (Better Bricks, 2007)

Appraisers in the commercial sector are concerned with the value of real estate assets as investment opportunities. Residential properties (particularly single-family homes) are traditionally viewed as long-term assets for homeowners rather than as investments. This may contribute to the lack of professional literature on the appraisal of sustainable residential properties.

A growing number of builders and real estate brokers are aware of the limitations of the existing home valuation process. EAI staff interviewed three residential appraisers regarding the process of conducting an appraisal on a certified home. While three interviews obviously do not represent a cross-cross section of appraisers, they support trends observed in the wider market. Each appraiser agreed with Linehard, suggesting that there is a need to change regular residential appraisal practices in order to allow individual brokers more flexibility with documentation. The interviewees observed that more training for brokers and financial lenders regarding the specific attributes of energy efficient equipment and sustainable design features will benefit the evaluation of sustainable homes. These last two points were reiterated in additional interviews and surveys with home builders and consumers.

Residential Property Analysis: Summary of Key Findings

- Sustainable third-party certified homes sell faster. Certified homes stay on the market for a shorter period of time, selling 18 days faster in the Portland metro area in 2007-08. In the Portland metro area, the certified homes were primarily Earth Advantage ${ }^{\circledR}$ or Earth Advantage and ENERGY STAR® homes. In Seattle, the homes were primarily Built Green certified.
- Certified homes sell for more than noncertified homes. In the Seattle metro area, thirdparty certified sustainable homes were found to sell for 9.6% more than noncertified homes. In the Portland metro area, certified homes sold for 4.2% more than noncertified homes. This and the previous finding are based on appraiser qualified property comparable results described in section V.
- Market aggregate data, Portland. Price premiums for certified homes were observed in market-wide sales data for the first year that certified homes were tracked by the Portland Multiple Listing Service. Certified homes sold for 11% more than noncertified homes between May 1, 2007 and April 30, 2008 in the Portland metropolitan market (not including Clark County).
- Market aggregate data, King County, WA. A 4\% price premium for newly constructed, green-certified homes was found in King County, WA for the 9-month period ending May 31, 2008. On a per square foot basis, certified homes sold for 37% more than noncertified homes.
- Home builders believe that third-party verification adds value. Almost all of the builders who contributed to this study (98\%), stated that third-party sustainable certification adds to the value of the product. However, they were also concerned that current residential appraisal practices do not sufficient recognize the positive benefits of such certification.
- Home buying public needs to better understand the value and significance of certified sustainable homes. Increased public awareness regarding sustainability in the general media has not necessarily translated into a greater understanding of green home certification. Home builders who build Earth Advantage and Built Green homes asserted that homebuyers need to learn more in order to appreciate the full quality and value of their products. Long-term durability, high quality materials, improved indoor air quality, and increased energy efficiency are part of a certified home.
- Home values should incorporate performance measures. Residential performance measures should be incorporated into standard home valuation. For example, long-term reductions in home utility and repair costs should be a considered when a newly built or remodeled home is appraised for sustainable and energy efficiency features.
- More dynamic appraisal models are needed. Dialog among sustainable building advocates, home builder associations, residential appraisers, realtors, and financial institutions regarding more accurate and dynamic residential appraisal should continue. Such dialog is needed in order to develop the mechanisms for recording sustainable improvements in a home and monitoring those improvements' ongoing performances.
- Certified homes perform better if the home buyer understands the quality and systems differentiation of that home. A certified home is more likely to earn a price premium if the quality and performance savings of that home is clearly communicated to the future home resident.

V. Residential Property Analysis - Portland and Seattle Metropolitan Areas

This study was undertaken to test the hypothesis that sustainable third-party certified homes have a market advantage over comparable noncertified homes based on sales prices and time on the market. The homes in this study were all certified to Earth Advantage ${ }^{\circledR}$, ENERGY STAR® or Built Green ${ }^{\circledR}$ (Four- or Five-Star) standards.

How have certified homes performed in the marketplace? The report explores this question in two ways. First, market-wide aggregate data regarding certified and noncertified homes are reviewed. Second, a specific sample of certified homes and the accompanying property comparables as determined by a qualified residential appraiser are analyzed. This was done in both the Portland and Seattle metro areas.

RMLS and NWMLS Data - The First Year of Tracking Certification

The section begins with an examination of sales data from the Regional Multiple Listing Service (RMLS) in Portland and the Northwest Multiple Listing Service (NWMLS) in Seattle. In 2006, EAI was instrumental in successfully lobbying RMLS to modify its database to include the new certification field. Seattle followed suit due to similar efforts. Both RMLS and NWMLS started to track the sales of sustainably certified homes in 2007. They were among the first MLS organizations in the nation to do so. NWMLS provides information on the sale of homes that have received a Built Green, ENERGY STAR, or LEED for Homes certification. RMLS allows real estate brokers to list new homes as Earth Advantage, co-branded Earth Advantage/ ENERGY STAR, ENERGY STAR, or LEED for Homes. ${ }^{2}$

Between May 1, 2007, and April 30, 2008, 833 newly constructed housing units in Multnomah, Clackamas, Columbia, Washington, Yamhill, and Clark counties were listed as Earth Advantage homes, Earth Advantage/ENERGY STAR co-labeled homes, ENERGY STAR, or LEED for Homes. This number is equal to 13.6% of all newly constructed units in the metro region, according to RMLS.

Certified homes performed better than noncertified homes, in terms of two key metrics: sales price and time on the market. The average sales price among all noncertified homes in the Portland, Oregon metropolitan area (new and existing) was $\$ 346,400$. Noncertified new homes in the same market sold for an average of $\$ 390,400$. Sustainable third-party certified new homes sold for an average of $\$ 431,900$.

On a square foot aggregate basis, the certified homes in Portland sold for $\$ 223$ per square foot. The noncertified homes sold for $\$ 196$ per square foot. Newly constructed certified homes sold for 13.8% more than noncertified homes when compared in this way.

In the Portland metro market, not including Clark County, WA, new and existing homes stayed on the market for an average of 73 days. New homes in the same area stayed on the market for

[^24]an average of 99 days. Sustainable new homes in the same market sold one-third faster, staying on the market for an average of 66 days.

The Northwest MLS reported similarly positive results for the first year of tracking certified home sales data. Sustainably certified homes (or E-Cert homes) built in 2007 accounted for 16.7% of the single-family homes and 18.7% of the condominium sales in King County in the 9month period ending May 31, 2008 (Green Works, 2008).

NWMLS data shows that new construction E-Cert single-family homes sold in 18% less time, sold for 4% more, and were 25% smaller than noncertified homes. Priced per square foot, E-Cert homes were 37% more valuable. New construction E-Cert condominiums sold for 3% more and were 20% smaller than noncertified new construction condos. Priced per square foot, E-Cert condos were 28% more valuable than noncertified condos.

	Portland metro area	Seattle metro area
New homes, noncertified	\$390,400	\$470,000
New homes, certified	\$431,900	\$487,000
Percentage increase	10.6\%	3.6\%
New homes, noncertified per square foot	\$196	\$202
New homes, certified per square foot	\$223	\$278
Percentage increase, per square foot	13.8\%	37.4\%

Portland data provided by RMLS and analyzed by Earth Advantage Institute
Information for Portland metro area, less Clark Co.
Seattle data provided by NWMLS, analyzed by Green Work Realty.

The reports of improved sales performance in two major metropolitan areas were certainly encouraging for many professionals in the green building industry. In order to demonstrate that the primary component of comparison (the main difference between third-party certified homes and comparable traditionally built homes) was the evidence of sustainable certification, property comparables were required. Earth Advantage Institute and Built Green undertook the comparison analysis.

Property Comparison Work - Methodology

Ann Griffin of Earth Advantage Institute led the property comparison work for the Portland metropolitan area and Ben Kaufman of Green Works Realty completed the work for the Seattle metropolitan area. Watkins and Associates were retained as the project appraiser for the Portland analysis. The methodology described in this section was endorsed by Taylor Watkins, the project appraiser, and used in each of the comparable property analyses. The information gathered provides positive results regarding the performance of certified homes in the residential marketplace.

The Portland Regional MLS (RMLS) office provided Earth Advantage Institute with access to its home sales information. Using RMLS, researchers working with Earth Advantage Institute drew between 3 and 7 comparables for each certified property in the sample, with the majority having 3 or 4 comparables. The selected sample contains 92 certified properties in the Portland metropolitan statistical area (including Washington, Yamhill, Multnomah, and Clackamas Counties in Oregon, and Clark County in Washington). The project appraiser developed the guidelines to define comparable properties and confirmed the suitability of each comparable property selected. In Seattle, Ben Kaufman of Green Works Realty conducted a similar study using the same methodology.

Comparable properties were defined as residences that were

- sold with a closing date no more than 6 months prior to the closing date of the subject property
- located within the same neighborhood or sub-neighborhood
- constructed in a similar style based on photographs and staff determination
- constructed to the same degree of quality (e.g., design and materials)
- in the same age range (built within 10 years prior and 5 years after the subject home)
- approximately the same size (within a range from 15% smaller to 5% larger in square feet)
- approximately the same value (with a final sales price from 20% below to 10% above the sales price of the subject home)
- built with no distinguishing green features

The project appraiser reviewed an initial sample of property comparables to verify that EAI was gathering properties that were suitable for analysis (i.e., properties that may be deemed comparable according to professional standards in the residential appraisal field). The project appraiser approved between 2 and 7 comparables for 92 certified properties. Several dozen suggested comparables were rejected by the project appraiser for not satisfactorily meeting the needed criteria for a comparable home.

For each set of subject and comparable properties, the average price difference and average percentage change in price was determined. Rather than just the average price difference, the average percentage change in price was used in an effort to normalize the distribution of home prices. In order to account for the different number of comparable homes found for each subject home, a weighted average was calculated to determine differences in sales price. The number of days on the housing market for each subject and comparable home were also compared.

The study determined that newly constructed residential properties that obtained a sustainable certification sold on the market at a value that ranged between 3.3% and 5.1% higher than comparable properties that had not been certified. This finding was based on a sample of 92 homes at a statistical confidence level of 95%. The difference in home price between a certified home and a noncertified comparable home was found to be 4.2%.

1. Certified homes sell faster than noncertified homes. Within the Portland market, homes that had a sustainable certification were purchased 18 days faster than noncertified homes.
2. Certified homes sell for more than noncertified homes, by a difference ranging from 3% to 5%. The margin of price difference was found to be a 4.2%.

Days on Market

As previously noted, the certified homes sold 18 days faster than noncertified homes. Stated as a percentage rate, the certified homes sold 30% faster. For most consumers, a two-week plus period translates into a month's mortgage payment. As a result, consumers selling certified homes are able to potentially realize important cost savings. Builders also realize the benefits of a property that sells faster. Builders may be able to close on outstanding construction loans more quickly and have shorter inventory turnover times, contributing to positive cash flow.

Reference has been made to the relationship between overall home value and the number of days on the market, with some observers finding that more expensive homes require longer time periods to sell. To determine if this was the case in the selected sample of Portland homes, EAI staff sorted the homes by sales price and examined the resulting pattern in days on the market. A positive linear relationship was not observed; the selling price of the home did not appear to have an impact on days on the market. Certified homes sold faster than noncertified homes. However, more expensive properties did not necessarily take longer to sell.

Seattle metro area property comparison

3. Certified homes in the Seattle metropolitan area sell for more than noncertified homes. The price premium based upon a sample of 68 subject homes was found to 9.6%.
4. In the Seattle study, certified homes remained on the market for an average of 5 days longer, or required 40% more time to be sold than non-certified comparables.

Home Performance and Home Value

The property comparison sections of this study focus on market performance in terms of sales price and time on market. These are standard economic performance metrics. Value may also be defined as the overall benefits of a home divided by its costs. Based on this definition, operational issues become more important. Occupants living in certified homes enjoy a number of benefits, such as reduced utility expenses, improved indoor air quality and accompanying health benefits, and reduced maintenance costs associated with high quality materials and durable construction methods. If these benefits were capitalized, then the value of a home would certainly increase. Larger exogenous economic factors resulting from reduced green house gas emissions could also be calculated and added to the overall performance measurements of a home.

Green commercial buildings are sometimes referred to as Super Class A, or more commonly as high performance buildings. Reduced utility costs and waste removal costs have been documented in a growing number of building case studies. According to USGBC, "(commercial) green buildings save an average 30 percent of energy costs, 35 percent of carbon costs, 30-50 percent of water use costs and $50-90$ percent of waste costs" (Nicolay, 2007).

Reduced costs in the same categories are also observed in residential buildings. The following section of this report describes the survey results of homeowners living in Earth Advantage certified homes. More than half (56%) stated that their utility bills were lower in their current home than in their previous (noncertified) home. National surveys have produced similar results, indicating that the prospect of reduced utility costs also attracts prospective homebuyers. McGraw Hill Construction and the National Association of Home Builders conducted a survey of homeowners in early 2007. Sixty-three percent of the respondents reported lower operating and maintenance costs as the key motivation behind buying a green home (Environmental Leader, 2007). Nearly 50% reported environmental concerns and family health as motivators (Environmental Leader, 2007).

A number of articles in professional appraisal journals have cited the need for increased understanding and more detailed reporting with respect to appraisal reports related to sustainably constructed and appraised buildings, both residential and commercial. ${ }^{3}$ For example, Claire Nicolay of Loyola University of Chicago, a frequent contributor to articles related to real estate appraisal, observed that
(A)lthough the appraisal framework for a green building will not fundamentally change, appraisers will have to enhance their knowledge of key sustainable features and potential value impacts, similar to the type of information they have had to learn in recent years to better understand building-related telecommunication changes, American Disabilities Act legislation, and the effect of the securities markets on capital flows. (Nicolay, 2007)

The basic job that appraisers undertake will not change in terms of needed research, but research on a wider variety of topics will be necessary. These topics can include the performance specifications of energy efficient heating and cooling systems, home infiltration, home material sourcing, and construction site impacts on the local area.

The current lack of a significant body of empirical data (comparable sales, surveys of property performance, and return expectations)...valuation professionals (will need to) rely more heavily upon thorough analysis of sustainability attributes at the property level to ensure accurate identification of costs, benefits and risk. (Lowe \& Chappell, 2007)

In 1999, the National Association of Home Builders president, Charlie Ruma, stated that "lenders, appraisers and investors need to recognize the enhanced value in housing that comes from environmentally-efficient building practices so that buyers are given the credit" (McCuen, 2007). McCuen referred to the creation of home mortgage programs that credit sustainable home improvements as a step in the right direction.

[^25]
VI. Consumer Surveys - Input from Residents of Certified Homes

Consumer understanding and attitudes regarding sustainable home features play an important role in residential markets. The GBVI Steering Committee conducted surveys to identify consumer attitudes toward the sustainable attributes of their homes. Survey responses also provided some social demographic information for home residents.

Residents living in certified homes value the sustainable attributes of their houses, particularly their energy efficiency and improved indoor air quality. Of the respondents, 90% reported that they would choose a certified versus a noncertified home for their next place of residence, if other factors (e.g., location, price, quality) were equal. If cost were an issue, survey respondents continued to favor living in a certified home: 80% of the respondents from third-party certified homes reported that they would pay up to 5% more for their homes. In the case of a $\$ 400,000$ home, a 5% premium is the equivalent of $\$ 20,000$.

Ninety-eight percent of the survey respondents said that they would elect to purchase a green branded home over a home that was not green branded. Thirty-six percent of those surveyed indicated that they would pay up to 10% more on a $\$ 300,000$ home that incorporated Earth Advantage measures.

In another regional consumer survey conducted at the Greener Homes and Gardens Expo in May $2005,35 \%$ of the respondents indicated that Earth Advantage certification had had a direct influence on their home purchases. This finding in a more recent survey of home residents conducted in 2008, and described below.

Consumer Survey Description

Three organizations conducted consumer surveys among residents living in either Built Green or Earth Advantage certified homes: Earth Advantage Institute, the Master Builders Association of Pierce County, and Olympia Master Builders. Each organization used the same basic questionnaire. Among the three organizations, 248 people completed the survey either electronically or via mail. The surveys were conducted in May and June 2008.

Organization	Number of Responses
Olympia Master Builders	32
MBA of Pierce County	33
Earth Advantage Institute	183
TOTAL	248

Earth Advantage homes are third-party certified homes. Built Green Washington recognizes 5 levels of certification. Homes that receive Four- or Five-Star certification are third-party certified homes. Survey responses were analyzed separately by organization to determine if there were differences in attitude among residents of self-certified and residents of third-party certified homes. More importantly, the property comparison work was conducted on third-party certified homes. Survey responses were sorted accordingly to be consistent.

Residents of Third-party Certified Homes

In June 2008, Earth Advantage Institute mailed 3,000 surveys to residents living in Earth Advantage certified homes. EAI received a 6% return rate or 183 responses. A copy of the consumer survey and a summary of responses are included in the appendices. Importantly, the majority of survey respondents indicated that the sustainable certification positively influenced their decisions to purchase their particular homes.

Question: Did sustainable certification have any influence on your decision to buy your home?	Response
Yes	61%
No	39%

The survey asked about specific home attributes, including energy efficiency and indoor air quality. Respondents were asked to rank the importance of these attributes, on a scale from 1 (not important) to 5 (extremely important). Energy efficiency was considered an important or extremely important characteristic by 77% of the survey respondents, while only 3% answered that energy efficiency was not important. Residents living in certified homes also reported lower utility costs. More than half of the Portland respondents (56\%) believed that their average utility costs (gas and electric) were lower in their new certified homes than their previous traditionally built homes.

Table 4.2. Important issues among residents $3^{\text {rd }}$ party certified homes

Attribute	Ranking	
Energy Efficiency	(5) Extremely important	44.2\%
	(4)	32.6\%
	(3)	13.8\%
	(2)	6.6\%
	(1) Not important	2.8\%
Indoor Air Quality	(5) Extremely important	43.4\%
	(4)	28.0\%
	(3)	19.2\%
	(2)	7.1\%
	(1) Not important	2.2\%
Lower Utility Costs	Lower	55.6\%
	Higher	13.5\%
	The Same	19.1\%
	Don't Know	11.8\%

The survey asked consumers whether, when presented with two homes that were otherwise similar except for certification, they would choose the sustainably certified home. The majority (90%) responded that they would select the certified home. The survey also asked residents to specify how much more they might be willing to pay and the specific features that they valued
the most. Eighty percent indicated that they would be willing to pay up to 5% more to live in a certified home.

The consumer survey indicates that residents living in certified homes will choose a certified home for their next purchase and that they are willing to pay more for a certified home. The green home features that residents would be the most willing to pay for include energy efficient hot water systems, an energy efficient furnace, and improved indoor air quality. The responses are summarized in Table 4.3.

Table 4.3 Please check/describe the particular sustainable feature or features in which you would be most likely to invest.

energy efficient hot water heater/tankless water heater	89%
energy efficient furnace	87%
indoor air quality	69%
construction practices that utilize reclaimed/recycled materials and recycling	49%
on-site renewable energy source	42%
grey-water capture and re-use	27%
other feature(s)	10%

Note: Percentages may not add up to 100 due to rounding.

Table 4.4. What would be the maximum amount more you would be willing to pay for these added benefits and features on a \$400,000 home? (1\% 3\% 5\% 7\% 10\% 15\%+)

$\$ 4,000$ (1\% more)	23%
$\$ 12,000$ (3\% more)	31%
$\$ 20,000$ (5\% more)	26%
$\$ 28,000$ (7\% more)	4%
$\$ 40,000$ (10\% more)	10%
$\$ 60,000$ (15\% more)	2%
$\$ 0$ (I wouldn't be willing to pay more)	4%
Didn't answer question	11%

Other studies regarding owner preferences with respect to investments in sustainable homes have reached similar conclusions. According to the Concrete Network, a 2002 report found that 85% of homeowners would spend 1% more for an integrated concrete form (ICF) home, while 23% would spend 5\% more for the same improvement (Balogh, 2008). While consumers have indicated that they would be willing to pay more for a sustainable home (perhaps up to 10% more or greater), the builders surveyed for this report did not generally have the same impression of consumer willingness to pay such an added cost.

Social Demographics of Earth Advantage Survey Respondents

Survey respondents provided basic demographic information about themselves. These questions were added to help determine how residents of certified homes might compare with the general population. Any observed trends could be used to better understand consumer behavior and target potential homebuyers.

In terms of gender, Earth Advantage consumer survey respondents were fairly evenly split between female (51%) and male (48%). Typical household size was reported as 2 (40%), 3 (21%) or 4 people (21%). People completing the survey reported their age as 39 or younger (51%), 40 to $64(42 \%)$ or 65 or older (7%). Their education and income levels are reported in Tables 4.5 and 4.6.

Table 4.5. Education Level of Earth Advantage home residents

Answer Options	Percent	Number
Did not complete high school	0.0%	0
High School Grad/GED	13.2%	24
2-Year College Degree	10.4%	19
4-Year College Degree	38.5%	70
Masters Degree	26.4%	48
Doctoral Degree	4.4%	8
Professional Degree (MD, JD, DDS, etc.)	7.1%	13
No answer	0.5%	1

Table 4.6. Reported Household Income

Answer Options	Percent	Number
$\$ 40,000-\$ 59,000$	18.6%	31
$\$ 60,000-\$ 79,000$	19.2%	32
$\$ 80,000-\$ 99,000$	12.6%	21
$\$ 100,000-\$ 199,000$	39.5%	66
$\$ 200,000-\$ 499,000$	10.2%	17
$\$ 500,0000$ or more	0.0%	0
No answer	8.7%	16

Compared to the general Oregon and Portland metro county populations, residents living in Earth Advantage certified homes have completed more years of education. As education levels commonly correlate with income, the survey respondents also reported a higher level of income.

For example, in Multnomah County, approximately 31% of the population had a bachelor's degree or higher degree in the year 2000 (U.S. Census Bureau State and County Quick Facts). By contrast, 70\% of the Earth Advantage survey respondents reported a bachelor's, master's, doctoral degree, or other professional degree. The median family income for a 4-person household in Portland in 2008 was $\$ 67,500$ (Portland Development Commission). Sixty-two percent of the survey respondents reported household income of $\$ 80,000$ or more.

Table 4.7 Certified Home Residents Compared to General Population

	Portland General Population	Earth Advantage Survey Respondents
Education - Bachelor degree or higher	31%	70%
Income	$\$ 67,500$	$\$ 80,000$

Portland general income based on median family income for a four person household. Earth Advantage survey respondents reported their household income.

While a demographic overview alone does not determine future market trends, it is useful to review how certified homes are distributed across the metro area and the typical profile of residents living in a sustainably certified home. From a policy perspective, this information may be useful to as a way to identify effective strategies for promoting public outreach messages regarding energy efficiency and sustainable home choices. This demographic information is also of interest to builders, developers, and realtors.

Residents of Self-Certified Homes

Olympia Master Builders received 32 survey responses. Of these, 28 responses were from residents with self-certified homes. All of the surveys received by the Master Builders Association of Pierce County were from self-certified homes. This section provides an overview of their responses. Their answers largely mirrored those given by residents of third-party certified homes, with some exceptions. For example, 68% of these respondents ranked energy efficiency as either a 4 or 5 on a five-point scale, suggesting that it is very or extremely important.

While residents in third-party certified and self-certified homes responded to the survey in a similar manner, a few differences were found. A greater number of residents in the third-party certified homes reported that their utility costs were lower in their current than in their previous home (46% versus 56%). Also, more residents in self-certified homes reported that sustainable certification was less of an influencing factor in their decisions to buy homes. This may be rationalized by the fact that they had not decided to pursue certification until after they have moved into their homes or, in the case of an existing certification, it may not have been highlighted as a selling point.

Finally, residents were asked if they thought that sustainable certification would have a positive impact on the future sales prices of their homes (Table 4.9). A number of respondents commented that the future value of their properties would depend on the market.

Table 4.8. Important issues among residents of self-certified homes

Attribute	Ranking	
Energy Efficiency	(5) Extremely important	42.6%
	(4)	26.2%
	(3)	18.0%
	(2)	1.6%
	(1) Not important	9.8%
		32.8%
Indoor Air Quality	(5) Extremely important	24.6%
	(4)	31.1%
	(3)	8.2%
	(2)	1.1%
	(1) Not important	45.9%
		14.8%
	Lower	18.0%
	Higher	23.0%
	The Same	
	Don't Know	

Table 4.9 Consumer Purchase Decision

Question: Did sustainable certification have any influence on your decision to buy your home?	Response
Yes	31%
No	61%
no answer	7%

Note: Percentages may not add up to 100 due to rounding.

A few thoughtful residents went on to comment on the need for increased education for consumers and residential appraisers.
"The impact will grow as the Real Estate agents and consumers are educated." "We built our home so if we ever decide to sell, we believe that the market for green homes, especially ones with certification, would be strong."
"It's all in the market, what are people willing to pay at the time."
"Not immediately, perhaps in five years. Some realtors, don't even know or care yet."
"Our home will sell due to its appeal, location, and affordability, less the 'green clause'."
These comments reflect opinions stated in valuation and real estate literature on the topic. Green certification programs and the adoption of sustainable building practices will continue to grow, but within the field of real estate valuation, assessing the impact of sustainable certification remains an undeveloped science.

VII. Builder Interviews and Surveys

Home builders are clearly an important part of the valuation puzzle. The viability of their green business models depends on public knowledge regarding sustainable homes and public demand for those homes. Lenders and residential appraisers need to understand their products in order to provide financing and accurate value estimates. Builder input is included in this study as a means to identify trends in both industry and public perceptions regarding residential green building. Builders were asked about their motivations for building certified homes, the cost implications of certification, and general market demand.

The GBVI Steering Committee authorized one-on-one interviews and online surveys with residential builders who have constructed certified homes. Ten in-person builder interviews were conducted with senior staff of companies enrolled as Earth Advantage builders in April and May 2008. An additional 35 builders answered the same questions using an online survey conducted by the Master Builders of Pierce County and Earth Advantage Institute

The companies where the individual builders work are listed in Table 5.1.
Table 5.1 Earth Advantage Builder Interviews

Arbor Homes
Ben Walsh
CoHo Construction
Craftsman Homes
Legend Homes
New Traditions
Palmer Homes
Solaire Homes
Sun Forest Homes
Woodhill Homes

Company motivation: Builders reported a number of different reasons for offering certified homes. Primary answers involved extending or demonstrating a commitment to quality and the means to differentiate their companies from the competition. Other builders voiced their personal beliefs in the need for increased societal efforts to reduce climate change.

As a group, the builders stated that in order to remain a leader in a competitive environment, they needed to be abreast of green building technologies and techniques. One manager remarked,
"All builders now need to be in the running (and need to offer sustainable products). The cost of energy is one the largest things on the mind of customers. Sustainable features are also of a growing interest in this market."

Consumer awareness and demand: Builders uniformly agreed that there is an appreciably higher level of awareness among their customers on issues related to sustainability. According to one builder, awareness has increased over the past 5 years. However, this increased awareness does not necessarily translate into greater demand for sustainably certified new homes. The builders generally commented that consumer demand was not the primary reason for offering an Earth Advantage certified home at this time.

Table 5.2 Role of Consumer Demand

Did direct consumer demand influence your decision to	
introduce green products into your homes?	
yes (9)	26%
No (25)	71%
No answer (1)	3%

$n=35$
Interviewees mentioned that they receive more questions about energy efficiency and sustainability in general and that consumers may ask about sustainable certification. Certification has become more important but remains one factor among several considered, most notably location and price.

Consumer demand for green homes increased nationally according to a survey released by Green Builder Media. Green Builder Media surveyed 250 residential builders across the U.S. and reported that more than half had stated that they saw not only an increase in demand for green homes but a willingness to pay more. According to this source, builders have reported a willingness of homebuyers to pay between 11% and 25% more for green-built homes (US Newswire, 2007). According to this source, the "average green homebuyer is between the ages of 35 to50 with a college degree and fair understanding of green products."

Some reduction in new residential construction began to take place in the later part of 2007. It should be noted that the significant slowdown in new housing and other challenges to the national economy occurred between spring 2008, when the builder interviews were conducted, and the time when this draft was written. Changes in consumer credit availability and a national decline in new residential construction experienced during the latter half of 2008 are not directly reflected in the responses given by the individual homebuilders. However, several home builders working with Earth Advantage Institute have credited their decisions to provide sustainably certified, high-quality products as a response to the down economy. According to McGraw Hill Construction's "The Green Builder SmartMarket Report" (2008), 40% of builders report a marketing advantage from green homes in today's housing slump.

Despite the recession in the U.S. economy, builders anticipate increased participation in sustainable residential projects in 2009. Table 5.3 shows the degree to which builders have and will be involved in sustainable building on a national level. The percent reporting that they would be "largely to fully dedicated" to green building (i.e., more than 60% of their projects) will grow from 18% in 2007 to an anticipated 36% in 2009.

Building professionals are positively responding to the market growth surrounding energy efficiency and green building. According to a survey conducted by the National Association of Home Builders (NAHB), "there has been a 20\% increase since last year [2005] in builders dedicated to green building issues. The number was expected to rise by another 30 percent in 2007 to 64% of builders either heavily or moderately involved in green building projects." The survey also found that "nine out of ten builders say they are incorporating energy-saving products into new homes at all price levels" and "the leading factors triggering building firms to expand their green home building activities were: consumer demand, 88%; superior performance, 87%; competitive advantage, 83%."

Building professionals recognize the value of energy efficient and green building construction, features, and benefits. More builders are offering sustainable product as a way to differentiate themselves in the market. The Home Builders Association of Metro Portland joined a dozen other HBAs in adopting Earth Advantage as their preferred green building provider of choice. As market conditions shifted in the $2^{\text {nd }}$ half of 2008, market differentiation become more important. The number of firms that provide green building projects grew from 2007 to 2009, according to McGraw Hill (see Table 5.3). describe themselves as providing sustainable building projects to their clients has grown dedicating projects

Table 5.3 Construction Firms Dedicated to Sustainable Building Projects

Source: McGraw Hill Construction Green Outlook 2009

Need for more consumer education: In their comments, home builders pointed to a separation between growing consumer awareness of general sustainability issues and market demand for certified residential properties. The home buying public may not understand the many elements that are needed to construct a home that will meet third-party certification requirements.
According to one builder,
If you know what we know about the quality and the added work that goes into a home to make it Earth Advantage certified, then absolutely, you understand the value. However,
most buyers don't know about the certification process or what goes in to building a home. There is a need to educate the buyer.

Another builder added that there was definitely an increase in the overall value of his company's homes, but that that value did not automatically translate into a higher price. "It doesn't follow that if we spend an extra $\$ 2,000$ for a given item that we will automatically mark up the price by $\$ 2,000$." The market may not know how to account for this increase in value. Additionally, a builder may choose not to directly change a price in order to maintain market competitiveness.

Cost implications: Popular perceptions linking sustainable construction with higher construction costs have been common (McCuen, 2007). Builders were asked to comment on the cost implications for building homes to meet sustainable certifications. Among those responding to the survey, 74% answered positively to the question, Do you believe that building sustainably certified homes adds significant initial cost to you as a builder? The survey then included a follow-up question to determine what the home builders had experienced in any additional costs. The greatest single answer was provided by twenty-nine percent of the respondents; they estimated that the added cost to the construction budget was between 5% and 10%. (See Table 5.4.)

Table 5.4 Cost of sustainable certification

Do you believe that building sustainably certified homes adds significant initial costs to you as a builder? $(n=35)$				
	Yes	26		
	No	8		
	No answer	1		

If yes, what is the additional cost that is added to the construction budget?

	a. up to 5\%	7	20%
	b. between 5 and 10\%	10	29%
	c. between 10 and 20\%	5	14%
	d. other	0	0%
	e. depends on home	8	23%
	f. not sure	1	3%
	No answer given	4	11%

Note: Above does not include the 10 in-person interviews
Importantly, builders who participated in one-on-one interviews stated the added cost has gone down over the past 5 years because more applicable products have become available, the economies of scale yielded benefits, and market demand for their homes has grown. Eight out of 10 individual builders who were interviewed reported that their costs had decreased over the last several years. Two builders attributed this cost decrease to their own increased level of experience and said that the growing experience of their contractors had helped to decrease their costs.

In the 2007 summary report by the World Business Council for Sustainable Development, 1,423 professionals were interviewed between November 2006 and February 2007. The results indicate that nationally, people perceive green buildings to be more expensive than they are.

While the majority of builders acknowledged additional costs, they also agreed that the costs associated with sustainable residential construction have decreased over the past several years. Twenty nine percent responded that costs had become much more competitive and an equal number stated that the costs had decreased by a small amount.

Table 5.5 Costs decreases

Has the additional cost of building a sustainably certified home decreased over time? ($\mathrm{n}=35$)	
Yes, now cost neutral	0
yes, it has become much more price competitive	29%
yes, the costs have decreased by a small amount	29%
no, the costs have not changed	31%
no answer given	11%

Market value: Of the builders who contributed to this study, 98% agreed that sustainable certification adds to the market value of residential properties. The builders equate certification efforts with a high-quality end product, superior construction, increased energy efficiency, and positive health impacts for home residents. Additional discussion followed regarding how market value is determined. Several builders commented that the increased value of their homes is not adequately rewarded by the market.

One builder replied, "Yes, there is added value to a home (in achieving certification), but we don't just adjust the price. So it can be difficult to measure the value exactly. We are selling at cost right now in order to be competitive." Most residential appraisers simply may not know how to assign a dollar value to specific sustainable features in a home, such as high efficiency furnaces or improved duct sealing. Additionally, standard residential appraisal documents do not include an area where this information may be recorded.

Builders responded to the question, Do your sustainably certified homes command a higher market value? If yes, by what percentage? Builders were almost evenly split in their responses. They believed that the certified homes that they had built were more valuable. But they also stated that the market would not fully recognize that value.
"In my opinion the answer... is yes, but if you're asking whether or not the home will sell for a higher price to prospective buyers, no, not in this market."
"(Our homes are) More likely to be purchased over similarly priced competition. As to being able to price them higher, the answer would be no additional value."
"We may be able to sell our homes for perhaps as much as $10-15 \%$ more. However, location is still the primary driver for home buyers...and green certification cannot offset a less desirable location."

Valuation challenges: A primary issue involved in the valuation of certified homes is the difficulty involved in finding suitable comparable homes. This was clearly demonstrated by the research conducted on property comparisons. This difficulty stems in large part from the lack of objective data and a common language for the description of sustainable features. Builders answering the online survey from Earth Advantage unanimously agreed that this is a primary issue. The majority of builders responded that current appraisal practices do not recognize the value of green features incorporated into a certified home (Table 5.6).

Table 5.6 Current Appraisal Practices

"Current appraisal practices do not recognize the value of					
green features incorporated into a certified home." Do you					
agree with this statement? (n=20)		$	$	Yes	80%
:---	---:				
No	5%				
not sure					
NOTE: This question was not included on the electronic survey conducted by Pierce Co.					

Public Incentives: The builder survey included questions regarding public incentives and utility rebates to support higher energy efficiency in new residential construction projects. Builders were asked if they were aware of these programs and if they had taken advantage of them. Most of the builders had taken advantage of utility rebates. A smaller number had utilized state or federal tax incentives.

Table 5.7 Builder Awareness of Public Incentives

Are you aware of rebates offered by some utility companies for higher efficiency furnaces/heat pumps/appliances? $\mathrm{N}=35$		
Yes	91%	
No	9%	

Have you take advantage of any utility rebate programs to install higher efficiency equipment in a home that you have built? N $=35$	
Yes	57%
No	34%
no answer	9%

Have you taken advantage of state or federal tax incentives to support the construction of any of your residential projects? N=10	
Yes	30%
No	70%

Did tax incentives influence your decision to increase the					
energy efficiency of your homes? $\mathrm{N}=25$		$	$	Yes	72%
:---	---:				
No	24%				
no answer	4%				

Builders generally acknowledged the important role that these kinds of programs can play in raising public awareness and providing support to individual homeowners. This was particularly true of programs offered by Energy Trust of Oregon. Seventy two percent (72\%) of the builders surveyed reported that tax incentives had influenced their decision to increase the energy efficiency levels of their home products.

The downturn in new home construction that began in 2007 and that has continued into 2009, has certainly had an impact on all home builders, including those who construct certified homes. The housing market contracted further in 2008 in the months that followed the interviews and surveys described above. Sustainable or green homes have been reported to provide some amount of market protection for home builders. McGraw Hill Construction reports that green homes have not been as adversely impacted as standard construction homes. "In the context of today's down economy, green homes offer an opportunity for market differentiation for builders as well as cost savings and health benefits for consumers" (McGraw Hill, 2008). According to McGraw Hill's research on U.S. construction trends, "the green home market is expanding despite the downward trends of the market as a whole" (McGraw Hill, 2008).

VIII. Western Washington Marketing Analysis

In March 2009, the Master Builders Association of King and Snohomish Counties selected Hamilton Investments, LLC to study the relationship between the marketing comments included by real estate brokers on the Northwest Multiple Listing Service when selling a certified home and the sales price achieved for the home. The study includes Built Green, LEED for Homes and ENERGY STAR homes as certified homes. The study makes an important contribution to this report as it reinforces the important role that real estate brokers play in educating their buyers and the added value that results from this consumer understanding.

The following excerpt is from the report abstract:
(Hamilton's report) quantifies the effects of marketing and the acknowledgement in marketing materials of environmental certifications and sustainable features on sales prices of homes in a five-county western Washington region. The counties included in this study are: King (excluding Seattle), Pierce, Kitsap, Snohomish and Thurston. Homes are broken down into two major categories: marketed and unmarketed homes. These two categories are then analyzed by geography, certification type, and listing offices. The certifications used are Built Green \circledR^{4}, LEED for Homes and ENERGY STAR. The listing offices included in this study are Windermere and John L. Scott. Major findings of this study include:

- Throughout the five-county region, certified homes that were marketed as green achieved an average sales price of $\$ 534,000$ and homes that were not marketed achieved an average sales price of $\$ 458,000$. In all of the homes analyzed, a roughly 14 percent premium is associated with the marketing of green features. This study includes 1,470 certified homes sold between 2007 and April, 2009, and built between the years 2005 and 2009.
- All counties show some sort of premium for marketed homes, presenting strong evidence that marketing green features and certifications has a positive effect on home prices.
- Thurston County received the highest premium, with marketed certified homes achieving an average price that was 25% higher than homes that were not marketed through the Northwest Multiple Listing Service.
- The county with the highest percentage of homes to receive marketing attention was Kitsap County, with 45 of 117 certified homes marketed. King County followed with 29% or 165 of all certified homes marketed as green. Thurston and Snohomish counties recorded the fewest percentage of homes marketed, at 16%.
- The Built Green ${ }^{\circledR}$ certification is the most referenced certification among marketing comments in the Northwest Multiple Listing Service, with 145 total listings referencing Built Green within their marketing remarks.

[^26]- Both Windermere and John L. Scott are Northwest residential real estate brokerages. Together they make up the majority market share of environmentally certified home sales in the five-county region. Of this study's 1,470 certified homes sold between 2007 and April, 2009, fifty two percent of those homes were listed by either Windermere or John L. Scott.
- Of the 766 certified homes listed by both Windermere and John L. Scott, 207 of these homes were marketed as green. John L. Scott marketed 75 homes and Windermere marketed 132 homes.
- The average price for all certified homes listed by Windermere was $\$ 541,783$, whereas certified homes listed by John L. Scott sold for an average of $\$ 495,746$. This discrepancy reinforces findings throughout the study that certified homes marketed as green will achieve higher premiums than certified homes which are not marketed as green.

Conclusions drawn from this study point to the positive effects on pricing of environmentally certified homes when marketing includes descriptions of sustainable features and of the specific program used to certify the home. While this study presents a very strong case for the relevance of the findings, it in no way questions the decisions of individual real estate agents in marketing their clients' product. The premiums shown amongst marketed product are only statistically significant in that they show a positive trend amongst many data sets. While some statistical tests were conducted, such as scatter diagrams and simple t-tests, specific metrics associated with marketing cannot be measured with high levels of specificity due to the many variables affecting real estate prices.

One conclusion that can be drawn from this study is that evidence points to consumers paying more for cost-saving and environmentally friendly home systems. Marketing these homes is a good way for a real estate brokerage firm to raise overall revenues as well as to educate consumers and other agents about the sustainable features of a certified home.

For more information regarding this report, please contact Aaron Adelstein, executive director of the Master Builders Association of King and Snohomish Counties, or Sterling Hamilton of Hamilton Investments, LLC.

IX. Conclusions and Recommended Next Steps

Residential appraisers, real estate brokers, and financial institutions will benefit from a greater understanding of sustainable home construction and home value by improving their ability to work with third-party certified buildings. Increased professional training and understanding of sustainable home practices will lead to more accurate value assessments of sustainable homes.

Home builders who participated in this study also emphasized the need for greater consumer understanding of what is involved in sustainable home construction and its benefits. As reported by Hamilton in section VIII, consumer familiarity with sustainable home features has a direct positive relationship with the sales price of third-party certified homes. Public outreach of this kind aligns with the marketing goals of the builders, but the promotion of their construction methodologies has a larger goal as well. Sustainable construction has a societal benefit in terms of reduced resource consumption and greenhouse gas reduction. Consumers will benefit from a greater understanding of the impacts that their homes collectively have on the environment and the economy.

Home valuations need to report on aspects of home construction that are tangible but potentially harder to quantify, such as the quality of durable materials and health benefits associated with improved indoor air quality. These long-term performance benefits can be measured, although they typically are not factored in to a home valuation.

Residential builders and sustainable building advocates must continue their dialog with appraisers, real estate professionals, and relevant financial institutions in order to facilitate this improved knowledge transfer. The importance of this dialog was underscored in a publication by Better Bricks, a program of the Northwest Energy Efficiency Alliance.

Thus, investors, developers, and owners will be better served by engaging more directly with lenders and appraisers, detailing how your approaches to energy management present a more compelling investment opportunity. A clear explanation of key strategies, innovative or non-traditional techniques - and the reason for their incorporation - will facilitate a better assessment, increasing the potential for increased assessed value. (Better Bricks, 2007)

Conversations among builders and the professional groups mentioned earlier are ongoing. Additional training opportunities by organizations such as the American Appraisal Institute on the value and requirements for accurate assessments of sustainable residential properties, are clearly helpful and are beginning to occur. The Vancouver Valuation Accord resulted in a number of goals, including the support of valuation organizations in developing education courses and providing training to appraisal organizations (Bergsman, 2007). Green building organizations in the Pacific Northwest will continue their efforts to meet some of the same education and outreach goals, including real estate and appraiser professional training.

Recommended Actions

This study points to a number of specific recommendations to improve understanding related to the valuation of sustainable homes, including professional development and general public outreach. The proper venue for these actions will vary as will the source of needed resources.

1) Increase Tracking of Third-Party Sustainable Certified Properties

The property comparable work completed in this study only became possible in 2007 when the Portland RMLS and the NWMLS began to track the sale of sustainable homes. Other multiple listing services in the region also provide real estate brokers with the opportunity to track the certification of sustainable homes and/or significant sustainable features. The number of multiple listing services that provide this option should be expanded.

- Meet with other multiple listing service providers to determine if they would be able to provide a forum for information about third-party certified sustainable homes on their Web-based portals.
- Discuss with multiple listing service providers if they would be able to provide training to real estate brokers regarding the different sustainable certification listings. This training would also provide hands-on instruction in the input of information onto the Web-based tool.

2) Conduct Property Comparable Work in Other Areas

As other multiple listing service agencies begin to provide the platform for tracking the sales of homes that have received third-party sustainable certifications, additional property comparison work should be undertaken. Central Oregon MLS and Willamette Valley MLS, for example, have information about certified homes. If sales information can not be tracked by a multiple listing service, realtor associations may be able to to contribute sales data results.

3) Develop and Support Professional Training Opportunities

Following the Vancouver Valuation Accord, the American Appraisal Institute established a training seminar for real estate appraisers and other professionals. Earth Advantage Institute also plans to offer a training course for appraisers in 2009.

4) Work with Homebuilder and Professional Realtor Associations to Increase Consumer Knowledge about Sustainable Homes

Built Green Washington, Cascadia USGBC, Earth Advantage Institute, different Master Builder Associations, Home Builder groups and others, regularly work with professional home builder and real estate associations. These partnerships should be continued and used as an opportunity for increased and coordinated public outreach regarding the connection between sustainable certification and home value. Articles in on-line and printed newsletters, conference presentations and continuing education opportunities each play a role. A concentrated, short-term
outreach campaign would also result in increased general pubic understanding of these complex issues.

5) Develop Additional Educational Tools

Expand Green Building Valuation on-line resources available through GBVI member organizations. When GBVI first began, an on-line library was established through Cascadia USGBC for member organizations. Existing GBVI member websites and other resources include:

American Appraisal Institute:

http://www.appraisalinstitute.org/

Cascadia Regional Green Building Council:

http://www.cascadiagbc.org

Built Green Washington:

http://www.builtgreenwashington.org/page.php? $\mathrm{id}=3$

Earth Advantage Institute:

http://www.earthadvantage.org

Green Works Realty:

http://greenworksrealty.com/e-cert_report/e-cert_report.php?t=e-cert_report

Lighthouse Sustainability Centre:

$\mathrm{http}: / / \mathrm{www}$. sustainablebuildingcentre.com/
Master Builders Association of Pierce County: http://www.mbapierce.com/page.php?id=1

X. References

Balogh, Anne. "Do Sustainable Homes Cost More?" Concrete Network. Retrieved January 6, 2009 from http://www.concretenetwork.com/concrete/greenbuildinginformation/do_sustainable.html.

Bergsman, Steve. "Sustainable by all accords: the recently signed Vancouver Valuation Accord marks agreement among industry leaders to address the interrelationship of sustainability and value." Valuation Insights \& Perspectives. Spring, 2007. Retrieved September, 2008 from $\mathrm{http}: / /$ findarticles.com/p/articles/mi_m0JDE/is_/ai_n25008281?tag=artBody;coll.

Better Bricks. October 2007. "Energy Efficiency and Appraisals." Cited from Better Brick internet homepage. Retrieved September 2008, from http://www.betterbricks.com/graphics/assets/documents/EEAppraisals_Final.pdf.

Chappell, Theddi Wright. "The Value of Green." Pacific Security Capital reprint. Originally published in Globe Street Retail, June 5, 2006.

Corps, Chris. Green Value: Green Building, Growing Assets. Royal Institution of Chartered Surveyors, 2005.

Environmental Leader. Cost savings, not environment, top motivation for buying green home. March 28, 2007. Retrieved January 6, 2009 from http://www.environmentalleader.com/2007/03/28/cost-savings-not-environment-top-motivation-for-buying-green-home/.

Green Works Realty Press Release issued July 1, 2008. Retrieved July 2008 from http://greenworksrealty.com/e-cert_report/June\ 2008\ ECert\ Press\ Release.pdf.

Jamison, Rachel. Washington State Department of Ecology. "Abstract: Green Building Finance Initiative Description." 2007.

Lowe, Timothy R. and Theddi Wright Chappell. "Special Considerations in the Valuation of Sustainable Properties." PREA Quarterly, Summer, 2007.

McCuen, Tammy and Douglas Gransberg. "The Value of Building Sustainable Homes." Royal Institute of Chartered Surveys and Georgia Tech. September 2007.

McGraw Hill Construction. Green Outlook 2009: Trends Driving Change. Michele Russo, Editor in Chief. 2008.

Nicolay, Claire. "The Greening of Real Estate Appraisal." Valuation Insights \& Perspectives. Spring, 2007. Retrieved January 6, 2009 from http://findarticles.com/p/articles/mi_m0JDE/is_/ai_n25008279?tag=artBody;coll.

Smith, K. (2006). The trouble with valuating green. Portland Daily Journal of Commerce, 13, 38.
U.S. Newswire. (2007). U.S. Homebuyers will pay premium for 'green' homes. PRNewswire/US Newswire. Retrieved September 2008 from http://www.prnewswire.com/cgi$\mathrm{bin} /$ stories.pl?ACCT=104\&STORY=/www/story/01-31-2007/0004517115\&EDATE.

Relevant Studies with Emphasis on Commercial Properties

Bowman, Richard and John Wills. Green Building Council of Australia. "Valuing Green: How Green Buildings Affect Property Values and Getting the Valuation Method Right." 2008.
http://www.gbca.org.au/docs/NSC0009_ValuingGreen.pdf
Matthiessen, Lisa Fay and Peter Morris. "Cost of Green Revisited: Reexamining the Feasibility and Cost Impact of Sustainable Design in the Light of Increased Market Adoption" Davis Langdon. July 2007.

Miller, Norm, Jay Spivey and Andy Florance. "Does Green Pay Off?" Commercial property report. Nov. 19, 2007.

Ernest Orlando Lawrence Berkeley national Laboratory

An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California

Ben Hoen, Ryan Wiser, Peter Cappers and Mark Thayer

Environmental Energy
Technologies Division

April 2011

Download from http://eetd.lbl.gov/ea/emp/reports/lbnl-4476e.pdf

This work was supported by the Office of Energy Efficiency and Renewable Energy (Solar Energy Technologies Program) of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, by the National Renewable Energy Laboratory under Contract No. DEK-8883050, and by the Clean Energy States Alliance.

Disclaimer

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer.

An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California

Prepared for the
Office of Energy Efficiency and Renewable Energy
Solar Energy Technologies Program
U.S. Department of Energy
and the
National Renewable Energy Laboratory
and the
Clean Energy States Alliance
Principal Authors:
Ben Hoen, Ryan Wiser and Peter Cappers
Ernest Orlando Lawrence Berkeley National Laboratory
1 Cyclotron Road, MS 90R4000
Berkeley, CA 94720-8136
Mark Thayer
San Diego State University
5500 Campanile Dr.
San Diego, CA 92182-4485

April 2011

This work was supported by the Office of Energy Efficiency and Renewable Energy (Solar Energy Technologies Program) of the U.S. Department of Energy under Contract No. DE-AC0205CH11231, by the National Renewable Energy Laboratory under Contract No. DEK-8883050, and by the Clean Energy States Alliance.

Acknowledgements

This work was supported by the Office of Energy Efficiency and Renewable Energy (Solar Energy Technologies Program) of the U.S. Department of Energy under Contract No. DE-AC0205CH11231, by the National Renewable Energy Laboratory under Contract No. DEK-8883050, and by the Clean Energy States Alliance. For funding and supporting this work, we especially thank Jennifer DeCesaro (U.S. DOE), Robert Margolis (NREL), and Mark Sinclair (Clean Energy States Alliance). For providing the data that were central to the analysis contained herein, we thank Cameron Rogers (Fiserv), Joshua Tretter (Core Logic Inc.), Bob Schweitzer (Sammish), Eric Kauffman (CERES), James Lee and Le-Quyen Nguyen (CEC), Steven Franz and Jim Barnett (SMUD), and Sachu Constantine (formerly with the CPUC), all of whom were highly supportive and extremely patient throughout the complicated data aquistion process. Finally, we would like to thank the many external reviewers for providing valuable comments on an earlier draft version of the report. Of course, any remaining errors or omissions are our own.

Abstract

An increasing number of homes with existing photovoltaic (PV) energy systems have sold in the U.S., yet relatively little research exists that estimates the marginal impacts of those PV systems on home sales prices. A clearer understanding of these effects might influence the decisions of homeowners considering installing PV on their home or selling their home with PV already installed, of home buyers considering purchasing a home with PV already installed, and of new home builders considering installing PV on their production homes. This research analyzes a large dataset of California homes that sold from 2000 through mid- 2009 with PV installed. Across a large number of hedonic and repeat sales model specifications and robustness tests, the analysis finds strong evidence that California homes with PV systems have sold for a premium over comparable homes without PV systems. The effects range, on average, from approximately $\$ 3.9$ to $\$ 6.4$ per installed watt (DC) of PV, with most coalescing near \$5.5/watt, which corresponds to a home sales price premium of approximately $\$ 17,000$ for a relatively new 3,100 watt PV system (the average size of PV systems in the study). These average sales price premiums appear to be comparable to the investment that homeowners have made to install PV systems in California, which from 2001 through 2009 averaged approximately \$5/watt (DC), and homeowners with PV also benefit from electricity cost savings after PV system installation and prior to home sale. When expressed as a ratio of the sales price premium to estimated annual electricity cost savings associated with PV, an average ratio of $14: 1$ to $22: 1$ can be calculated; these results are consistent with those of the more-extensive existing literature on the impact of energy efficiency (and energy cost savings more generally) on home sales prices. The analysis also finds - as expected - that sales price premiums decline as PV systems age. Additionally, when the data are split between new and existing homes, a large disparity in premiums is discovered: the research finds that new homes with PV in California have demonstrated average premiums of \$2.3-2.6/watt, while the average premium for existing homes with PV has been more than $\$ 6 /$ watt. One of several possible reasons for the lower premium for new homes is that new home builders may also gain value from PV as a market differentiator, and have therefore often tended to sell PV as a standard (as opposed to an optional) product on their homes and perhaps been willing to accept a lower premium in return for faster sales velocity. Further research is warranted in this area, as well as a number of other areas that are highlighted.

Table of Contents

1. Introduction 1
2. Data Overview 6
2.1. Data Sources 6
2.2. Data Processing 8
2.3. Data Summary 10
3. Methods and Statistical Models 17
3.1. Methodological Overview 17
3.2. Variables Used in Models 18
3.3. Fixed and Continuous Effect Hedonic Models 20
3.4. New and Existing Home Models 24
3.4.1. Difference-in-Difference Models. 24
3.5. Age of the PV System for Existing Homes Hedonic Models 27
3.6. Returns to Scale Hedonic Models 28
3.7. Model Summary. 30
4. Estimation Results 31
4.1. Fixed and Continuous Effect Hedonic Model Results 32
4.2. New and Existing Home Model Results 35
4.2.1. Difference-in-Difference Model Results 39
4.3. Age of PV System for Existing Home Hedonic Model Results 41
4.4. Returns to Scale Hedonic Model Results. 42
5. Conclusions 45
References 50

List of Tables

Table 1: Variable Descriptions 10
Table 2: Summary Statistics of Full Dataset. 12
Table 3: Summary Statistics of Repeat Sale Dataset 13
Table 4: Frequency Summary by California County 14
Table 5: Frequency Summary by Home Type, Utility and Sale Year 16
Table 6: Difference-in-Difference Description 25
Table 7: Summary of Models 30
Table 8: Fixed and Continuous Base Hedonic Model Results with Robustness Tests 35
Table 9: New and Existing Home Base Hedonic Model Results with Robustness Tests 38
Table 10: Difference-in-Difference Model Results 41
Table 11: Age of PV System and Return to Scale Hedonic Model Results 44

List of Figures

Figure 1: Map of Frequencies of PV Homes by California County 15
Figure 2: Fixed and Continuous Effect Base Model Results with Robustness Tests 33
Figure 3: New and Existing Home Base Model Results with Robustness Tests 36
Figure 4: Existing Home Hedonic and Difference-in-Difference Model Results with Robustness Tests 40
Figure 5: Estimated Ratios of Sale Price Premium to Annual Energy Cost Savings 48

1. Introduction

In calendar year 2010, approximately 880 megawatts (MW) ${ }^{1}$ of grid-connected solar photovoltaic (PV) energy systems were installed in the U.S. (of which approximately 30% were residential), up from 435 MW installed in 2009, yielding a cumulative total of 2,100 MW (SEIA \& GTM, 2011). California has been and continues to be the country's largest market for PV, with nearly 1000 MW of cumulative capacity. California is also approaching 100,000 individual PV systems installed, more than 90% of which are residential. An increasing number of these homes with PV have sold, yet to date, relatively little research has been conducted to estimate the existence and level of any premium to sales prices that the PV systems may have generated. One of the primary incentives for homeowners to install a PV system on their home, or for home buyers to purchase a home with a PV system already installed, is to reduce their electricity bills. However, homeowners cannot always predict if they will own their home for enough time to fully recoup their PV system investment through electricity bill savings. The decision to install a PV system or purchase a home with a PV system already installed may therefore be predicated, at least in part, on the assumption that a portion of any incremental investment in PV will be returned at the time of the home's subsequent sale through a higher sales price. Some in the solar industry have recognized this potential premium to home sales prices, and, in the absence of having solid research on PV premiums, have used related literature on the impact of energy efficiency investments and energy bill savings on home prices as a proxy for making the claim that residential PV systems can increase sales prices (e.g., Black, 2010).

The basis for making the claim that an installed PV system may produce higher residential selling prices is grounded in the theory that a reduction in the carrying cost of a home will translate, ceteris paribus, into the willingness of a buyer to pay more for that home. Underlying this notion is effectively a present value calculation of a stream of savings associated with the

[^27]reduced electricity bills of PV homes, which can be capitalized into the value of the home. Along these lines, a number of studies have shown that residential selling prices are positively correlated with lower energy bills, most often attributed to energy related home improvements, such as energy efficiency investments (Johnson and Kaserman, 1983; Longstreth et al., 1984; Laquatra, 1986; Dinan and Miranowski, 1989; Horowitz and Haeri, 1990; Nevin and Watson, 1998; Nevin et al., 1999). The increased residential sales prices associated with lower energy bills and energy efficiency measures might be expected to apply to PV as well. Some homeowners have stated as much in surveys (e.g., CEC, 2002; McCabe and Merry, 2010), though the empirical evidence supporting such claims is limited in scope. Farhar et al. (2004a; 2008) tracked repeat sales of 15 "high performance" energy efficient homes with PV installed from one subdivision in San Diego and found evidence of higher appreciation rates, using simple averages, for these homes over comparable homes ($n=12$). More recently, Dastrop et al. (2010) used a hedonic analysis to investigate the selling prices of 279 homes with PV installed in the San Diego, California metropolitan area, finding clear evidence of PV premiums that averaged approximately 3% of the total sales price of non-PV homes, which translates into $\$ 4.4$ per installed PV watt (DC).

In addition to energy savings, higher selling prices might be correlated with a "cachet value" based on the "green" attributes that come bundled with energy-related improvements (e.g., helping combat global warming, impressing the neighbors, etc.). A number of recent papers have investigated this correlation. Eichholtz et al. $(2009,2011)$ analyzed commercial green properties in the U.S, and Brounen and Kok (2010) and Griffin et al. (2009) analyzed green labeled homes in the Netherlands and Portland, Oregon, respectively, each finding premiums, which, in some cases, exceeded the energy savings (Eichholtz et al., 2009, 2011; Brounen and Kok, 2010). Specifically related to PV, Dastrop et al. (2010) found higher premiums in communities with a greater share of Toyota Prius owners and college grads, indicating, potentially, the presence of a cachet value to the systems over and above energy savings. It is therefore reasonable to believe that buyers of PV homes might price both the energy savings and the green cachet into their purchase decisions.

Of course there is both a buyer and a seller in any transaction, and the sellers of PV homes might be driven by different motivations than the buyers. Specifically, recouping the net installed cost of the PV system (i.e., the cost of PV installation after deducting any available state and federal incentives) might be one driver for sellers. In California, the average net installed cost of residential PV hovered near \$5/watt (DC) from 2001 through 2009 (Barbose et al., 2010). Adding slightly to the complexity, the average net installed cost of PV systems has varied to some degree by the type of home, with PV systems installed on new homes in California enjoying approximately a $\$ 1 /$ watt lower average installed cost than PV systems installed on existing homes in retrofit applications (Barbose et al., 2010). Further, sellers of new homes with PV (i.e., new home developers) might be reluctant to aggressively increase home sale prices for installed PV systems because of the burgeoning state of the market for PV homes and concern that more aggressive pricing might slow home sales, especially if PV is offered as a standard (not optional) product feature (Farhar and Coburn, 2006). At the same time, the possible positive impact of PV on product differentiation and sales velocity may make new home developers willing to sell PV at below the net installed cost of the system. After all, some studies that have investigated whether homes with PV (often coupled with energy efficient features) sell faster than comparable homes without PV have found evidence of increased velocity due to product differentiation (Dakin et al., 2008; SunPower, 2008). Finally, as PV systems age, and sellers (i.e., homeowners) recoup a portion of their initial investment in the form of energy bill savings (and, related, the PV system's lifespan decreases), the need (and ability) to recoup the full initial investment at the time of home sale might decrease. On net, it stands to reason that premiums for PV on new homes might be lower than those for existing homes, and that older PV systems might garner lower premiums than newer PV systems of the same size.

Though a link between selling prices and some combination of energy cost savings, green cachet, recouping the net installed cost of PV, seller attributes, and PV system age likely exists, the existing empirical literature in this area, as discussed earlier, has largely focused on either energy efficiency in residential and commercial settings, or PV in residential settings but in a limited geographic area (San Diego), with relatively small sample sizes. Therefore, to date, establishing a reliable estimate for the PV premiums that may exist across a wide market of homes has not
been possible. Moreover, establishing premiums for new versus existing homes with PV has not yet been addressed.

Additionally, research has not investigated whether there are increasing or decreasing returns on larger PV systems, and/or larger homes with the same sized PV systems, nor has research been conducted that investigates whether older PV systems garner lower premiums. In the case of returns to scale on larger PV systems, it is not unreasonable to expect that any increase in value for PV homes may be non-linear as it relates to PV system size. For example, if larger PV systems push residents into lower electricity price tiers ${ }^{2}$, energy bill savings could be diminished on the margin as PV system size increases. This, in turn, might translate into smaller percentage increases in residential selling prices as PV systems increase in size, and therefore a decreasing return to scale. Larger PV systems might also enjoy some economies of scale in installation costs, which, in turn, might translate into lower marginal premiums at the time of home sale as systems increase in size - a decreasing return to scale. Additionally, "cachet value", to the degree that it exists, is likely to be somewhat insensitive to system size, and therefore might act as an additional driver to decreasing returns to scale. Somewhat analogously, PV premiums may be related to the number of square feet of living area in the home. Potentially, as homes increase in size, energy use can also be expected to increase, leading homeowners to be subjected to higher priced electricity rate tiers and therefore greater energy bill savings for similarly sized PV systems. Finally, as discussed previously, as PV systems age, and both a portion of the initial investment is recouped and the expected life and operating efficiency of the systems decrease, home sales price premiums might be expected to decline.

To explore these possible relationships, we investigate the residential selling prices across the state of California of approximately 2,000 homes with existing PV systems against a comparable set of approximately 70,000 non-PV homes. The sample is drawn from 31 California counties, with PV home sales transaction dates of 2000 through mid-2009. We apply a variety of hedonic pricing (and repeat sales) models and sample sets to test and bound the possible effects of PV on residential sales prices and to increase the confidence of the findings. Using these tools, we also

[^28]explore whether the effects of PV systems on home prices are impacted by whether the home is new or existing, by the size of either the PV system or the home itself, and finally by how old the PV system is when the home sells. ${ }^{3}$ It should be stated that this research is not intended to disentangle the specific effects of energy savings, green cachet, recovery of the cost of installation, or seller motivations, but rather to establish credible estimates of aggregate PV residential sales price effects.

The paper begins with a discussion of the data used for the analyses (Section 2). This is followed by a discussion of the empirical basis for the study (Section 3), where the variety of models and sample sets are detailed. The paper then turns to a discussion of the results and their potential implications (Section 4), and finally offers some concluding remarks with recommendations for future research (Section 5).

[^29]
2. Data Overview

To estimate the models described later, a dataset of California homes is used that joins the following five different sets of data: (1) PV home addresses and system information from three organizations that have offered financial incentives to PV system owners in the state; (2) real estate information that is matched to those addresses and that also includes the addresses of and information on non-PV homes nearby; (3) home price index data that allow inflation adjustments of sale prices to 2009 dollars; (4) locational data to map the homes with respect to nearby neighborhood/environmental influences; and (5) elevation data to be used as a proxy for "scenic vista." Each of these data sources is described below, as are the data processing steps employed, and the resulting sample dataset.

2.1. Data Sources

The California Energy Commission (CEC), the California Public Utilities Commission (CPUC), and the Sacramento Municipal Utility District (SMUD) each provide financial incentives under different programs to encourage the installation of PV systems in residential applications, and therefore have addresses for virtually all of those systems, as well as accompanying data on the PV systems. ${ }^{4}$ Through these programs, Berkeley Laboratory was provided information on approximately 42,000 homes where PV was installed, only a fraction of which (approximately 9%) subsequently sold with the PV system in place. The data provided included: address (street, street number, city, state and zip); incentive application and PV system install and operational dates; PV system size; and delineations as to whether the home was new or existing at the time the PV system was installed (where available).

[^30]These addresses were then matched to addresses as maintained by Core Logic (CL) ${ }^{5}$, which they aggregate from both the California county assessment and deed recorder offices. Once matched, CL provided real estate information on each of the California PV homes, as well as similar information on approximately 150,000 non-PV homes that were located in the same (census) block group and/or subdivision as the matched PV homes. The data for both of these sets of homes included:

- address (e.g., street, street number, city, state and zip+4 code);
- most recent ("second") sale date and amount;
- previous ("first") sale date and amount (if applicable);
- home characteristics (where available) (e.g., acres, square feet of living area, bathrooms, and year built);
- assessed value;
- parcel land use (e.g., commercial, residential);
- structure type (e.g., single family residence, condominium, duplex);
- housing subdivision name (if applicable) ${ }^{6}$; and
- census tract and census block group.

These data, along with the PV incentive provider data, allowed us to determine if a home sold after a PV system was installed ("second" sale). 3,657 such homes were identified in total, and these homes, therefore, represent the possible sample of homes on which our analysis focused. A subset of these data for which "first" sale information was available and for which a PV system had not yet been installed as of this "first" sale, were culled out. These "repeat sales" were also used in the analysis, as will be discussed in Section 3.

In addition to the PV and real estate data, Berkeley Laboratory obtained from Fiserv a zip-codelevel weighted repeat sales index of housing prices in California from 1970 through mid-2009, by quarter. These indices, where data were available, were differentiated between low, middle,

[^31]and high home price tiers, to accommodate the different appreciation/depreciation rates of market segments. Using these indices, all sale prices were adjusted to Q1, 2009 prices. ${ }^{7}$

From Sammamish Data, Berkeley Laboratory purchased x / y coordinates for each zip +4 code, which allowed the mapping of addresses to street level accuracy. ${ }^{8}$ Additionally, Berkeley Laboratory obtained from the California Natural Resources Agency (via the California Environmental Resources Evaluation System, CERES) a 30 meter level Digital Elevation Map (DEM) for the state of California. ${ }^{9}$ Combining these latter two sets of data, a street level elevation could be obtained for each home in the dataset, which allowed the construction of a variable defined as the elevation of a home relative to its (census) block group. This relative elevation served as a proxy for "scenic vista", a variable used in the analysis.

2.2. Data Processing

Data cleaning and preparation for final analysis was a multifaceted process involving selecting transactions where all of the required data fields were fully populated, determining if sales of PV homes occurred after the PV system was installed, matching the homes to the appropriate index, ensuring the populated fields were appropriately coded, and finally, eliminating obviously suspicious observations (e.g., not arms length transactions, outliers, etc.). Initially provided were a total of 150,000 detached single family residential sale records without PV and a total of 3,657 with PV. These totals, however, were substantially reduced (by approximately 65,000 records, 1,400 of which were PV sales) because of missing/erroneous core characteristic data (e.g., sale date, sale price, year built, square feet). ${ }^{10}$ Additionally, the final dataset was reduced (by approximately 14,000 records, 300 of which were PV sales) because some sales occurred outside the range of the index that was provided (January 1970 to June 2009). Moreover, to focus our analysis on more-typical California homes and minimize the impact of outliers or potential data-

[^32]entry errors on our results, observations not meeting the following criteria were screened out (see Table 1 for variable descriptions):

- the inflation adjusted most recent (second) sale price (asp2) is between $\$ 85,000$ and $\$ 2,500,000 ;{ }^{11}$
- the number of square feet ($s q f t$) is greater than 750 ;
- asp 2 divided by $s q f t$ is between $\$ 40$ and $\$ 1,000$;
- the number of acres is less than 25 and greater than sqft divided by 43,560 (where one acre equals $43,560 \mathrm{sqft}) ;{ }^{12}$
- the year the home was built ($y r b u i l t$) is greater than 1900 ;
- the age of the home (in years) at the time of the most recent sale (ages2) is greater than or equal to negative one;
- the number of bathrooms (baths) is greater than zero and less than ten;
- the size of the PV system (size) is greater than 0.5 and less than 10 kilowatts (kW);
- each block group contains at least one PV home sale and one non-PV home sale; and
- the total assessed value (avtotal), as reported by the county via Core Logic, is less than or equal to the predicted assessed value ($p a v$), where $p a v=s p 2^{*} 1.02^{\wedge}\left(2010\right.$-year of sale). ${ }^{13}$

In addition, the repeat sales used in the analysis had to meet the following criteria:

- the difference in sale dates (sddif) between the most recent (second) sale date (sd2) and the previous (first) sale date ($s d l$) is less than 20 years;
- PV is not installed on the home as of $s d 1$; and
- the adjusted annual appreciation rate (adjaar) is between -0.14 and 0.3 (where adjaar $=$ $\ln ($ asp2/asp1)/(sddif/365), which corresponds to the 5th and 95th percentile for the distribution of adjaar. ${ }^{14}$

[^33]
Table 1: Variable Descriptions

Variable	Description
acre	size of the parcel (in acres)
acregt1	number of acres more than one
acrelt1	number of acres less than one
adjaar	adjusted annual appreciation rate
ages2	age of home as of sd2
ages2sqr	ages2 squared
asp1	inflation adjusted sp1 (in 2009 dollars)
asp2	inflation adjusted sp2 (in 2009 dollars)
avtotal	total assessed value of the home
bath	number of bathrooms
bgre_100	relative elevation to other homes in block group (in 100s of feet)
elev	elevation of home (in feet)
las p1	natural log of asp1
las p2	natural log of asp2
pav	predicted assessed value
pvage	age of the PV system at the time of sale
sd1	first sale date
sd2	second sale date
sddif	number of days separating sd1 and sd2
size	size (in STC DC kW) of the PV system
sp1	first sale price (not adjusted for inflation)
sp2	second sale price (not adjusted for inflation)
sqft	size of living area
sqft_1000	size of living area (in 1000s of square feet)
yrbuilt	year the home was built

2.3. Data Summary

The final full dataset includes a total of 72,319 recent sales, 1,894 of which are PV homes and 70,425 of which are non-PV (see Table 2). The homes with PV systems are distributed evenly between new (51\%) and existing (49\%) home types, while the non-PV homes are weighted toward existing homes (62%) over new (38%) (see Table 5). The final repeat sales dataset of homes selling twice total 28,313 homes, of which 394 are PV and 27,919 are non-PV (see Table $3)$.

As indicated in Table 2, the average non-PV home in the full sample (not the repeat sales sample) sold for $\$ 584,740$ (unadjusted) in late 2005, which corresponds to $\$ 480,862$ (adjusted)
in 2009 dollars. ${ }^{15}$ This "average" home is built in 1986, is 19 years old at the time of sale, has 2,200 square feet of living space, has 2.6 bathrooms, is situated on a parcel of 0.3 acres, and is located at the mean elevation of the other homes in the block group. On the other hand, the average PV home in the full sample sold for $\$ 660,222$ in early 2007 , which corresponds to $\$ 537,442$ in 2009 dollars. Therefore, this "average" PV home, as compared to the "average" non-PV home, is higher in value. This difference might be explained, in part, by the fact that the average PV home is slightly younger at the time of sale (by two years), slightly bigger (by 200 square feet), has more bathrooms (by 0.3), is located on a parcel that is slightly larger (by 0.06 acres), and, of course, has a PV system (which is, on average, 3,100 watts and 1.5 years old). ${ }^{16}$

The repeat sale dataset, as summarized in Table 3, shows similar modest disparities between PV and non-PV homes, with the "average" PV homes selling for more (in 2009 \$) in both the first and second sales. Potentially more telling, though, non-PV homes show a slight depreciation (of $-1.4 \%)$ between sales after adjusting for inflation, while PV homes show a modest appreciation (of 3.2%). Average PV homes in the sample are found to be slightly bigger (by 100 square feet), occupy a slightly larger parcel (by 0.2 acres), older (by 10 years), and, of course, have a PV system (which is, on average, 4,030 watts and 2.5 years old).

Focusing on the full dataset geographically (see Table 4 and Figure 1), we find that it spans 31 counties with the total numbers of PV and non-PV sales ranging from as few as nine (Humboldt) to as many as 11,991 (Placer). The dataset spans 835 separate (census) block groups (not shown in the table), though only 162 (18.7\%) of these block groups contain subdivisions with at least one PV sale. Within the block groups that contain subdivisions with PV sales there are 497 subdivision-specific delineations. As shown in Table 5, the data on home sales are fairly evenly split between new and existing home types, are located largely within four utility service areas,

[^34]with the largest concentration in PG\&E's territory, and occurred over eleven years, with the largest concentration of PV sales occurring in 2007 and 2008.

In summary, the full dataset shows higher sales prices for the average PV home than the average non-PV home, while the repeat sales dataset shows positive appreciation between sales for PV homes, but not for non-PV homes. Though these observations seem to indicate that a PV sales price premium exists, these simple comparisons do not take into account the other underlying differences between PV and non-PV homes (e.g., square feet), their neighborhoods, and the market conditions surrounding the sales. The hedonic and difference-in-difference statistical models discussed in the following section are designed to do just that.

Table 2: Summary Statistics of Full Dataset

	Non-PV Homes					
Variable	\boldsymbol{n}	Mean	Std Dev.	Min	Max	
acre	70425	0.3	0.8	0.0	24.8	
acregt1	70425	0.1	0.7	0.0	23.8	
acrelt1	70425	0.2	0.2	0.0	1.0	
ages2	70425	19	23.3	-1	108	
ages2sqr	70425	943	1681	0	11881	
asp2	70425	$\$ 480,862$	$\$ 348,530$	$\$$	85,007	
avtotal	70425	$\$$	497,513	$\$$	359,567	

	PV Homes					
Variable	\boldsymbol{n}	Mean	Std. Dev.	Min	Max	
acre	1894	0.4	1.0	0.0	21.6	
acregt1	1894	0.1	0.9	0.0	20.6	
acrelt1	1894	0.2	0.2	0.0	1.0	
ages2	1894	17.3	24.5	-1	104	
ages2sqr	1894	937	1849	0	11025	
asp2	1894	$\$$	537,442	$\$$	387,023	

Table 3: Summary Statistics of Repeat Sale Dataset

	Non-PV Homes					
Variable	\boldsymbol{n}	Mean	Std. Dev.	Min	Max	
acre	27919	0.3	0.7	0.0	23.2	
acregt1	27919	0.1	0.6	0.0	22.2	
acrelt1	27919	0.2	0.2	0.0	1.0	
ages2	27919	23.6	22.7	0	108	
ages2sqr	27919	1122.0	1775.0	1.0	11881.0	
asp1	27919	$\$ 488,127$	$\$ ~ 355,212$	$\$$	85,398	
asp2	27919	$\$ 481,183$	$\$$	347,762	$\$$	

	PV Homes				
Variable	n	Mean	Std. Dev.	Min	Max
acre	394	0.5	1.4	0.0	21.6
acregt1	394	0.2	1.3	0.0	20.6
acrelt1	394	0.2	0.2	0.0	1.0
ages2	394	34.6	25.6	1	104
ages2sqr	394	1918.0	2336.0	4.0	11025.0
asp1	394	\$ 645,873	\$ 417,639	\$ 110,106	\$2,339,804
asp2	394	\$ 666,416	\$ 438,544	\$ 91,446	\$2,416,498
avtotal	394	\$ 682,459	\$ 478,768	\$ 51,737	\$3,433,320
bath	394	2.6	0.9	1	7
bgre_100	394	0.1	1.6	-5.5	17.9
elev	394	479	581	3	3687
lasp1	394	13.2	0.6	11.6	14.7
lasp2	394	13.2	0.6	11.4	14.7
pvage	394	2.5	1.6	-1.0	9.0
sd1	394	11/22/1999	1792 days	11/30/1984	1/7/2008
sd2	394	1/9/2007	672 days	8/1/2000	6/29/2009
sddif	394	2605	1686	387	7280
size	394	4.03	1.94	0.89	10
sp1	394	\$ 492,368	\$ 351,817	\$ 81,500	\$2,500,000
sp2	394	\$ 800,359	\$ 489,032	\$ 121,000	\$3,300,000
sqft_1000	394	2.2	0.8	0.8	5.3
yrbuilt	394	1972	26	1904	2008

Table 4: Frequency Summary by California County

CA County	Non-PV	PV	Total
Alameda	4,826	153	$\mathbf{4 , 9 7 9}$
Butte	457	12	$\mathbf{4 6 9}$
Contra Costa	5,882	138	$\mathbf{6 , 0 2 0}$
El Dorado	938	85	$\mathbf{1 , 0 2 3}$
Humboldt	7	2	$\mathbf{9}$
Kern	2,498	53	$\mathbf{2 , 5 5 1}$
Kings	134	5	$\mathbf{1 3 9}$
Los Angeles	3,368	82	$\mathbf{3 , 4 5 0}$
Marin	1,911	61	$\mathbf{1 , 9 7 2}$
Merced	48	2	$\mathbf{5 0}$
Monterey	10	2	$\mathbf{1 2}$
Napa	36	1	$\mathbf{3 7}$
Orange	1,581	44	$\mathbf{1 , 6 2 5}$
Placer	11,832	159	$\mathbf{1 1 , 9 9 1}$
Riverside	4,262	87	$\mathbf{4 , 3 4 9}$
Sacramento	10,928	483	$\mathbf{1 1 , 4 1 1}$
San Bernardino	2,138	50	$\mathbf{2 , 1 8 8}$
San Diego	1,083	30	$\mathbf{1 , 1 1 3}$
San Francisco	407	16	$\mathbf{4 2 3}$
San Joaquin	1,807	20	$\mathbf{1 , 8 2 7}$
San Luis Obispo	232	1	$\mathbf{2 3 3}$
San Mateo	2,647	92	$\mathbf{2 , 7 3 9}$
Santa Barbara	224	7	$\mathbf{2 3 1}$
Santa Clara	6,127	157	$\mathbf{6 , 2 8 4}$
Santa Cruz	90	1	$\mathbf{9 1}$
Solano	2,413	39	$\mathbf{2 , 4 5 2}$
Sonoma	1,246	32	$\mathbf{1 , 2 7 8}$
Tulare	774	14	$\mathbf{7 8 8}$
Ventura	1,643	42	$\mathbf{1 , 6 8 5}$
Yolo	16	1	$\mathbf{1 7}$
Yuba	860	23	$\mathbf{8 8 3}$
	$\mathbf{7 0 , 4 2 5}$	$\mathbf{1 , 8 9 4}$	$\mathbf{7 2 , 3 1 9}$

Figure 1: Map of Frequencies of PV Homes by California County

Table 5: Frequency Summary by Home Type, Utility and Sale Year

Home Type *	Non-PV		PV
New Home	26,938	935	27,873
Existing Home	43,487	897	44,384

Utility **	Non-PV	PV	Total
Pacific Gas \& Electric (PG\&E)	36,137	1,019	37,156
Southern California Edison (SCE)	14,502	337	14,839
 Electric (SDG\&E)	8,191	35	8,226
Sacramento Municipal Utility District (SMUD)	11,393	498	11,891
Other	202	5	207

Sale Year	Non-PV	PV	Total
1999	110	0	110
2000	379	1	380
2001	1,335	10	1,345
2002	6,278	37	6,315
2003	8,783	63	8,846
2004	10,888	153	11,041
2005	10,678	168	10,846
2006	9,072	173	9,245
2007	8,794	472	9,266
2008	9,490	642	10,132
2009	4,618	175	4,793

* A portion of the PV homes could not be classified as either new or existing and therefore are not included in these totals
** Non-PV utility frequencies were estimated by mapping block groups to utility service areas, and then attributing the utility to all homes that were located in the block group

3. Methods and Statistical Models

3.1. Methodological Overview

The data, as outlined above, not only show increased sales values and appreciation for PV homes (in 2009 \$) over non-PV homes, but also important differences between PV and non-PV homes as regards other home, site, neighborhood and market characteristics that could, potentially, be driving these differences in value and appreciation. A total of 21 empirical model specifications, with a high reliance on the hedonic pricing model, are used in this paper to disentangle these potentially competing influences in order to determine whether and to what degree PV homes sell for a premium.

The basic theory behind the hedonic pricing model starts with the concept that a house can be thought of as a bundle of characteristics. When a price is agreed upon between a buyer and seller there is an implicit understanding that those characteristics have value. When data from a number of sales transactions are available, the average individual marginal contribution to the sales price of each characteristic can be estimated with a hedonic regression model (Rosen, 1974; Freeman, 1979). This relationship takes the basic form:

Sales price $=f$ (home and site, neighborhood, and market characteristics)
"Home and site characteristics" might include, but are not limited to, the number of square feet of living area, the size of the parcel of land, and the presence of a PV system. "Neighborhood" characteristics might include such variables as the crime rate, the quality of the local school district, and the distance to the central business district. Finally, "market characteristics" might include, but are not limited to, temporal effects such as housing market inflation/deflation.

A variant of the hedonic model is a repeat sales model, which holds constant many of the characteristics discussed above, and compares inflation adjusted selling prices of homes that have sold twice, both before a condition exists (e.g., before a PV system is installed on the home) and after the condition exists (e.g., after a PV system is installed on the home), and across PV
and non-PV homes. This repeat sales model, in the form used in this paper, is referred to as a difference-in-difference (DD) model, and is discussed in more detail later.

To test for the impact of PV systems on residential selling prices, a series of "base" hedonic models, a "base" difference-in-difference model, a series of robustness models, and two "other" models are estimated for this research. ${ }^{17}$ As discussed later, these models are used to test for fixed (whether the home has a PV system) and continuous (the size of the PV system) effects using the full dataset of PV homes. They are also used to test for any differences that exist between new and existing PV homes and between homes with PV systems of different ages, and to test for the possibility of non-linear returns to scale based on the size of the PV system or the home itself. Before describing these models in more detail, however, a summary of the variables to be included in the models is provided.

3.2. Variables Used in Models

In each base model, be it hedonic or difference-in-difference, four similar sets of parameters are estimated, namely coefficients on the variables of interest and coefficients for three sets of controls that include home and site characteristics, neighborhood (census block group) fixed effects, and temporal (year and quarter) fixed effects. The variables of interest are the focus of the research, and include such variables as whether the home has a PV system installed or not, the size of the PV system, and interactions between these two variables and others, such as the size of the home or the age of the PV system. To accurately measure these variables of interest (and their interactions) other potentially confounding variables need to be controlled for in the models. The base models differ in their specification and testing of the variables of interest, as discussed later, but use the same three sets of controls.

The first of these sets of control variables accounts for differences across the dataset in home and site-specific characteristics, including the age of the home (linear and squared), the total square feet of living area, and the relative elevation of the home (in feet) to other homes in the block group; the latter variable serves as a proxy for "scenic vista," a value-influencing characteristic

[^35](see e.g., Hoen et al., 2009). ${ }^{18}$ Additionally, the size of the property in acres was entered into the model in spline form to account for different valuations of less than one acre and greater than one acre.

The second set of controls, the geographic fixed effects variables, includes dummy variables that control for aggregated "neighborhood" influences, which, in our case, are census block groups. ${ }^{19}$ A census block group generally contains between 200 and 1,000 households, ${ }^{20}$ and is delineated to never cross boundaries of states, counties, or census tracts, and therefore, in our analysis, serves as a proxy for "neighborhood." To be usable, each block group had to contain at least one PV home and one non-PV home. The estimated coefficients for this group of variables capture the combined effects of school districts, tax rates, crime, distance to central business district and other block group specific characteristics. This approach greatly simplifies the estimation of the model relative to determining these individual characteristics for each home, but interpreting the resulting coefficients can be difficult because of the myriad of influences captured by the variables. Because block groups are fairly small geographically, spatial autocorrelation ${ }^{21}$ is also, to some degree, dealt with through the inclusion of these variables.

Finally, the third set of controls, the temporal fixed effect variables, includes dummy variables for each quarter of the study period to control for any inaccuracies in the housing inflation adjustment that was used. A housing inflation index is used to adjust the sales prices throughout the study period to 2009 prices at a zip code level across as many as three price tiers. Although

[^36]this adjustment is expected to greatly improve the model - relative to using just a temporal fixed effect with an unadjusted price - it is also assumed that because of the volatility of the housing market, the index may not capture price changes perfectly and therefore the model is enhanced with the additional inclusion of these quarterly controls. ${ }^{22}$

3.3. Fixed and Continuous Effect Hedonic Models

The analysis begins with the most basic model comparing prices of all of the PV homes in the sample (whether new or existing) to non-PV homes across the full dataset. As is common in the literature (Malpezzi, 2003; Sirmans et al., 2005b; Simons and Saginor, 2006), a semi-log functional form of the hedonic pricing model is used where the dependent variable, the (natural \log of) sales price (P), is measured in zip code-specific inflation-adjusted (2009) dollars. To determine if an average-sized PV system has an effect on the sale price of PV homes (i.e., a fixed effect) we estimate the following base fixed effect model:

$$
\begin{equation*}
\ln \left(\mathrm{P}_{\text {itk }}\right)=\alpha+\beta_{1}\left(\mathrm{~T}_{\mathrm{t}}\right)+\beta_{2}\left(\mathrm{~N}_{\mathrm{k}}\right)+\sum_{\mathrm{a}} \beta_{3}\left(\mathrm{X}_{\mathrm{i}}\right)+\beta_{4}\left(\mathrm{PV}_{\mathrm{i}}\right)+\varepsilon_{\text {itk }} \tag{1}
\end{equation*}
$$

where
$\mathrm{P}_{i t k}$ represents the inflation adjusted sale price for transaction i, in quarter t, in block group k, α is the constant or intercept across the full sample,
T_{t} is the quarter in which transaction i occurred,
N_{k} is the census block group in which transaction i occurred,
X_{i} is a vector of a home characteristics for transaction i (e.g., acres, square feet, age, etc.),
PV_{i} is a fixed effect variable indicating a PV system is installed on the home in transaction i,
β_{l} is a parameter estimate for the quarter in which transaction i occurred,
β_{2} is a parameter estimate for the census block group in which transaction i occurred,
β_{3} is a vector of parameter estimates for home characteristics a,
β_{4} is a parameter estimate for the PV fixed effects variable, and
$\varepsilon_{i t k}$ is a random disturbance term for transaction i, in quarter t, in block group k.

[^37]The parameter estimate of primary interest in this model is β_{4}, which represents the marginal percentage change in sale price with the addition of an average sized PV system. If differences in selling prices exist between PV and non-PV homes, we would expect the coefficient to be positive and statistically significant.

An alternative to equation (1) is to interact the PV fixed effect variable $\left(\mathrm{PV}_{\mathrm{i}}\right)$ with the size (in kW) of the PV system as installed on the home at the time of sale (SIZE S_{i}), thereby producing an estimate for the differences in sales prices as a function of size of the PV system. This base continuous effect model takes the form:

$$
\begin{equation*}
\ln \left(\mathrm{P}_{\mathrm{itk}}\right)=\alpha+\beta_{1}\left(\mathrm{~T}_{\mathrm{t}}\right)+\beta_{2}\left(\mathrm{~N}_{\mathrm{k}}\right)+\sum_{\mathrm{a}} \beta_{3}\left(\mathrm{X}_{\mathrm{i}}\right)+\beta_{4}\left(\mathrm{PV}_{\mathrm{i}} \cdot \mathrm{SIZE}_{\mathrm{i}}\right)+\varepsilon_{\text {itk }} \tag{2}
\end{equation*}
$$

where
SIZE_{i} is a continuous variable for the size (in kW) of the PV system installed on the home prior to transaction i,
β_{4} is a parameter estimate for the percentage change in sale price for each additional kW added to a PV system, and all other terms are as were defined for equation (1).

If differences in selling prices exist between PV and non-PV homes, we would expect the coefficient to be positive and statistically significant, indicating that for each additional kilowatt added to the PV system the sale price increases by β_{4} (in $\%$ terms).

This continuous effect specification may be preferable to the PV fixed effect model because one would expect that the impact of PV systems on residential selling prices would be based, at least partially, on the size of the system, as size is related to energy bill savings. ${ }^{23}$ Moreover, this specification allows for a direct estimate of any PV home sales premium in dollars per watt (\$/watt), which is the form in which other estimates - namely average net installed costs - are reported. With the previous fixed effects specification, a $\$ /$ watt estimate can still be derived, but

[^38]not directly. Therefore, where possible in this paper, greater emphasis is placed on the continuous effect specification than on the fixed effect estimation.

As mentioned earlier, for each base model we explore a number of different robustness models to better understand if and to what degree the results are unbiased. In the present research, two areas of bias are of particular concern: omitted variable bias and sample selection bias.

The omitted variables that are of specific concern are any that might be correlated with the presence of PV, and that might affect sales prices. An example is energy efficiency (EE) improvements, which might be installed contemporaneously with a PV energy system. If many homes with PV have EE improvements, whereas the comparable non-PV homes do not, then estimates for the effects of PV on selling prices might be inclusive of EE effects and, therefore, may be inappropriately high. Any other value-influencing home improvements (e.g., kitchen remodels, new roofs, etc.), if correlated with the presence of PV, could similarly bias the results if not carefully addressed.

With respect to selection bias, the concern is that the distribution of homes that have installed PV may be different from the broad sample of homes on which PV is not installed. If both sets of homes are assumed to have similar distributions but are, in point of fact, dissimilar due to selection, then the estimates for the effects of PV on the selling price could be inclusive of these underlying differences but attributed to the existence of PV , thereby also potentially biasing the results.

To mitigate the issue of omitted variable bias, one robustness model uses the same data sample as the base model but a different model specification. Specifically, a combined subdivisionblock group fixed effect variable can be substituted, where available, in place of the block group fixed effect variable as an alternative proxy for "neighborhood." Potentially omitted variables are likely to be more similar between PV and non-PV homes at the subdivision level than at the
block group level, and therefore this model may more-effectively control for such omitted variables. ${ }^{24}$

To mitigate the issue of selection bias, one robustness model uses the same model specification as the base model but with an alternative (subset) of the data sample. Specifically, instead of using the full dataset with equations (1) and (2), a "coarsened exact matched" dataset is used (King et al., 2010). ${ }^{25}$ This matching procedure results in a reduced sample of homes to analyze, but the PV and non-PV homes that remain in the matched sample are statistically equal on their covariates after the matching process (e.g., PV homes within a block group are matched with non-PV homes such that both groups are similar in the number of bathrooms, date of sale, etc.). As a result, biases related to selection are minimized.

Finally, specific to equation (2), a robustness model to mitigate both omitted variable and selection bias is constructed in which the sample is restricted to include only PV homes (in place of the full sample of PV and non-PV homes). Because this model does not include non-PV "comparable" homes, sales prices of PV homes are "compared" against each other based on the size of the PV systems, while controlling for the differences in the home via the controlling characteristics (e.g., square feet of living space). PV system size effects are therefore estimated without the use of non-PV homes, providing an important comparison to the base models, while also directly addressing any concerns about the inherent differences between PV and non-PV homes (e.g., whether energy efficient upgrades were made contemporaneously with the PV) and therefore omitted variable and sample selection bias.

[^39]
3.4. New and Existing Home Models

Although equations (1) and (2) are used to estimate whether a PV system, on average, effects selling prices across the entire data sample, they do not allow one to distinguish any such effects as a function of house type, specifically whether the home is new or existing. As discussed earlier, new homes with PV might have different premiums than existing homes. To try to tease out these possible differences, two base hedonic models are estimated using equation (2), one with only new homes and the other with only existing homes. ${ }^{26}$ Comparing the coefficient of the variable of interest $\left(\beta_{4}\right)$ between these two models allows for an assessment of the relative size of the impact of PV systems across the two home types.

Additionally, two sets of robustness models that were discussed earlier are also applied to the new and existing home models, one using the coarsened exact matched datasets and the other using the combined subdivision-block group delineations. These models test the robustness of the results for selection and omitted variable bias, respectively. Although it is discussed separately as a base model in the following subsection, the difference-in-difference model, using repeat sales of existing homes, also doubly serves as a robustness test to the existing homes base model.

3.4.1. Difference-in-Difference Models

One classic alternative to estimating a hedonic model, as briefly discussed earlier, is to estimate a difference-in-difference (DD) model (Wooldridge, 2009). This model (see Table 1) uses a set of homes that have sold twice, both with and without PV, and provides estimates of the effect of adding PV to a subset of those homes as of the second sale ("DD" as noted in Table 1), while simultaneously accounting for both the inherent differences in the PV and non-PV groups and the trend in housing prices between the first and second sales of non-PV homes. Repeat sales models of this type are particularly effective in controlling for selection and certain types of

[^40]omitted variable bias. In the former case, any underlying difference in home prices between PV and non-PV homes prior to the addition of PV is controlled for. In the latter case, PV and nonPV homes are assumed to have undergone mostly similar changes (e.g., home improvements) between sales. Any changes to the home that are coincident with the installation of a PV system (or the PV system household), on the other hand, are not directly controlled for in this model, though there is reason to believe that any such remaining influences are not imposing substantial bias in the present study. ${ }^{27}$

The set of PV homes that are used in the DD model are, by default, existing homes (i.e., the home was not new when the PV system was installed). Estimates derived from this model, therefore, apply to - while also serving as a robustness tests for - the existing home models as specified above.

Table 6: Difference-in-Difference Description

	Pre PV	Post PV	Difference
PV Homes	PV_{1}	PV_{2}	$\Delta \mathrm{PV}=\mathrm{PV}_{2}-\mathrm{PV}_{1}$
Non-PV Homes	NPV_{1}	NPV_{2}	$\Delta N P V=\mathrm{NPV}_{2}-\mathrm{NPV}_{1}$
			$\mathrm{DD}=\triangle \mathrm{PV}-\Delta \mathrm{NPV}$
1 and 2 denote time periods			

The base DD model is estimated as follows:

$$
\begin{equation*}
\ln \left(\mathrm{P}_{\mathrm{itk}}\right)=\alpha+\beta_{1}\left(\mathrm{~T}_{\mathrm{t}}\right)+\beta_{2}\left(\mathrm{~N}_{\mathrm{k}}\right)+\sum_{\mathrm{a}} \beta_{3}\left(\mathrm{X}_{\mathrm{i}}\right)+\beta_{4}\left(\mathrm{PVH}_{\mathrm{i}}\right)+\beta_{5}\left(\mathrm{SALE}_{\mathrm{i}}\right)+\beta_{6}\left(\mathrm{PVS}_{\mathrm{i}}\right)+\varepsilon_{\mathrm{itk}} \tag{3}
\end{equation*}
$$

where
PVH_{i} is a fixed effect variable indicating if a PV system is or will be installed on the home in transaction i,

[^41]SALE_{i} is a fixed effect variable indicating if transaction i is the second of the two sales, PVS_{i} is a fixed effect variable (an interaction between $\mathrm{PVH}_{\mathrm{i}}$ and $\mathrm{SALE}_{\mathrm{i}}$) indicating if transaction i is both the second of the two sales and contained a PV system at the time of sale,
α is the constant or intercept across the full sample,
β_{4} is a parameter estimate for homes that have or will have PV installed (i.e., from Table 6 " $\left.P V_{1}-N P V_{1} "\right)$,
β_{5} is a parameter estimate if transaction i occurred as of the second sale (i.e., " $\Delta \mathrm{NPV}$ "), β_{6} is a parameter estimate if transaction i occurred as of the second sale and the home contained PV (i.e., " $\Delta P V-\triangle N P V$ " or " $D D$ "), and all other terms are as were defined for equation (1).

The coefficient of interest is β_{6}, which represents the percentage change in sale price, as expressed in 2009 dollars, when PV is added to the home, after accounting for the differences between PV and non-PV homes $\left(\beta_{4}\right)$ and the differences between the initial sale and the second sale of non-PV homes $\left(\beta_{5}\right)$. If differences in selling prices exist between PV and non-PV homes, we would expect the coefficient to be positive and statistically significant. ${ }^{28}$

To further attempt to mitigate the potential for omitted variable bias, two robustness models are estimated for the base DD model: one with the combined subdivision-block group delineations and a second with a limitation applied on the number of days between the first and second sale. ${ }^{29}$ The first robustness model is similar to the one discussed earlier. The second robustness model accounts for the fact that the home characteristics used (in all models) reflect the most recent home assessment, and therefore do not necessarily reflect the characteristics at the time of the sale. Especially worrisome are the first sales in the DD model, which can be as much as 20 years before the second sale. To test if our results are biased because of these older sales - and the

[^42]large periods between sales - an additional data screen is applied in which the difference between the two sale dates is limited to five years. ${ }^{30}$

3.5. Age of the PV System for Existing Homes Hedonic Models

The age of the PV system at the time of home sale could affect the sales price premium for existing homes (PV systems on new homes are, by definition, also new). This might occur because older PV systems have a shorter expected remaining life and may become somewhat less efficient with age (and therefore deliver a lower net present value of bill savings), but also because older PV systems will have generated more energy bill savings for the home seller and the seller may therefore more-willingly accept a lower price. Together, these factors suggest that premiums for older PV systems on existing homes would be expected to be lower than for newer systems. In order to test this directly the following base model is estimated:

$$
\begin{equation*}
\ln \left(P_{i t k}\right)=\alpha+\beta_{1}\left(T_{t}\right)+\beta_{2}\left(N_{k}\right)+\sum_{a} \beta_{3}\left(X_{i}\right)+\beta_{4}\left(P V_{i} \cdot S I Z E_{i} \cdot A G E_{i}\right)+\varepsilon_{i t k} \tag{4}
\end{equation*}
$$

where
AGE_{i} is a categorical variable for three groups of PV system age as of the time of sale of the home: 1) less than or equal to one year old; 2) between 2 and 4 years old; and, 3) five or more years old.

Therefore, β_{4} is a vector of parameter estimates for the percentage change in sales price for each additional kW added to a PV system for each of the three PV system age groups, and all other terms are as are defined for equation (2). The assumption is that the coefficients for β_{4} will be decreasing - indicating they are valued less - as the age of the PV systems decrease. The sample used for this model is the same as for the existing home model defined previously.

Additionally, two sets of robustness models are explored, one using the coarsened exact matched dataset and the other using the combined subdivision-block group delineations, to test the robustness of the results for selection and omitted variable bias, respectively.

[^43]
3.6. Returns to Scale Hedonic Models

As discussed earlier, it is not unreasonable to expect that any increases in the selling prices of PV homes may be non-linear with PV system size. In equation (2), it was assumed that estimated price differences were based on a continuous linear relationship with the size of the system. To explore the possibility of a non-linear relationship among the full sample of homes in the dataset, the following model is estimated: ${ }^{31}$

$$
\begin{equation*}
\ln \left(P_{i t k}\right)=\alpha+\beta_{1}\left(T_{t}\right)+\beta_{2}\left(N_{k}\right)+\sum_{a} \beta_{3}\left(X_{i}\right)+\beta_{4}\left(P V_{i} \cdot \operatorname{SIZE}_{i}\right)+\beta_{5}\left(P V_{i} \cdot S I Z E_{i} \cdot S I Z E_{i}\right)+\varepsilon_{i t k} \tag{5}
\end{equation*}
$$

where
β_{5} is a parameter estimate for the percentage change in sales price for each additional kW added to a PV system squared, and all other terms are as are defined for equation (2).

A negative statistically significant coefficient $\left(\beta_{5}\right)$ would indicate decreasing returns to scale for larger PV systems, while a positive coefficient would indicate the opposite.

Somewhat analogously, as was discussed previously, premiums for PV systems may be related to the size of the home. ${ }^{32}$ To test this directly using the full dataset, the following model is estimated:

$$
\begin{align*}
\ln \left(P_{i t k}\right)= & \alpha+\beta_{1}\left(T_{t}\right)+\beta_{2}\left(N_{k}\right)+\sum_{a} \beta_{3}\left(X_{i}\right)+\beta_{4}\left(S Q F T_{i}\right)+\beta_{5}\left(P V_{i} \cdot S I Z E_{i}\right)+ \tag{6}\\
& \beta_{6}\left(P V_{i} \cdot S I Z E_{i} \cdot S Q F T_{i}\right)+\varepsilon_{i t k}
\end{align*}
$$

where
$\mathrm{SQFT}_{\mathrm{i}}$ is a continuous variable for the number of square feet for the home in transaction $i,{ }^{33}$
β_{4} is a parameter estimate for the percentage change in sale price for each additional 1000 square feet added to the home,

[^44]β_{5} is a parameter estimate for the percentage change in sale price for each additional kW added to a PV system,
β_{6} is a parameter estimate for the percentage change in sale price for each additional 1000 square feet added to PV homes, assuming the size of the PV system does not change, and all other terms are as were defined for equation (2).

A negative statistically significant coefficient for β_{6} would indicate decreasing returns to scale for PV systems as homes increase in size. Alternatively, a positive and statistically significant coefficient would indicate increasing returns to scale for PV systems installed on larger homes.

3.7. Model Summary

To summarize, the entire set of 21 estimated models discussed herein is shown in Table 7. The following definitions of terms, all of which were discussed earlier, are relevant for interpreting the models listed in the table, and therefore are briefly reviewed again. All "base" models are coupled with a set of "robustness" models (as noted by a capital " R " in the model number). The "Other" (returns to scale) models are presented alone. Models 1-4 and 6-8 use the hedonic pricing model, whereas Model 5 is based on the difference-in-difference (DD) model. "Fixed" (versus "continuous") means that the PV variable is entered into the regression as a zero-one dichotomous variable (for Models $1-1 \mathrm{Rb}$ and $5-5 \mathrm{Rb}$), whereas "continuous" (for all other models) means that the model estimates the impact of an increase in PV system size on residential selling prices. Base Models 1, 2, 7 and 8 use the full dataset, while Models 4 and 6 are restricted to existing homes, Model 3 to new homes, and Model 5 to the repeat sales dataset. The "matched" models use the smaller dataset of coarsened exact matched (PV and non-PV) homes. "Base" models estimate neighborhood fixed effects at the census block group level, whereas the "subdivision" models estimate neighborhood fixed effects at the combined subdivision-block group level.

Table 7: Summary of Models

Model Number	Model Name	Base Model	Robustness Model	Other Models	Dataset	Neighborhood Fixed Effects
1	Fixed - Base	X			Full	Block Group
1Ra	Fixed - Matched		X		Full Matched	Block Group
1 Rb	Fixed - Subdivision		X		Full	Subdivision/Block Group
2	Continuous - Base	X			Full	Block Group
2Ra	Continuous - Matched		X		Full Matched	Block Group
2Rb	Continuous - Subdivision		X		Full	Subdivision/Block Group
2Rc	Continuous - PV Only		X		PV Only	Block Group
3	New Homes - Base	X			New	Block Group
3Ra	New - Matched		X		New - Matched	Block Group
3Rb	New - Subdivision		X		New	Subdivision/Block Group
4	Existing Homes - Base	X			Existing	Block Group
4Ra	Existing - Matched		X		Existing - Matched	Block Group
4Rb	Existing - Subdivision		X		Existing	Subdivision/Block Group
5	Difference-in-Difference (DD) - Base	X			Repeat Sales	Block Group
5Ra	Difference-in-Difference (DD) - Subdivision		X		Repeat Sales	Subdivision/Block Group
5Rb	Difference-in-Difference (DD) - Sddif < 5 Years		X		Repeat Sales w/ sddif <5	Block Group
6	Age of System-Base	X			Existing	Block Group
6Ra	Age of System-Matched		X		Existing - Matched	Block Group
6Rb	Age of System-Subdivision		X		Existing	Subdivision/Block Group
7	Returns to Scale - Size			X	Full	Block Group
8	Returns to Scale - Square Feet			X	Full	Block Group

4. Estimation Results

Estimation results for all 21 models (as defined in Table 7) are presented in Tables 8-11, with the salient results on the impacts of PV on homes sales prices summarized in Figures 2-4. ${ }^{34,35}$ The adjusted R^{2} for all models is high, ranging from 0.93 to 0.95 , which is notable because the dataset spanned a period of unusual volatility in the housing market. The model performance reflects, in part, the ability of the inflation index and temporal fixed effects variables to adequately control for market conditions. ${ }^{36}$

Moreover, the sign and magnitude of the home and site control variables are consistent with a priori expectations, are largely stable across all models, and are statistically significant at the 1% level in most models. ${ }^{37}$ Each additional 1000 square feet of living area added to a home is estimated to add between 19% and 26% to its value, while the first acre adds approximately 40% to its value with each additional acre adding approximately 1.5%. For each year a home ages, it is estimated that approximately 0.2% of its value is lost, yet at 60 years, age becomes an asset with homes older than that estimated to garner premiums for each additional year in age. Finally, for each additional 100 feet above the median elevation of the other homes in the block group, a home's value is estimated to increase by approximately 0.3%. These results can be benchmarked to other research. Specifically, Sirmans et al. (2005a; 2005b) conducted a meta-analysis of 64 hedonic pricing studies carried out in multiple locations in the U.S. during multiple time periods, and investigated similar characteristics as included in the models presented here, except for relative elevation. As a group, each of the home and site characteristic estimates in the present

[^45]study differ from the mean Sirmans et al. estimates by no more than one half of one standard deviation.

In summary, these results suggest that the hedonic and repeat sales models estimated here are effectively capturing many of the drivers to home sales prices in California, and therefore increasing confidence that those same models can be used to accurately capture any PV effects that may exist.

4.1. Fixed and Continuous Effect Hedonic Model Results

The results from the base hedonic models (equations 1 and 2) are shown in Table 8 as Models 1 and 2, respectively. These models estimate the differences across the full dataset between PV and non-PV homes, with Model 1 estimating this difference as a fixed effect, and Model 2 estimating the difference as a continuous effect for each additional kilowatt (kW) of PV added. Also shown in the table are the results from the robustness tests using the coarsened exact matching procedure and the combined subdivision-block group delineations, as shown as Models 1 Ra and 1 Rb for PV fixed effect models and Models 2 Ra and 2 Rb for continuous effect variables. Finally, the model that derives marginal impact estimates from only PV homes is shown in the table as Model 2Rc.

Across all seven of these models (Models 1-2Rc), regardless of the specification, the variables of interest of PV and SIZE are positive and significant at the 10% level, with six out of seven estimates being significant at the 1% level. Where a PV fixed effect is estimated, the coefficient can be interpreted as the percentage increase in the sales price of a PV home over the mean nonPV home sales price in 2009 dollars based on an average sized PV system. By dividing the monetary value of this increase by the number of watts for the average sized system, this premium can be converted to 2009 dollars per watt (\$/watt). For example, for base Model 1, multiplying the mean non-PV house value of $\$ 480,862$ by 0.036 and dividing by 3120 watts, yields a premium of $\$ 5.5 /$ watt (see bottom of Table 8). Where SIZE, a continuous PV effect, is used, the coefficients reflect the percentage increase in selling prices in 2009 dollars for each additional kW added to the PV system. Therefore, to convert the SIZE coefficient to $\$ /$ watt, the mean house value for non-PV homes is multiplied by the coefficient and divided by 1000 . For
example, for base Model $2, \$ 480,862$ is multiplied by 0.012 and divided by 1000 , resulting in an estimate of $\$ 5.8 /$ watt. 38

As summarized in Figure 2, these base model results for the impact of PV on residential selling prices are consistent with those estimated after controlling for subdivision fixed effects ($\$ 5.4 /$ watt and $\$ 5.6 /$ watt for fixed and continuous effects, respectively), differing by no more than $\$ 0.2 /$ watt. On the other hand, the estimated PV premiums derived from the coarsened exact matched dataset are noticeably smaller, decreasing by 20 to 30%, and ranging from $\$ 3.9 /$ watt to $\$ 4.8 /$ watt for fixed and continuous effects, respectively. Alternatively, the PV only Model 2Rc estimates a higher \$/watt continuous effect of \$6.4/watt, although that estimate is statistically significant at a lower 10% level. This estimate, because it is derived from PV homes only, corroborates that any changes to the home that are coincident with the installation of the PV (e.g., energy efficient upgrades) are not influencing results dramatically.

Figure 2: Fixed and Continuous Effect Base Model Results with Robustness Tests

[^46]Though results among these seven models differ to some degree, the results are consistent in finding a premium for PV homes over non-PV homes in California, which varies from $\$ 3.9$ to $\$ 6.4 /$ watt on average, depending on the model specification. These sale price premiums are very much in line with, if not slightly above, the historical mean net installed costs (i.e., the average installed cost of a system, after deducting available state and federal incentives) of residential PV systems in California of approximately \$5/watt from 2001 through 2009 (Barbose et al., 2010), which, as discussed earlier, may be reasonable given that both buyers and sellers might use this cost as a partial basis to value a home. ${ }^{39}$

Additionally, the one other hedonic analysis of PV selling price premiums (which used reasonably similar models as those employed here but a different dataset, concentrating only on homes in the San Diego metropolitan area) found a similar result (Dastrop et al., 2010). In their analysis of 279 homes that sold with PV systems installed in San Diego (our model only contained 35 homes from this area ${ }^{40}$ - See Table 5), Dastrop et al. estimated an average increase in selling price of $\$ 14,069$, which, when divided by their mean PV system size of 3.2 kW , implies an effect of $\$ 4.4 /$ watt. 41

[^47]Table 8: Fixed and Continuous Base Hedonic Model Results with Robustness Tests

	Fixed			Continuous			
	Base	Robustness	Robustness	Base	Robustness	Robustness	Robustness
		Matched	Subdivision		Matched	Subdivision	PV Only
	Model 1	Model 1Ra	Model 1Rb	Model 2	Model 2Ra	Model 2Rb	Model 2Rc
pv	0.036***	0.024***	$0.035^{* *}$				
	(0.005)	(0.006)	(0.005)				
size				0.012***	$0.010^{* * *}$	0.012***	0.013*
				(0.002)	(0.002)	(0.001)	(0.008)
sqft_1000	0.253***	0.205***	0.250***	0.253***	0.205***	0.250***	0.224***
	(0.001)	(0.006)	(0.001)	(0.001)	(0.006)	(0.001)	(0.010)
lt1acre	0.417***	0.514***	0.414***	0.416***	0.510***	0.413***	0.441***
	(0.009)	(0.040)	(0.010)	(0.009)	(0.040)	(0.010)	(0.066)
acre	0.016***	0.013	0.015***	0.016***	0.013	0.015***	-0.002
	(0.002)	(0.011)	(0.003)	(0.002)	(0.010)	(0.003)	(0.012)
ages 2	-0.004***	-0.006***	-0.004***	-0.004***	-0.006***	-0.004***	-0.008***
	(0.0002)	(0.0012)	(0.0002)	(0.0002)	(0.0012)	(0.0002)	(0.0030)
ages 2 sqr	0.00003***	0.00004***	0.00003***	0.00003***	0.00004***	0.00003***	0.00004***
	(0.000003)	(0.000012)	(0.000003)	(0.000003)	(0.000012)	(0.000003)	(0.000033)
bgre_100	0.003***	0.015***	0.003***	0.003***	0.015***	0.003***	0.013***
	(0.001)	(0.004)	(0.001)	(0.001)	(0.004)	(0.001)	(0.005)
intercept	12.703***	12.961***	$12.710^{* * *}$	12.702***	12.957***	12.710***	12.842***
	(0.010)	(0.044)	(0.012)	(0.010)	(0.043)	(0.012)	(0.073)

Numbers in parenthesis are standard errors, ${ }^{* * *} p<0.01,{ }^{* *} p<0.05,{ }^{*} p<0.1$
Results for subdivision, block group, and quarterly fixed effect variables are not reported here, but are available upon request from the authors

Total n	72,319	13,329	72,319	72,319	13,329	72,319	1,192	
Adiusted $\mathbf{R}^{\mathbf{2}}$	0.93	0.95	0.94	0.93	0.95	0.94	0.93	
\mathbf{n} (pvhomes)	1,894	1,465	1,894	1,894	1,465	1,894	1,192	
Mean non-pvasp2	$\$ 480,862$	$\$$	480,533	$\$$	480,862	$\$$	480,862	$\$$
Mean size (kW)	3.1	3.0	380,533	$\$$	480,862	$\$$	475,811	
Estimated \$/Watt	$\$$	5.5	$\$$	3.9	$\$$	5.4	$\$$	5.1

PV Only Model Notes: Mean non-pv asp 2 amount shown is actually the mean PV asp2. Sample is limited to blockgroups with more than one PV home

4.2. New and Existing Home Model Results

Turning from the full dataset to one specific to the home type, we estimate continuous effects models for new and existing homes (see equation (2)). These results are shown in Table 9, with Model 3 the base model for new homes and Model 4 the base model for existing homes. Also
shown are the results from the robustness tests using the coarsened exact matching procedure and the combined subdivision-block group delineations, as Models 3 Ra and 3 Rb , respectively, for new homes, and as Models 4Ra and 4Rb, respectively, for existing homes.

The coefficient of interest, SIZE, is statistically significant at or below the 10% level in all of the new home models and at the 1% level in all of the existing home models. Estimates for the average $\$ /$ watt increase in selling prices as a result of PV systems (as summarized in Figure 3, which also includes the results presented earlier for all homes, Models 2, 2Ra, and 2Rb) for new homes are quite stable, ranging from $\$ 2.3$ to $\$ 2.6 /$ watt. In comparison, for PV sold with existing homes, not only are the selling price impacts found to be higher, but their range across the three models is somewhat greater, ranging from $\$ 6.4$ to $\$ 7.7 /$ watt.

Figure 3: New and Existing Home Base Model Results with Robustness Tests

Though the reasons for the apparent discrepancy in selling price impacts between new and existing homes are unclear, and warrant future research, they might be explained, in part, by the difference in average net installed costs, which, from 2007 to 2009, were approximately $\$ 5.2 /$ watt for existing homes and $\$ 4.2 /$ watt for new homes in California (derived from the dataset used for Barbose et al., 2010). The gap in net installed costs between new and existing homes is
not wide enough to fully account for these findings, however, with the model estimates for PV selling price premiums below the average net installed costs for new homes and above the average net installed costs for existing homes. ${ }^{42}$

Several alternative explanations for the disparity between new and existing home premiums exist. As discussed previously, there is evidence that builders of new homes might discount premiums for PV if, in exchange, PV systems provide other benefits for new home developers, such as greater product differentiation and increased the sales velocity, thus decreasing overall carrying costs (Dakin et al., 2008; SunPower, 2008). Further, sellers of new homes with PV might be reluctant to aggressively increase home sale prices for installed PV systems because of the burgeoning state of the market for PV homes and concern that more aggressive pricing could even slow home sales. Additionally, because many builders of new homes found that offering PV as an option, rather than a standard feature, posed a set of difficulties (Farhar et al., 2004b; Dakin et al., 2008), it has been relatively common in past years for PV to be sold as a standard feature on homes (Dakin et al., 2008). This potentially affects the valuation of PV systems for two reasons. First, because sales agents for the new PV homes have sometimes been found to either not be well versed in the specifics of PV and felt that selling a PV system was a new sales pitch (Farhar et al., 2004b) or to have combined the discussion of PV with a set of other energy features (Dakin et al., 2008), up-selling the full value of the PV system as a standard product feature might not have been possible. Secondly, the average sales price of new homes in our dataset is lower than the average sales price of existing homes: to the extent that PV is considered a luxury good, it may be somewhat less-highly valued for the buyers of these homes.

These downward influences for new homes are potentially contrasted with analogous upward influences for existing homes. Related, buyers of existing homes with PV may - to a greater degree than buyers of the less expensive new homes in our sample - be self selected towards those who place particular value on a PV home, and therefore value the addition more. Finally, in contrast to new home sellers, who might not be familiar with the intricacies and benefits of the

[^48]PV system, existing home sellers are likely to be very familiar with the particulars of the system and its benefits, and therefore might be able to "up-sell" it more effectively.

These possible influences, in combination, may explain the difference in average PV premium between new and existing homes. The present analysis did not seek to disentangle or evaluate these specific drivers, however, leaving that important effort for future research.

Table 9: New and Existing Home Base Hedonic Model Results with Robustness Tests

	New Homes			Existing Homes		
	Base	Robustness	Robustness	Base	Robustnes	Robustness
		Matched	Subdivision		Matched	Subdivision
	Model 3	Model 3Ra	Model 3Rb	Model 4	Model 4Ra	Model 4Rb
size	0.006*	0.006*	0.006**	0.014***	0.011***	0.012***
	(0.003)	(0.003)	(0.003)	(0.002)	(0.002)	(0.002)
sqft_1000	0.247***	0.190***	0.250***	0.256***	0.238***	0.251***
	(0.002)	(0.006)	(0.002)	(0.002)	(0.015)	(0.002)
lt1acre	0.536***	0.279***	0.517***	0.373***	0.426***	0.376***
	(0.019)	(0.073)	(0.024)	(0.010)	(0.046)	(0.012)
acre	-0.007	0.338***	-0.009*	0.019***	0.011	0.017***
	(0.005)	(0.027)	(0.005)	(0.002)	(0.011)	(0.003)
ages2	-0.010	0.081***	-0.010*	-0.005***	$-0.006^{* * *}$	-0.005***
	(0.006)	(0.017)	(0.006)	(0.000)	(0.002)	(0.000)
ages 2 sqr	0.00768***	$-0.02443 * * *$	0.00715***	0.00004***	0.00004***	0.00004***
	(0.001676)	(0.004407)	(0.001604)	(0.000003)	(0.000014)	(0.000004)
bgre_100	0.008***	0.027***	0.007***	0.002	-0.002	0.002
	(0.001)	(0.003)	(0.001)	(0.001)	(0.009)	(0.001)
intercept	$12.651^{* * *}$	$12.585^{* * *}$	12.627***	12.820***	13.023***	$12.833^{* * *}$
	(0.022)	(0.066)	(0.025)	(0.013)	(0.077)	(0.014)

Numbers in parenthesis are standard errors, ${ }^{* * *} p<0.01,{ }^{* *} p<0.05,{ }^{*} p<0.1$
Results for subdivision, block group, and quarterly fixed effect variables are not
reported here, but are available upon request from the authors

Total n	27,873	8,068	27,873	44,384	4,887	44,384	
Adiusted $\mathbf{R}^{\mathbf{2}}$	0.94	0.94	0.94	0.93	0.95	0.94	
n (pv homes)	935	802	935	897	618	897	
Mean non-pvasp2	$\$ 397,265$	$\$$	399,162	$\$$	397,265	$\$$	532,645
Mean size (kW)	2.5	2.4	290,428	$\$$	532,645		
Estimated \$/Watt	$\$$	2.3	$\$$	2.6	$\$$	2.6	$\$$

4.2.1. Difference-in-Difference Model Results

Delving deeper into PV system impacts on existing homes, Table 10 (and Figure 4) shows the results of the base Difference-in-Difference Model 5 as well as results from the two robustness tests (all of which can be compared to Models 4, 4Ra, and 4rb above, as is done in Figure 4). As a reminder, one robustness model limited the differences in sales dates between the first and second sales to five years (Model 5Rb), and the other robustness model used the combined subdivision-block group delineations as fixed effects variables (Model 5Rc). The variables of interest are PVH, SALE2 and especially PVS.

PVH estimates the difference in the first sale prices of homes that will have PV installed (as of the second sale date) relative to non-PV homes. The three models are consistent in their estimates, showing approximately a 2% premium for "future" PV homes, though only two of these estimates are statistically significant, and then only at the 10% level. Regardless, this finding suggests that PV homes tend to sell for somewhat more even before the installation of PV , presumably as a result of other amenities that are correlated with the (ultimate) installation of PV (such as, potentially, energy efficiency features). SALE2 estimates the price appreciation trend between the first and second sales for all homes. The coefficient for this variable is significant at the 1% level, and is fairly stable across the models, indicating a clear general trend of price increases, over and above inflation adjustments, of approximately 2% to 2.5% between the first and second sales.

Finally, and most importantly, homes with PV systems installed on them as of the second sale after controlling for any inherent differences in first sale prices (PVH) and any trend between the first and second sales (SALE2) - show statistically significant sale price premiums of approximately 5 to 6%. These premiums equate to an increase in selling prices of approximately \$6/watt for existing homes, closely reflecting the results presented earlier for the hedonic models in Table 9 and Figure 3. For comparison purposes, both sets of results are presented in Figure 4.

The premium for existing PV homes as estimated in the DD Models 5,5Ra, and 5Rb and both robustness tests for the hedonic model (using the "matched" and "subdivision" datasets, Models 4 Ra and 4 Rb respectively) are consistently between $\$ 6$ and $\$ 6.5 /$ watt and are in line with -
though slightly higher than - the mean net installed costs of PV on existing homes in California of approximately $\$ 5.2 /$ watt from 2007 through 2009. The base hedonic existing home model, on the other hand, estimates a higher premium of $\$ 7.7 /$ watt. One possible explanation for this inconsistency is that the two robustness tests for the hedonic model and the various difference-indifference models are less likely to be influenced by either selection or omitted variable bias than the base hedonic model. Regardless of the absolute magnitude, a sizable premium for existing PV homes over that garnered by new PV homes is clearly evident in these and the earlier results.

Figure 4: Existing Home Hedonic and Difference-in-Difference Model Results with Robustness Tests

Table 10: Difference-in-Difference Model Results

Numbers in parenthesis are standard errors. ${ }^{* * *} p<0.01$,
** $p<0.05, * p<0.1$. Results for subdivision, block group, and quarterly fixed effect variables are not reported here, but are available upon request from the authors

Total n	28,313	19,265	28,313
Adiusted R	2	0.93	0.94
\mathbf{n} (pvhomes)	394	159	0.94
Mean non-pvas p2	$\$$	488,127	$\$$
Mean size (kW)	4.0	450,223	$\$$
Estimated \$/Watt	$\$$	6.2	$\$$

4.3. Age of PV System for Existing Home Hedonic Model Results

To this point, the marginal impacts to selling prices of each additional kW of PV added to existing homes have been estimated using the full dataset of existing homes, which has produced an average effect, regardless of the age of the PV system. As discussed previously, it is
conceivable that older PV systems would garner lower premiums than newer, similarly sized systems. To test this directly, a base model is constructed - see equation (4) - that estimates the marginal impacts for three age groups of PV systems: no more than one year old at the time of sale; between two and four years old; and five or more years old. Results from this model as well as two robustness tests, using the coarsened exact matching procedure and the combined subdivision-block group delineations, are shown in Table 11 as Models 6, 6Ra, and 6Rb, respectively.

Each model finds statistically significant differences between PV and non-PV homes for each age group, and more importantly, premium estimates for newer PV systems are - as expected larger than those for older PV systems and are monotonically ordered between groups, providing some evidence that older systems are being discounted by the buyers and sellers of PV homes. Specifically, the three models estimate an average premium for PV systems that are one year or less in age of \$8.3-9.3/watt, whereas those same models estimate an average premium of \$4.16.1/W for systems that are five or more years old.

4.4. Returns to Scale Hedonic Model Results

In the previous modeling, the marginal impacts to selling prices of each additional kW of PV in the continuous models have been estimated using a linear relationship. To test whether a nonlinear relationship may be a better fit, a SIZE squared term is added to the model as shown in equation (5). Similarly, decreasing or increasing returns to scale might be related to other house characteristics, such as the size of the home (i.e., square feet). This hypothesis is explored using equation (6). Both model results are shown in Table 11 as Model 7 and 8, respectively.

Both models find small and non-statistically significant relationships between their interacted variables, indicating a lack of compelling evidence of a non-linear relationship between PV system size and selling price in the dataset, and a lack of compelling evidence that the linear relationship is affected by the size of the home. As such, the impact of PV systems on residential selling prices appears to be well approximated by a simple linear relationship, while the size of the home is not found to impact the PV sales price premium. In combination, these results seem to suggest that while California's tiered rate structures may lead to energy bill savings from PV
investments that vary non-linearly with PV system size and also vary by home size, those same rate structures have not - to this point - led to any clear impact on the PV premium garnered at the time of home sale. Similarly, though larger PV systems may be installed at a discount to smaller ones on a \$/watt basis, and though any marginal green cachet that exists may diminish with system size, those possible influences are not apparent in the results presented here.

Table 11: Age of PV System and Return to Scale Hedonic Model Results

	Age of PV Systems for Existing Homes			Returns to Scale	
	Base	Robustness	Robustness	Size	Square Feet
		Matched	Subdivision		
	Model 6	Model 6Ra	Model 6Rb	Model 7	Model 8
size*1 year old	0.016***	0.016***	0.013***		,
	(-0.004)	(-0.005)	(-0.004)		
size*2-4 years old	0.015***	0.010***	0.013***		
	(-0.002)	(-0.003)	(-0.002)		
size*5+ years old	0.012***	0.008**	0.008**		
	(-0.003)	(-0.004)	(-0.003)		
size				0.008**	0.021***
				(0.003)	(0.006)
sizesqr				0.001	
				(0.001)	
size*sqft_1000					-0.003
					(0.002)
sqft_1000	0.256***	0.238***	0.251***	0.253***	0.253***
	(0.002)	(0.015)	(0.002)	(0.001)	(0.001)
lt1acre	0.373***	0.426***	0.376***	0.416***	0.416***
	(0.010)	(0.046)	(0.012)	(0.009)	(0.009)
acre	0.019***	0.010***	0.017***	0.016***	0.016***
	(0.002)	(0.011)	(0.003)	(0.002)	(0.002)
ages 2	-0.005***	-0.006***	$-0.005^{* * *}$	-0.004***	-0.004***
	(0.000)	(0.002)	(0.000)	(0.000)	(0.000)
ages 2 sqr	0.000***	0.000***	0.000***	0.000***	0.000***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
bgre_100	0.002***	$-0.002 * * *$	0.002***	0.003***	0.003***
	(0.001)	(0.009)	(0.001)	(0.001)	(0.001)
intercept	12.820***	13.024***	12.834***	12.702***	12.701***
	(0.013)	(0.078)	(0.014)	(0.010)	(0.011)

Numbers in parenthesis are standard errors. ${ }^{* * *} p<0.01,{ }^{* *} p<0.05,{ }^{*} p<0.1$ Results for subdivision, block group, and quarterly fixed effect variables are not reported here, but are available upon request from the authors

Total n	44,384	4,887	44,384	72,319	72,319
Adiusted R ${ }^{2}$	0.93	0.95	0.94	0.93	0.93
\mathbf{n} (pvhomes)	897	618	897	1,894	1,894
Mean non-pvasp2	$\$$	532,645	$\$$	590,428	$\$$

5. Conclusions

The market for solar PV is expanding rapidly in the U.S. Almost 100,000 PV systems have been installed in California alone, more than 90% of which are residential. Some of those "PV homes" have sold, yet little research exists estimating if those homes sold for significantly more than similar non-PV homes. Therefore, one of the claimed incentives for solar homes - namely that a portion of the initial investment into a PV system will be recouped if the home is sold - has, to this point, been based on limited evidence. Practitioners have sometimes transferred the results from past research focused on energy efficiency and energy bills more generally and, while recent research has turned to PV that research has so far focused largely on smaller sets of PV homes concentrated in certain geographic areas. Moreover, the home sales price effect of PV on a new versus an existing home has not previously been the subject of research. Similarly unexplored has been whether the relationship of PV system size to home sales prices is linear, and/or is affected by either the size of the home or the age of the PV system.

This research has used a dataset of approximately 72,000 California homes, approximately 2,000 of which had PV systems installed at the time of sale, and has estimated a variety of different hedonic and repeat sales models to directly address the questions outlined above. Moreover, an extensive set of robustness tests were incorporated into the analysis to test and bound the possible effects and increase the confidence of the findings by mitigating potential biases. The research was not intended to disentangle the various individual underlying influences that might dictate the level of the home sales price premium caused by PV, such as, energy costs savings, the net (i.e., after applicable state and federal incentives) installed cost of the PV system, the possible presence of a green cachet, or seller attributes. Instead, the goal was to establish credible estimates for the aggregate PV residential sale price effect across a range of different circumstances (e.g., new vs. existing homes, PV system age).

The research finds strong evidence that homes with PV systems in California have sold for a premium over comparable homes without PV systems. More specifically, estimates for average PV premiums range from approximately $\$ 3.9$ to $\$ 6.4$ per installed watt (DC) among a large number of different model specifications, with most models coalescing near $\$ 5.5 /$ watt. That
value corresponds to a premium of approximately $\$ 17,000$ for a relatively new 3,100 watt PV system (the average size of PV systems in the study). These results are similar to the average increase for PV homes found by Dastrop et al. (2010), which used similar methods but a different dataset, one that focused on homes in the San Diego metropolitan area. Moreover, these average sales price premiums appear to be comparable to the average net (i.e., after applicable state and federal incentives) installed cost of California residential PV systems from 2001-2009 (Barbose et al., 2010) of approximately $\$ 5 /$ watt, and homeowners with PV also benefit from electricity cost savings after PV system installation and prior to home sale.

Although the results for the full dataset from the variety of models are quite similar, when the dataset is split among new and existing homes, PV system premiums are found to be markedly affected, with new homes demonstrating average premiums of \$2.3-2.6/watt, while existing homes are found to have average premiums of $\$ 6-7.7 /$ watt. Possible reasons for this disparity between new and existing PV homes include: differences in underlying net installation costs for PV systems; a willingness among builders of new homes to accept a lower PV premium because PV systems provide other benefits to the builders in the form of product differentiation, leading to increased sales velocity and decreased carrying costs; and, lower familiarity and/or interest in marketing PV systems separately from the other features of new homes contrasted with a likely strong familiarity with the PV systems among existing home sellers.

The research also investigated the impact of PV system age on the sales price premium for existing homes, finding - as would be expected - evidence that older PV systems are discounted in the marketplace as compared to newer PV systems. Finally, evidence of returns to scale for either larger PV systems or larger homes was investigated but not found.

In addition to benchmarking the results of this research to the limited previous literature investigating the sales price premiums associated with PV, our results can also be compared to previous literature investigating premiums associated with energy efficiency (EE) or, more generally, energy cost savings. A number of those studies have converted this relationship into a ratio representing the relative size of the home sales price premium to the annual savings expected due to energy bill reductions. These ratios have ranged from approximately 7:1
(Longstreth et al., 1984; Horowitz and Haeri, 1990), to 12:1 (Dinan and Miranowski, 1989), to approximately 20:1 (Johnson and Kaserman, 1983; Nevin et al., 1999; Eichholtz et al., 2009), and even as high as 31:1 (Nevin and Watson, 1998).

Although actual energy bill savings from PV for the sample of homes used for this research were not available, a rough estimate is possible, allowing for a comparison to the previous results for energy-related homes improvements and energy efficiency. Specifically, assuming that 1,425 $\mathrm{kWh}(\mathrm{AC})$ are produced per year per kW (DC) of installed PV on a home (Barbose et al., 2010; CPUC, 2010 $)^{43}$ and that this production offsets marginal retail electricity rates that average $\$ 0.20 / \mathrm{kWh}(\mathrm{AC})$ (Darghouth et al., 2010), each watt (DC) of installed PV can be estimated to save $\$ 0.29$ in annual energy costs. Using these assumptions, the $\$ /$ watt PV premium estimates reported earlier can be converted to sale price to annual energy savings ratios (see Figure 5).

A $\$ 3.9$ to $\$ 6.4 /$ watt premium in selling price for an average California home with PV installed equates to a $14: 1$ to $22: 1$ sale price to energy savings ratio, respectively. For new homes, with a $\$ 2.3-2.6 /$ watt sale price premium, this ratio is estimated to be $8: 1$ or $9: 1$, and for existing homes, with an overall sale price premium range of \$6-7.6/watt, the ratio is estimated to range from 21:1 to $26: 1$. Without actual energy bill savings, these estimates are somewhat speculative, but nonetheless are broadly consistent with the previous research that has focused on EE-based home energy improvements.

[^49]Figure 5: Estimated Ratios of Sale Price Premium to Annual Energy Cost Savings

Although this research finds strong evidence that homes with PV systems in California have sold for a premium over comparable homes without PV systems, the extrapolation of these results to different locations or market conditions (e.g., different retail rates or net installed costs) should be done with care.

Finally, additional questions remain that warrant further study. Perhaps most importantly, although the dataset used for this analysis consists of almost 2,000 PV homes, the study period was limited to sales occurring prior to mid-2009 and the dataset was limited to California. Future research would therefore ideally include more-recent sales from a broader geographic area to better understand any regional/national differences that may exist as well as any changes to PV premiums that occur over time as the market for PV homes and/or the net installed cost of PV changes. More research is also warranted on new versus existing homes to better understand the nature and underlying drivers for the differential premium discovered in this research; in addition to further hedonic analysis, that research could include interviewing/surveying home builders and buyers and exploring the impact of demographic, socio-economic, and others factors on the PV premium.

Additionally, future research might compare sales price premiums to actual annual home energy cost savings, to not only to explore the sale price to annual energy cost savings ratio directly, but also to explore if a green cachet exists over and above any sale price premiums that would be expected from energy cost savings alone. Further, house-by-house PV system and other information not included in the present study might be included in future studies, such as the actual net installed costs of PV for individual households, rack-mounted or roof-integrated distinctions as well as other elements of PV system design, the level of energy efficiency of the home, whether the home has a solar hot water heater, whether the PV system is customer or $3^{\text {rd }}$ party owned at the time of sale, and if the homeowner can sell the green attributes the system generates. ${ }^{44}$ Such research could elucidate important differences in PV premiums among households, PV system designs and state and federal programmatic designs, as well as bolster confidence in the magnitude of the PV premium estimated here. Finally, and more generally, additional research could investigate the impact of PV systems on the time homes remain on the market before sale, a factor that may be especially important for large developers and sellers of new homes.

[^50]
References

Barbose, G., Darghouth, N. and Wiser, R. (2010) Tracking the Sun III: The Installed Cost of Photovoltaics in the U.S. From 1998-2009. Lawrence Berkeley National Laboratory, Berkeley, CA. December 2010. 54 pages. LBNL-4121E.

Black, A. (2010) Does It Pay? Figuring the Financial Value of a Solar or Wind Energy System. Solar Today. Fall/Winter 2010. pp. 26-27.

Brounen, D. and Kok, N. (2010) On the Economics of Energy Labels in the Housing Market. Program on Housing and Urban Policy: Working Papers Series. Prepared for Institute of Business and Economic Research and Fisher Center for Real Estate and Urban Economics, University of California, Berkeley, CA. August 2010. 34 pages. W10002.

California Energy Commission (CEC) (2002) Consultant Report: Renewable Energy Study. The Phelps Group and ICF Consulting. Prepared for California Energy Commission (CEC). November 2001. 77 pages.

California Public Utilities Commission (CPUC) (2010) CPUC California Solar Initiative: 2009 Impact Evaluation. Final Report. Prepared by: Itron and KEMA. Prepared for California Public Utilities Commission, Energy Division. June 2010. 632 pages.

Cook, R. D. (1977) Detection of Influential Observations in Linear Regression. Technometrics. 19(1): 15-18.

Dakin, W., Springer, D. and Kelly, B. (2008). Case Study: The Effectiveness of Zero Energy Home Strategies in the Marketplace. Presented at ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, California. August 17-22, 2008.

Darghouth, N., Barbose, G. and Wiser, R. (2010) The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California. Lawrence Berkeley National Laboratory, Berkeley, CA. December 2010. 62 pages. LBNL-3276E.

Dastrop, S., Zivin, J. G., Costa, D. L. and Kahn, M. E. (2010) Understanding the Solar Home Price Premium: Electricity Generation and "Green" Social Status. Working Paper Series. Prepared for UC Center for Energy and Environmental Economics, Berkeley, CA. December 9, 2010. 29 pages. E3 WP-001.

Dinan, T. M. and Miranowski, J. A. (1989) Estimating the Implicit Price of Energy Efficiency Improvements in the Residential Housing Market: A Hedonic Approach. Journal of Urban Economics. 25(1): 52-67.

Durbin, J. and Watson, G. S. (1951) Testing for Serial Correlation in Least-Squares Regression. Biometrika. 38(1-2): 159-178.

Eichholtz, P., Kok, N. and Quigley, J. M. (2009) Doing Well by Doing Good? An Analysis of the Financial Performance of Green Office Buildings in the USA. University of California. Institute of Business and Economic Research. Berkeley Program on Housing and Urban Policy, Berkeley, CA. April 1, 2008. 49 pages. W08-001S.

Eichholtz, P., Kok, N. and Quigley, J. M. (2011) The Economics of Green Building. Working Paper Series Prepared for UC Center for Energy and Environmental Economics (UCE^{3}), Berkeley, CA. January 2011. 35 pages. WP-002.

Farhar, B. and Coburn, T. (2008) A New Market Paradigm for Zero-Energy Homes: A Comparative Case Study. Environment: Science and Policy for Sustainable Development 50(1): 18-32.

Farhar, B. and Coburn, T. C. (2006) A New Market Paradigm for Zero-Energy Homes: The Comparative San Diego Case Study. Volume 1 of 2. Prepared for National Renewable Energy Laboratory, Bolder, CO. December 2006. 413 pages. NREL/TP-550-38304-01.

Farhar, B. C., Coburn, T. C. and Murphy, M. (2004a) Comparative Analysis of Home Buyer Response to New Zero-Energy Homes. Summer Study on Energy Efficiency in Buildings, August 22-27, 2004. Prepared for American Council for an Energy-Efficient Economy, Pacific Grove, California. Preprinted in July, 2004. NREL/CP-550-35912.

Farhar, B. C., Coburn, T. C. and Murphy, M. (2004b) Large-Production Home Builder Experience with Zero Energy Homes. Summer Study on Energy Efficiency in Buildings, August 22-27, 2004. Prepared for American Council for an Energy-Efficient Economy, Pacific Grove, California. Preprinted in July, 2004. 15 pages. NREL/CP-550-35913.

Freeman, A. M. (1979) Hedonic Prices, Property Values and Measuring Environmental Benefits: A Survey of the Issues. Scandinavian Journal of Economics. 81(2): 154-173.

Griffin, A., Kaufman, B. and Hamilton, S. (2009) Certified Home Performance: Assessing the Market Impacts of Third Party Certification on Residential Properties. Earth Advantage Institute. Prepared for Green Building Value Initiative Steering Committee, Portland, OR. May 29, 2009. 36 pages.

Gujarati, D. N. (2003) Basic Econometrics. McGraw-Hill/Irwin. Fourth Edition, New York. 1002 pages. ISBN 0-07-233542-4.

Hoen, B., Wiser, R., Cappers, P., Thayer, M. and Sethi, G. (2009) The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis. Lawrence Berkeley National Laboratory, Berkeley, CA. December, 2009. 146 pages. LBNL-2829E.

Horowitz, M. J. and Haeri, H. (1990) Economic Efficiency vs. Energy Efficiency: Do Model Conservation Standards Make Good Sense? Energy Economics. 12(2): 122-131.

Johnson, R. C. and Kaserman, D. L. (1983) Housing Market Capitalization of Energy-Saving Durable Good Investments. Economic Inquiry. 21: 374-386.

King, G., Blackwell, M., Iacus, S. and Porro, G. (2010) Cem: Coarsened Exact Matching in Stata. Stata Journal. 9(4): 524-546.

Laquatra, J. (1986) Housing Market Capitalization of Thermal Integrity. Energy Economics. 8(3): 134-138.

Longstreth, M., Coveney, A. R. and Bowers, J. S. (1984) Conservation Characteristics among Determinants of Residential Property Value. Journal of Consumer Research. 11(1): 564571.

Malpezzi, S. (2003) Hedonic Pricing Models: A Selective and Applied Review. Section in Housing Economics and Public Policy: Essays in Honor of Duncan Maclennan. WileyBlackwell. Hoboken, NJ. pp. 67-85 of 328 pages. ISBN 978-0-632-06461-8.

McCabe, M. and Merry, L. (2010) Resale Market Value of Residential Solar PV. Journal of Sustainable Real Estate. Volume 2. Industry Perspectives. Retrieved March 28, 2011 from http://www.costar.com/josre/industryPerspectives.htm

Nevin, R., Bender, C. and Gazan, H. (1999) More Evidence of Rational Market Values for Energy Efficiency. The Appraisal Journal. 67(4): 454-460.

Nevin, R. and Watson, G. (1998) Evidence of Rational Market Values for Home Energy Efficiency. The Appraisal Journal. 68: 401-409.

Rosen, S. (1974) Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition. Journal of Political Economy. 82(1): 34-55.

Simons, R. A. and Saginor, J. D. (2006) A Meta-Analysis of the Effect of Environmental Contamination and Positive Amenities on Residential Real Estate Values. Journal of Real Estate Research. 28(1): 71-104.

Sirmans, G. S., Lynn, M., Macpherson, D. A. and Zietz, E. N. (2005a). The Value of Housing Characteristics: A Meta Analysis. Presented at Mid Year Meeting of the American Real Estate and Urban Economics Association. May 2005.

Sirmans, G. S., Macpherson, D. A. and Zietz, E. N. (2005b) The Composition of Hedonic Pricing Models. Journal of Real Estate Literature. 13(1): 3-42.

Solar Energy Industries Association (SEIA) and GTM Research (GTM) (2011) U.S. Solar Market Insight - 2010 Year in Review. GTM Research (GTM) in Boston MA. Prepared for Solar Energy Industries Association (SEIA), Washington, DC.

SunPower (2008) New Homes With SunPower Solar Systems are Bright Spot in Market. Press Release Regarding Ryness Corporation Report. June 24, 2008

White, H. (1980) A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. Econometrica. 48(4): 817-838.

Wooldridge, J. (2009) Introductory Econometrics: A Modern Approach. South Western Cengage Learning. Mason, OH. ISBN\# 0324660545.

PV Value ${ }^{\text {TM }}$

User Manual v. 1.1

Jamie L. Johnson - Solar Power Electric ${ }^{\text {TM }}$ Geoffrey T. Klise - Sandia National Laboratories 9/1/2012

SAND2012-7306P

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Executive Summary

This user manual describes the methods used to develop a model for appraising the value of a photovoltaic (PV) system installed on residential and commercial properties. This model follows the Income Capitalization Approach used by appraisers to determine the value of a PV system as a function of the potential energy produced over the system's lifetime. Instructions on how to properly input values into the spreadsheet tool are presented along with a detailed description of each parameter. PV Value ${ }^{\mathrm{TM}}$ is intended for use by real estate appraisers, mortgage underwriters, credit analysts, real property assessors, insurance claims adjusters, and PV industry sales staff. This user manual references version 1.1 of the "Photovoltaic Energy Valuation Model," (PV Value ${ }^{\mathrm{TM}}$) with a copyright date of August 31,2012 . The original version 1.0 was released on January 31, 2012, and has now expired. Version 1.1 has updates that were requested by users, most importantly an Excel® 2011 version for Mac OS X. This user manual has been changed to reflect the additional features in the model. Check back to www.pvvalue.com or http://pv.sandia.gov/pvvalue for newer versions of the spreadsheet tool. A new release is anticipated on or before July 1, 2013. Any questions or comments can be directed to Geoff Klise and Jamie Johnson at help@pvvalue.com. PV Value ${ }^{\mathrm{TM}}$ is a trademarked name by Jamie Johnson with Solar Power Electric ${ }^{\mathrm{TM}}$.

This project represents the results of a collaborative effort between Solar Power Electric ${ }^{\mathrm{TM}}$ and Sandia National Laboratories that was made possible through funding provided by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. This valuation tool will reduce non balance-of-system (BOS) market barriers to PV by reducing uncertainty about the value of a PV system. Acceptance and use of this tool by the real estate industry will contribute to the overall penetration of PV systems across the U.S.

Contents

1. SUMMARY OF VERSION 1.1 UPDATES 1
2. ABBREVIATIONS \& DEFINITIONS1
3. VALUATION ISSUES FACING DISTRIBUTED PV 1
3.1 APPRAISAL VALUATION METHODS 2
3.2 SALES COMPARISON APPROACH 2
3.3 COST APPROACH 2
3.4 INCOME CAPITALIZATION APPROACH 2
4. CALCULATING THE FUTURE ENERGY PRODUCTION 3
4.1 GRID-TIED SOLAR ELECTRIC (PV) SYSTEM BASICS 3
4.2 DIFFERENT TYPES OF SOLAR 3
4.3 TILT \& ORIENTATION FACTOR 4
4.4 SHADING 4
4.5 DESIGN, PERMITTING \& INSTALLATION 5
4.6 CALCULATING FUTURE ENERGY PRODUCTION. 5
4.7 MODULE DEGRADATION 6
4.8 UTILITY RATE ESCALATION PERCENT7
4.9 DISCOUNT RATE 7
4.10 OPERATION \& MAINTENANCE EXPENSES 8
4.11 SALVAGE VALUE 9
4.12 VALUATION MODEL FOR THE INCOME APPROACH 9
5. EXCEL ${ }^{\otimes}$ SPREADSHEET INSTRUCTIONS 9
5.1 ANALYSIS TAB 9
5.2 RESOURCES \& REFERENCES 12
APPENDIX 13
OTHER FINANCIAL ANALYSIS METHODS USED FOR SOLAR PV 14
INTERNAL REVENUE CODE SECTIONS RELATING TO SOLAR 18

1. SUMMARY OF VERSION 1.1 UPDATES

Mac Excel ${ }^{\circledR} 2011$

The main update for version 1.1 was to re-do the spreadsheet and code to allow for use on a Mac running Excel ${ }^{\circledR} 2011$. Because of these changes, this version can be used interchangeably between a PC with Excel ${ }^{\circledR} 2007$ and 2010, and a Mac with excel ${ }^{\circledR}$ 2011. PV Value ${ }^{\text {TM }}$ will not work in other versions of excel for a PC or a Mac. PV Value ${ }^{\text {TM }}$ will not work in any other spreadsheet software, including OpenOffice Calc, Numbers, etc.

The best resolution to view the spreadsheet is 100%, due to the required use of Form Controls to make PV Value ${ }^{T M}$ work on both operating systems. Form controls are limiting as list box and combo box text cannot be re-sized, therefore some text will be difficult to read at zoom levels less than 100%.

Property Type Choice

In this version, we added a 'Property Type' choice which will toggle certain features for both residential and commercial appraisals.

Utility Escalation Rate

The utility escalation rate is now tied to the remaining system lifetime, where a new system would use the most recent 21 years of data from the EIA (currently back to 1990) to calculate the statewide average escalation rate. For example, a system that has 10 years remaining of warranty lifetime would use the last 10 years to make that calculation. This differs from version 1.0 as it calculated an escalation rate for all remaining energy lifetimes using a 21-year spread (19902011).

Module Warranty

A 20-year module warranty was added. Version 1.0 only had 25 or 30 year module warranty options.

Net Present Value

The ability to calculate Net Present Value was added to allow users an additional financial metric for comparing their net cost after incentives to the calculated present value of the energy production.

2. ABBREVIATIONS \& DEFINITIONS

Solar Nomenclature

Watt	A unit of power defined as (voltage x current)
kW	Kilowatt $\quad 1000$ watts
kWh	Kilowatt hour 1000 watts for an hour
PV	Photovoltaic
AC	Alternating Current
DC	Direct Current
TOF	Tilt and Orientation Factor
STC	Standard Test Condition

Financial Nomenclature

CAGR Compound annual growth rate
DR Discount rate
IRR Internal rate of return
MIRR Modified internal rate of return
MPB Modified payback
NPV Net present value
SPB Simple payback
WACC Weighted average cost of capital

3. VALUATION ISSUES FACING DISTRIBUTED PV

Assigning a reasonable valuation for an existing installed Solar Electric / Photovoltaic (PV) System is important for the distributed PV industry as it continues its transition from the innovation stage through early adoption and eventually to mainstream use.

Rogers bell curve showing the adoption rate for technological innovations. Distributed PV in the US is currently believed to be in the Innovators stage. (Image Credit - Wikipedia.org/diffusion of innovations)

With the consequences of the recent over valuation issue in the real estate market still making headlines, mortgage lenders and appraisers have begun to question the valuation of PV systems and the potential value of the annual energy that can be generated. There are also concerns that if separate financing is obtained by the home or commercial building owner to pay for a PV installation, the monthly loan payment may exceed the monthly energy savings, thereby creating a potential negative effect on the value of a residential or commercial building that the system is installed upon.

Often relying on the system owner's estimate of annual energy savings is difficult at best for various reasons. The system owner's expectations of annual energy production can be higher than the actual energy production measured at the point of use. This can be due to improper installation techniques or poor equipment selection by the installing contractor, sub-optimal location, current and future shading, over-estimating potential kWh production by the PV salesperson, and not the least of which can be due to overall system reliability.

3.1 APPRAISAL VALUATION METHODS

Typical metrics used for an appraisal valuation are usually based on either the sales comparison (comparable), cost or income capitalization approaches.

3.2 SALES COMPARISON APPROACH

As a general rule, a purchaser of residential or commercial property will not pay more for a given property than what a similar property can be purchased for. There is often a lack of comparable sales data on existing residential and commercial buildings with installed PV systems in the various regional multiple listing service (MLS) databases, and in some cases there may not even be a search option for renewable energy technology. It can be difficult for an appraiser to determine a value for a PV system using the principle of substitution with the sales comparison approach.

This should improve once the various MLS database providers add search options for renewable technologies such as PV, and more residential and commercial buildings with PV systems are put on the market and close escrow. Some examples of solar features added to MLS data entry fields can
be found at the Green MLS Tool Kit. http://greenthemls.org/index.cfm

3.3 COST APPROACH

It is also often difficult when using the cost approach to calculate the replacement cost of the PV system due to the following reasons: the installed cost quoted by competing solar companies can vary by $20-30 \%$ or more, the incentives that are used to bring down the installed net cost may also vary from time to time although generally they have been declining, and the beneficial effect of tax credits (and accelerated/bonus depreciation for commercial systems) can vary from one system owner to another due to differing effective federal tax rates.

The replacement cost is often relied on by insurance companies in order to determine a replacement value. If the PV installation is recent, then the replacement cost can sometimes be higher than the original PV installation net cost, which could be due to the ending of a PV rebate program, a decline in the rebate amount, or the PV system owner qualifying for a rebate on the original PV system (due to incentive program rules, they may not be able to qualify for a second rebate on a replacement PV system).

It is also important to note that in many cases PV installations are done before the end of the year in order for the prospective PV system owner to lighten their tax burden through the use of the 30\% federal tax credit, state tax credits (and accelerated/bonus depreciation for commercial systems). If a replacement PV system is needed, the PV system owner may no longer be in the same tax situation and may not be able to utilize the tax write off.

3.4 INCOME CAPITALIZATION APPROACH

The income approach is based on the idea that the value of a property is equal to the capitalized value of the net income stream generated by that property. Applying this approach to PV looks at what one may be willing to pay today for the opportunity to receive future cash flows using a discounted cash flow model. This model needs to adequately consider the present value of projected future energy production along with estimated operation and maintenance costs that are anticipated to occur during the solar module power production warranty timeframe.

The residential or commercial building owner or purchaser's weighted average cost of capital (WACC) is used along with a risk premium spread to determine a discount rate for the present value calculation. For residential properties, the purchaser's WACC is then calculated based off of a readably available benchmark interest rate such as the Fannie Mae or Freddie Mac 30 -year fixed rate 60 -day commitment (if the purchaser is using a 30 -year fixed rate purchase mortgage). Regardless of the benchmark chosen, for the purpose of this model it should closely mirror the cost of borrowing for the purchaser of the income stream.

Note: Although some states have eliminated real property taxes on renewable energy systems, as accurate valuations. become necessary for PV systems due to lending requirements, it might be easier to assign a value to the PV system if the Standard Test Condition (STC) kW size, along with the month and year of the installation is listed on the respective real property assessors website, just like other pertinent data which may be useful for appraisal purposes.

Using the income approach, a reasonable valuation can be arrived at through the observation of visible installed components and a review of the latest system performance test and installation documentation, including a digital shading analysis. This information should have been provided by the installing contractor to the original system owner after the system was successfully commissioned.

If a system performance test has not been performed within the past 12 months, and/or a digital shading analysis is not available, and the value of the system is critical, both should be performed by a trained and certified solar PV installer who works for a properly licensed contractor.

Currently there are two organizations that certify installers: The North American Board of Certified Energy Practitioners (NABCEP) has over 2100 certified solar PV installers nationwide. NOTE: NABCEP currently has 2 different certifications for the PV industry, Solar PV Installer'm and PV Technical Sales Professional ${ }^{T M N}$. www.nabcep.org

Underwriters Laboratory (UL), which certifies electricians through their UL University personal certification program. www.uluniversity.us

4. CALCULATING THE FUTURE ENERGY PRODUCTION

4.1 GRID-TIED SOLAR ELECTRIC (PV) SYSTEM BASICS

Abstract

First a word of caution - PV Systems can operate at lethal voltages approaching 600 volts or more and should only be accessed by qualified personnel such as a trained and certified solar PV installer who works for a properly licensed contractor.

A grid-tied PV system (without battery backup) usually consists of one or more modules which may be wired together in series or parallel to form an array which is then connected to an inverter. The modules convert sunlight energy into DC voltage, which must then be converted by a power conditioning unit (inverter) to the same AC voltage that is required at the point of use.

Solar PV systems are most often found mounted on a rooftop and may also occasionally be mounted on a ground rack or solar canopy. They are installed so that ideally the modules are tilted near the local latitude and if in the northern hemisphere oriented towards true south. To achieve the maximum potential annual energy production the modules also need to have unshaded access to the sun during the peak solar insolation (or peak sun hours) time of 9am to 3pm solar time.

It is important to note that two otherwise similar solar PV systems of equal size and cost that are installed at a different tilt and orientation from each other and which also have different amounts of shading, will not necessarily produce equal amounts of energy, and in some cases may have dramatically different annual energy production figures.

4.2 DIFFERENT TYPES OF SOLAR

The two photographs shown here outline some of the differences between solar PV and solar thermal. Typically a home will have either one or the other, though sometimes both solar PV and solar thermal will be present.

The example shown in the above photo is of a grid-tied solar electric (PV) system. PV module sizes vary and it is difficult to estimate the total system size in watts just by casual observation. This PV array consists of 11 PV modules rated at 230 watts STC each. (Photo Credit - Solar Power Electric ${ }^{\text {TM }}$)

This photo shows two other non-PV solar collector types, a solar pool heater in the bottom left and a solar domestic hot water heater in the upper right. Although the solar water heater in the upper right may look similar to the PV modules in the grid tied example, the copper tubing extending off the upper right and bottom left of the collector indicates that these are hot water collectors. (Photo Credit - The Leveredge)

4.3 TILT \& ORIENTATION FACTOR

The tilt angle of the modules with respect to the horizontal plane, along with the direction the array faces with respect to south (the orientation or azimuth) will also have an impact on the potential solar insolation available and is expressed as a tilt and orientation factor or TOF.

Tilt and orientation are expressed in degrees. For example if the PV modules are within the same plane as the roof surface and you have a roof pitch of $6 / 12$ the tilt angle would be expressed as a slope of 26.6°. The rooftop may or may not be facing true south. If the system is facing true south and you are in the northern hemisphere, true south would be expressed as an azimuth of 180°.

Roof Pitch	Tilt Angle (${ }^{\circ}$)
$1 / 12$	4.8
$2 / 12$	9.5
$3 / 12$	14.0
$4 / 12$	18.4
$5 / 12$	22.6
$6 / 12$	26.6
$7 / 12$	30.3
$8 / 12$	33.7
$9 / 12$	36.9
$10 / 12$	39.8
$11 / 12$	42.5

In the following example for Sarasota FL , in order to receive 100% of the available solar insolation the optimal tilt angle is 27° and for the azimuth it is 174°.

Using the above graph of annual insolation for Sarasota FL, an array installed with a tilt angle of $\mathbf{2 2 . 6}{ }^{\circ}$ (5/12 pitch) and an azimuth of 90° (east facing) would experience a loss of nearly 11% of the available solar insolation resulting in a TOF of 89%.

4.4 SHADING

Shading can be a critical factor in determining the potential energy output and may greatly affect the amount of solar insolation that the system receives. A proper digital shading analysis, including a sun graph showing any shading obstructions, should have been performed by the installing contractor before beginning the design and installation process, and should have been provided to the original system purchaser.

In the following examples using the Solmetric Suneye ${ }^{\text {TM }} 210$ digital shade analysis model, the TOF was set to 100% in order to determine the total effect of any shade obstructions.

Shading is referenced as a percent of total solar insolation available, so if 5% shading is observed then the percent of the total solar insolation available would be 95%.

Solar Access Graph with minimal visible shading (3\%) right at sunrise and sunset. Most of the shading in this photo is due to mature trees which were not on the surveyed property. The graphs are relatively easy to read with only half the months shown due to the overlapping nature of the spring and fall equinox. This photo was taken in December just after 12pm solar time. (Photo Credit - Solar Power Electric ${ }^{T M}$)

Solar Access Graph with shade starting at 1:30pm in the summer and $\mathbf{2 p m}$ in the winter and continuing through the rest of the day. The potential solar insolation in this example is reduced by nearly 30%. This will have a major impact on the potential energy production and must be accounted for in the valuation model. This photo was taken in March just after 8:00am solar time. (Photo Credit - Solar Power Electric ${ }^{\text {M }}$)

Solar Access Graph with minor shade in the winter months until 8:30am and again in the early afternoon between 3:30 and 4:00pm solar time. This is a panoramic shade graph taken with the Wiley Asset Shade Tool. (Photo Credit - Solar Power Electric ${ }^{\text {™ }}$)

4.5 DESIGN, PERMITTING \& INSTALLATION

The proper design, legal permitting, code compliant installation, and commissioning of a PV system by a properly trained, licensed and certified contractor and a final inspection by a local electrical inspector all play a key role in the long term success of the PV system and can have an impact on the future energy production.

Designing and installing a PV system can involve varying degrees of complexity depending on the size, local site limitations or other factors. However, determining if the PV system is designed or installed correctly is beyond the intent of this article.

A study commissioned by NYSERDA (McRae et al., 2008) found that, "The initial program PV installations of NABCEPcertified installers had fewer problems than those of noncertified installers."

Legal permitting and the inspection of PV systems is usually required and performed by the local municipality or Authority Having Jurisdiction (AHJ). It is important to verify that a permit has been issued and also that a final inspection has been passed before attempting to assign a value to an existing PV installation.

If a completed PV system is encountered that has not been properly permitted (if required by the AHJ) or was permitted but the final inspection has not been passed, the value may be suspect and/or difficult to determine - similar to any other unpermitted or unfinished major construction improvement project.

4.6 CALCULATING FUTURE ENERGY PRODUCTION

Although there are many reasons that one may choose for installing PV, the primary reason that most PV systems are installed is for the current value of the future solar energy kWh production.

That production can be accurately estimated using an equation that takes into account:

1) The average hourly solar radiation received at a specific location which is based on up to 30 years of measured data.
2) The hourly measured temperature for the same location.
3) The tilt and orientation factor (TOF) with respect to optimal.
4) Shading factor expressed as a fraction of total solar resource, ie. 95% would be shown as 0.95 .
5) And normal losses experienced in the conversion of $D C$ to $A C$ which are expressed as a derate factor.

There is a web based program called PVWatts ${ }^{\text {TM }}$ that can estimate the future solar energy production using a similar analysis model. The algorithm was initially developed by Sandia National Laboratories as PVFORM (Menicucci, 1985) and is now maintained by the National Renewable Energy Laboratory (NREL) and available online in two different versions:

Version 1 provides data from major cities throughout the U.S. to calculate the estimated energy production. ${ }^{1}$ Simply select the closest city to the location of the solar PV system. For example, In Punta Gorda, FL the closest city available would be Tampa.

Version 2 flex viewer uses satellite radiation data, and provides solar radiation estimates down to individual 40 by 40 kilometer cells. ${ }^{2}$ Simply enter the zip code that the solar electric system is located in and click "go," then click on "Send to PVWatts ${ }^{T M}$ " and it will pass the solar radiation data into the PVWatts ${ }^{T M}$ calculator for determining the first year energy production. This version improves accuracy compared to Version 1 due to its ability to provide data which is measured closer to location of the array.

A third version of PVWatts ${ }^{\text {TM }}$ is available within NREL's System Advisor Model (SAM) and is used in the valuation model spreadsheet. The main difference in this version is the use of the Perez et al. (2002) 10 kilometer satellite data, which can be accessed from NREL's Solar Power Prospector. ${ }^{3}$ In order to call PVWatts ${ }^{T M}$ within a spreadsheet, NREL's Developer Network web service is used to pass input values from the spreadsheet and return outputs such as first year energy production and electricity rates. Currently, PV Value ${ }^{\text {TM }}$ only

[^51]uses PVWatts ${ }^{\text {TM }}$ with the 10 kilometer satellite data through the web service.

The results from PVWatts ${ }^{T M}$ are considered for the purposes of this valuation tool a fairly accurate estimate for crystalline silicon modules, which currently make up the majority of installed residential and commercial solar electric systems. For systems using thin film modules, which have a different temperature coefficient factor, a calculation would need to be made to account for the difference between the standard temperature coefficient used in PVWATTS ${ }^{\text {TM }}$ of $-0.05 \% / C^{\circ}$ and the lower temperature coefficient of the specific thin film module. If the thin film modules are flush mounted, then a separate calculation for increased module temperatures would also need to be made. Currently, there is no standard way to do this with the version of PVWatts ${ }^{\text {TM }}$ accessed through PV Value ${ }^{T M}$.

Net metering is worth mentioning though it is not included in the valuation tool. If the utility offers net metering and the customer has a signed net metering agreement in place, then any excess energy which is produced but not used at the time can be distributed to the utility for later use. When production is lower than the customer's usage or nonexistent, such as at night, the excess energy previously distributed to the utility is used first and credit is given on a kWh per kWh basis.

4.7 MODULE DEGRADATION

It is well known within the solar industry that modules degrade with age starting from the first day of production. Although improvements have been made in the manufacturing process over the years, recent research by NREL (Jordan and Kurtz, 2011; Osterwald et al., 2006) demonstrate that the energy output of higher quality crystalline silicon modules degrade at rates of 0.1% to 0.9% per year, and currently for some thin film modules the rate of yearly degradation can be 1% or more.

Although this may not have a large effect on the first year of energy production, when calculated over the module warranty timeframe the cumulative effect of module degradation on lifetime energy production will be significant and needs to be factored into the valuation model.

Until more research data is available which justifies a lower annual degradation rate, a conservative valuation may factor in an annual degradation rate of 0.5% (Osterwald et al., 2006) for crystalline silicon and 1% for thin film modules. The calculation is cumulative so that for a crystalline silicon module during year 10, the module could be expected to produce at 95\% of its rated capacity. This is one area that a certified PV installer can assist the appraiser through a review of the system's condition at the time of appraisal compared with data provided from the original commissioning report.

4.8 UTILITY RATE ESCALATION PERCENT

In most areas of the country the retail rate charged by the local utility has been increasing steadily over much of the past decade. The rate of escalation in any location in the U.S. can be determined by obtaining at least the 20 year history from the Energy Information Agency's (EIA) "Average Price by State Provider, 1990-2010" and "Average Retail Price of Electricity to Ultimate Customers by End-Use Sector, by State - Table 5.6.B. ${ }^{\prime \prime}$ The history file lists the yearly residential, commercial and Industrial rates for each state in nominal terms.

YEAR	Residential	Commercial
1990	7.77	6.66
1991	7.91	6.77
1992	7.75	6.58
1993	7.99	6.69
1994	7.78	6.35
1995	7.82	6.39
1996	7.99	6.63
1997	8.08	6.62
1998	7.89	6.38
1999	7.73	6.22
2000	7.77	6.25
2001	8.59	7.08
2002	8.16	6.64
2003	8.55	7.13
2004	8.99	7.61
2005	9.62	8.16
2006	11.33	9.91
2007	11.22	9.75
2008	11.65	10.14

[^52]| 2009 | 12.30 | 10.86 |
| :---: | :---: | :---: |
| 2010 | 11.52 | 9.80 |
| | | |

Average retail rates of electricity for FL from the EIA website shown in c/kWh. Rates shown are through 2010.

Timeframe	Residential	Commercial
2 2 YR CAGR	1.99%	1.95%
10 YR CAGR	4.01%	4.60%
5 YR CAGR	3.67%	3.73%

20, 10 \& 5 year compound annual growth rate (CAGR) or escalation rate of retail rates in FL, calculated from the EIA website data.

As shown in the previous table, electric utility rates for this location in Florida have risen more over the past 5 to 10 years, and knowing that the percent of rate escalation will have a measurable impact on the present value of the future energy production (since we are performing a valuation based on 20,25 or 30 years of future energy production) it is generally not an acceptable practice to take the shorter term averages and extrapolate out for the long term for newer PV systems For an older PV system, version 1.1 has been changed to allow for an escalation rate calculation that matches the remaining PV module warranty lifetime.

In the valuation tool, the 1990 state average electricity rate and the most recent electricity rate as reported by the EIA are used in determining the Compound Annual Growth Rate (CAGR). For example, the escalation rate for a valuation performed now would use the time period of 1990 to 2011 (21 years) along with the CAGR equation as shown below. Version 1.1 of the tool has been modified so the CAGR calculation matches the remaining PV module warranty lifetime. For example, if the PV system being appraised today has 5 years of remaining warranty lifetime, the escalation rate is calculated between 2011 (the most recent EIA data from the time of this publication) and 2006.

$$
U E s c_{\text {rate }}=\frac{(\text { starting electricity rate })}{\left(\frac{1}{(\text { ending electricity rate })}\right.}^{\# \text { of years })}-1
$$

4.9 DISCOUNT RATE

The discount rate chosen will have an impact on the present value calculation and is based on the PV system purchasers WACC. The WACC for appraising a residential property can be calculated by using the Fannie Mae or Freddie Mac 15 or

30 year fixed rate 60 day commitment and the purchaser's basic investment rate of return during the estimated life of the project. This is to compensate for risk associated with owning the PV system, and is expressed as a basis point spread which is added to the debt interest rate. A custom discount rate can be entered for systems that are not tied to the Fannie Mae or Freddie Mac rates. For appraising commercial PV systems, the custom option is the only option available.

An important note about other instruments: Treasury yields are currently AAA rated by some rating agencies and assume no risk other than a rare catastrophic event. They are not used in this example to calculate a discount rate assumption on PV projects as they do not accurately reflect an available borrowing rate which is accessible to the PV system purchaser.

Risk spreads should be utilized in a way that accurately takes into account an acceptable investment rate of return along with adequate compensation for unforeseen risks associated with an investment in a PV system. Unforeseen risks can include accidental module breakage, windstorm damage, corrosion of or damage to electrical components requiring replacement, roof replacement requiring the PV system owner pay for removal and reinstallation of a roof mounted PV system. A range of 50 to 200 basis points is the default setting for this valuation tool to compensate for risk, with the average being 125 basis points. Once more data becomes available a detailed analysis will be performed to improve on this range.

4.10 OPERATION \& MAINTENANCE EXPENSES

PV systems require periodic maintenance that ranges from washing the dirt off of the modules during periods of minimal rain, to replacing the inverter if it fails after the warranty has expired. Although modern crystalline silicon modules have a standard 20, 25 or 30 year power warranties and sufficient data exists indicating continued performance over that timeframe, grid-tied inverters usually only have a 10 or 15 year warranty (though some are now offered at 25 years) and the potential for replacing the inverter after the warranty term has ended must be accounted for. Although the inverter rarely fails the day after the warranty expires, and some inverter models based on existing designs have data showing they can last up to $20+$ years if installed and
maintained properly, using a 15 year replacement cycle for the inverter and including labor charges in the cost can also be used to conservatively estimate the operation and maintenance expenses for residential and small commercial systems.

Note: some inverters with promising new designs have been introduced in recent years with warranty terms of 20 or even 25 years. It is currently unknown due to lack of manufacturer and inverter operating history if the inverter will last for the longer warranty period or if the manufacturers will still be in business to cover the longer warranty in the event of a failure during the warranty timeframe. Until more data becomes available a conservative approach entails taking the existing data with a 15 year timeframe for the replacement cycle on these newer inverters with a 20 or 25 year warranty.

O\&M expenses are usually figured on a cost per watt basis, with small PV systems (under 5 kW) and PV systems with micro-inverters or DC optimizers having a higher O\&M cost per watt than a medium sized residential or commercial PV system. Commercial PV systems larger than 100 kW that utilize central inverters can have an even lower replacement cost per watt.

System Size In kW	15 year O\&M cost per watt
$<5 \mathrm{~kW}$ and Microinverter	$75 \mathrm{c}+$
5 kW to 25 kW	55 c
25 kW to 100 kW	$50 ¢$
$>100 \mathrm{~kW}$	35 c

Estimated O\&M expenses for small to medium size systems based on current 2011 inverter and labor cost data from solar electric projects in FL.

O\&M expenses are figured using a present value calculation on a 15 year replacement cycle in year 16, so that the O\&M expense in year 16 on a 10 kW system would be $\$ 5,500.00$ for the replacement cycle, before the present value calculation is performed. Since the cost is incurred later and will be paid for with inflated dollars, the future O\&M expenses may be discounted using the chosen discount rate.

The model is built to use the range of $O \& M$ costs expressed in cents per watt in the above table. If the user has other information on these costs, there is an option to override the default values.

Note: Current estimates for O\&M expenses are expected to drop in the next few years as the Department of Energy's SunShot goals are met, with a goal of reducing the installed cost of solar energy systems by about 75%.

4.11 SALVAGE VALUE

The value of the components at the end of 20,25 or 30 years (the standard module warranty period) is similar to other rapidly advancing technologies which have reached the end of their warranty period, and although the PV system may continue to produce energy at a reduced rate for 40+ years (a bonus for the system owner at that time), electrical codes, efficiencies and manufacturing practices will have changed over the years. These factors combined with an expired warranty could render the technology obsolete. Currently there is no existing, reliable secondary market in place that can assign a value to mass produced $25+$ year old modules and inverters. In its absence, a scrap value of the components (metals) could be used. Since a present value calculation over20, 25 or 30 years must also be used against the scrap value, the end result adds very little to the valuation and therefore is not included in the model.

4.12 VALUATION MODEL FOR THE INCOME APPROACH

(© 2010 Solar Power Electric ${ }^{\text {M }}$)
The method of valuation for the income approach uses the present value of the future energy production from PVWatts ${ }^{T M}$. This is accomplished using the following formula for each year over the remaining life of the project:
$\left(\left(E_{k W h} *\right.\right.$ Deg $\left._{\text {rate }} * U_{\text {rate }} * U E s c_{\text {rate }} * D i s c_{\text {rate }}\right)-$ O\&Myr16* Discrate
$\mathrm{E}_{\mathrm{kwh}}$ - Annual Energy Output (kWh)
Degrate - Module Degradation rate (\%)
$\mathrm{U}_{\text {rate }}$ - Current Utility Rate ($\mathrm{c} / \mathrm{kWh}$)
UEsc ${ }_{\text {rate }}$ - Utility Escalation Rate (\%)
Disc $_{\text {rate }}$ - Discount Rate (\%)
O\& $\mathrm{M}_{\mathrm{yr} 16}$ - O\&M Expenses for year 16 (c)

The degradation rate is calculated starting in the first year, the utility rate escalation \% and the discount rate are calculated starting in the first month of year 2, and the O\&M expenses are calculated for year 16 only. If the appraisal is made in year 15 and beyond, an option comes up asking the
user whether the inverter has been replaced. If it has been replaced before the 15-year warranty period, the appraisal range of value estimate will be higher. If it has not been replaced within the 15 -year warranty period, the O\&M amount will then be discounted for the remaining warranty lifetime of the panels, which will result in a lower appraisal range of value estimate.

For example, if the solar electric system is 3 years old and the module warranty is for 25 years, the present value of the future energy production would be calculated for years 4 through year 25 to determine the total remaining value of future energy production, remembering to account for the first 3 years of module degradation in the calculation. If a recent custom derate factor is available which accounts for actual module degradation up to the current time frame, then in this example the first 3 years of module degradation would not need to be factored in.

5. EXCEL ${ }^{\circledR}$ SPREADSHEET INSTRUCTIONS

PV Value ${ }^{T M}$ - Photovoltaic Energy Valuation Tool v. 1.1
An Excel ${ }^{\circledR}$ spreadsheet has been created to perform the calculations used in the valuation model. Version 1.1 has the ability to be used in both Excel ${ }^{\circledR} 2011$ for Mac and Excel ${ }^{\circledR}$ 2007 and 2010 for Windows. No other spreadsheet programs or earlier versions of excel have been tested and therefore may not allow the spreadsheet to open or work property. A link for downloading the spreadsheet is provided in the resources section.

Note: due to the rounding of values in the spreadsheet, if you are checking the end result with a financial calculator you may experience a difference of a few cents per year.

You must have macros enabled, data connections allowed and internet access in order for the spreadsheet to function properly. User input cells are yellow, calculated value cells are green and user defined cells used to override calculated data are orange.

5.1 ANALYSIS TAB

Introduced in version 1.1 is the ability to state what type of PV system is being appraised, either residential or
commercial. Making this choice will give the user the ability to select what type of residential or commercial property is being appraised (only for record-keeping) and certain features will change to ensure the proper inputs are available and used in the estimate of value.

Selecting Residential allows the user to choose between the FNM 15- and 30-year 60-day commitment rates and a custom rate. The utility rate and escalation rate default to the residential calculations, which the user can override with a custom rate option.

Selecting Commercial gives the user only a custom rate option. The utility rate and escalation rate default to the commercial calculations, which the user can override with a custom rate option.

The choice between 'residential' and 'commercial' also impacts what can be seen for the net present value (NPV) calculation, which is described in more detail below.

Starting out with the solar resource calculation, you will see seven user input cells that will need to be defined in order to calculate the number of kWh's produced per year. The inputs are as follows:

Zip code - Where the PV system is located.

System size in watts - This is calculated at STC. A 5.06 kW array would be input as 5060 watts.

Derate Factor - The model defaults to 0.77, which is the same as the PVWatts ${ }^{\text {™ }}$ standard derate. However if direct shading is observed or if the value is critical, then it is recommended that a custom derate factor with a digital shading analysis be performed by a certified PV installer who is properly licensed. There is a space in the spreadsheet that allows entry of a Commissioning Report number, which will change the derate factor to a user input override cell. Entering this number into the spreadsheet verifies that a certified PV installer inspected the system to provide a custom derate factor.

Module degradation rate - This is defaulted to 0.5 and reflects a 0.5% annual degradation rate more common for crystalline systems. For thin-film PV, see the above section on appropriate degradation rates.

Array type - The choices are: fixed, 1-axis or 2-axis. Most PV installations are fixed and will not track the sun. If a tracker is encountered then the number of axis will need to be selected. 1-axis is typically east to west with the tilt angle fixed. 2-axis tracks east to west and also changes the tilt angle to where the direct component of the solar irradiance is perpendicular to the array at all times.

Array tilt - if left unchecked this will be calculated as the local latitude. The default setting is to have the box checked, however the user must check the box and input the actual module tilt to get an accurate calculation if the module tilt is known. If the module is mounted flat with no tilt, check the box and make sure the array tilt is set to 0.0 .

Array azimuth - this is defaulted to 180° or true south. Input the azimuth angle that the array faces. In some cases, the module will be a few degrees off of south so knowing the azimuth angle is important.

Click outside of the yellow cells and then on the button "Click to Calculate PV Production." This will call PVWatts ${ }^{\text {TM }}$ using the Perez (2002) model through the SAM interface as available at developer.nrel.gov You should now see kWh Produced/Year for the PV system.

NOTE: If any of these parameters are changed, don't forget to click the"Click to Calculate PV Production" button to ensure the energy production estimate is correct.

Discount rate - For residential properties, the discount rate calculation allows for either the current 15- or 30-year fixed rate 60-day commitment from Fannie Mae as the WACC along with a basis point calculation that accounts for an investment rate of return for the risk that is assumed through purchasing the income stream. If the magenta cell states "rate is out of date" click on "update FNM rate" and the discount rate will be automatically updated. The rates are not updated by Fannie Mae on the weekends and so an estimate on Saturday or Sunday will reflect the rate posted on the previous Friday. A custom rate option is also available for residential properties.

For estimating value for a commercial property, the FNM rates are hidden and only a custom option is available.

Utility rates - Under remaining inputs, the electricity rate data needs to be accounted for. This is done automatically by selecting either the residential or commercial averages as reported within PVWatts ${ }^{T M}$ and clicking on the "Current Utility Reported Electricity Rate." The current utility rate in $¢ / \mathrm{kWh}$ for the state the PV system is located in will be updated. The residential and commercial utility escalation rates can also be selected, and are calculated using the CAGR equation. As there are over 330 electric utilities nationwide and rates vary within each state, there is a user defined inputs option for ¢/kWh and utility escalation rates that will override the PVWatts ${ }^{T M}$ and EIA specific data if the rate is not current. If a user defined utility escalation rate is used, it is important to make that calculation as a CAGR before using as input to the model and not as an average annual growth rate. It is recommended to use the default escalation rate calculation. A source of information that can be used to determine current average utility rates is OpenEl.

O\&M expenses - The O\&M expenses are automatically calculated based on the PV system size in watts using inverter \& labor pricing data. If a different value is anticipated, then a user defined input is available. Select the checkbox and input the new value in whole cents per watt (c / W) and this will override the automatic calculation.

Added in version 1.1 is an option for a 20 year module warranty. Most module warranty terms will be for 25 years. However there are some manufacturers that offer 20 or 30 year terms. Select the term of the module warranty from the drop down box and input the PV system age in years.

If the age of the system is 15 years or greater, there is an option to select if the inverter has been replaced. If it has not been replaced then the eventual inverter replacement expense must be accounted for in the calculation.

Lease to purchase - There is an option to look at a Lease to Purchase, where the value can be calculated for the remaining energy in years after the lease is bought out, based on the module warranty period. This option does not currently account for the purchase price of the PV system. It is anticipated that a future version will have a more robust calculation for this scenario.

After all of the user defined data cells have been input correctly the present value of the expected lifetime energy production will be calculated as the "Appraisal Range of Value Estimate."

Average Net Present Value (Version 1.1)

On line 58, there is now an option to calculate the average net present value (NPV) for residential and commercial systems.

The NPV is the sum of all positive and negative cash flows which are discounted to the present value.

For the netting effect the negative initial cash flow is based on the prospective PV system purchaser's true cost once all tax credits, treasury grant, rebates, depreciation, bonus depreciation, taxes on rebate and loss of utility energy bill tax deductions (for commercial businesses) are factored in.

In order to calculate the initial cost, a basic understanding of Internal Revenue Code sections 25D, 48, and other sections that directly relate is necessary. Excerpts from the Internal Revenue Code as related to solar are presented in the appendix.

When the Residential radio button is selected, the user will see three boxes, the first having inputs for showing both the gross cost of the system and any applied rebates before determining the net cost using the current 30% investment tax credit. There are two methods shown for determining the average NPV, where essentially either state or federal income taxes are either paid or not paid on the rebate amount. If there is no rebate available, then the net cost will be the same. See excerpts from the Internal Revenue Code section 136 in the Appendix for more detail on IRS treatment of subsidies.

When the commercial radio button is selected, the user will see the input for showing both the gross cost of the system and any applied rebates as well as two other boxes that are not in the residential analysis area. These include the MARCS Half Year depreciation schedule; Also, there is a calculation of the average NPV based on the system cost inputs, tax rates, energy deduction loss and a DCF analysis of the depreciation schedule. The Energy Deduction Loss is based on IRC section 162(a) which allows a business to deduct the electricity
expense as a write off, though if they are generating that energy instead of purchasing it from the utility, the corresponding amount can no longer be treated as a write off.

About the Authors:

Jamie L. Johnson is the General Manager of Solar Power Electric ${ }^{\text {TM }}$, a FL state certified unlimited electrical contractor. He holds both NABCEP Certifications for Solar PV Installer ${ }^{\text {TM }}$ and PV Technical Sales Professional ${ }^{\mathrm{TM}}$. Mr. Johnson has over 15 years of experience in the financial services sector beginning his career with the IRS, and then spending over a decade working in the mortgage banking and asset management industry.

Geoffrey T. Klise is a staff member at Sandia National Laboratories in the Earth Systems Analysis Department. His research area involves providing system level analysis techniques to manage technical and policy related issues in solar energy technologies, biofuels, climate change and energy-water interactions.

5.2 RESOURCES \& REFERENCES

Dunlop J. (2007) Photovoltaic Systems. American Technical Publishers, Inc. www.jimdunlopsolar.com

EIA Average Retail Price of Electricity to Ultimate Customers by End-Use Sector, by State, Year-to-Date.
http://www.eia.doe.gov/cneaf/electricity/epa/average price state.xls
EIA Average Price by State by Provider, 1990-2010
http://www.eia.gov/electricity/monthly/excel/epmxlfile5 6 b.xls
Fannie Mae 15 year fixed rate 60 day commitment http://www.efanniemae.com/syndicated/documents/mbs/apeprices//archiv es/cur15.html

Fannie Mae 30 year fixed rate 60 day commitment http://www.efanniemae.com/syndicated/documents/mbs/apeprices//archiv es/cur30.html

Green MLS Tool Kit - http://greenthemls.org/index.cfm
Internal Revenue Service (IRS) Website - www.irs.gov
Internal Revenue Code Website
http://www.law.cornell.edu/uscode/usc sup 01 26.html

Jordan D.C. and S.R. Kurtz (2011) Photovoltaic Degradation Rates - an Analytical Review. Prog. Photovolt: Res. Appl. DOI: 10.1002/pip.1182.

McRae, M., D. Moran, J.S. Peters, C. Nemore, P. Gonzales and A Ferranti (2008) PV Workforce Development and the Market for Customer-Sited PV. Presented at ASES Solar 2008. San Diego, CA, May 3-8, 2008.

Menicucci, D.F. (1985) PVFORM - A New Approach to Photovoltaic System Performance Modeling, $18^{\text {th }}$ IEEE PVSC, Las Vegas, NV, October 21-25, 1985.

North American Board of Certified Energy Practitioners (NABCEP) www.nabcep.org

NREL's Renewable Energy Project Finance Tracking Initiative (REFTI) by Michael Mendelsohn SFA. https://financere.nrel.gov/finance/REFTI

NREL Solar Prospector - http://maps.nrel.gov/node/10/
OpenEI Utilities Gateway - http://en.openei.org/wiki/Gateway:Utilities
Osterwald C.R., J. Adelstein, J.A. del Cueto, B. Kroposki, D. Trudell and T. Moriarty (2006) Comparison of Degradation Rates of Individual Modules Held at Maximum Power. Report number NREL/PR-520-39844. Presented at the 2006 IEEE $4^{\text {th }}$ World Conference on Photovoltaic Energy Conversion, May 7 12, Waikoloa, HI.

Perez, R., P Ineichen, K. Moore, M Kmiecik, C Chain, R. George and F. Vignola (2002) A new operational model for satellite-derived irradiances: description and validation. Solar Energy, 73:307-317.

PV Value ${ }^{\text {TM }}$ - Photovoltaic Energy Valuation Model v. 1.1
http://pv.sandia.gov/pvvalue
http://pwalue.com
PVWatts ${ }^{\text {TM }}$ Version 1
http://rredc.nrel.gov/solar/calculators/PVWATTS/version1

PVWatts ${ }^{\text {TM }}$ Version 2
http://mapserve3.nrel.gov/PVWatts Viewer/index.html
Solmetric Suneye ${ }^{\text {TM }} 210$ Users Guide 2010 by Solmetric Corporation www.solmetric.com

Tilt \& Orientation Factor Graph by Solmetric Corporation http://www.solmetric.com/annualinsolation-us.html

Underwriters Laboratory UL University - www. uluniversity.us
Wiley ASSET Shade Tool - www.we-llc.com
Wikipedia - Financial references - www.wikipedia.org

APPENDIX

OTHER FINANCIAL ANALYSIS METHODS USED FOR SOLAR PV

INTERNAL RATE OF RETURN

An internal rate of return (IRR) calculation is related to the NPV calculation where the NPV equals zero and the discount rate at that point becomes the IRR. In general it is assumed that when comparing projects of equal duration and risk the project with the highest IRR should be chosen.

Caution should be used with comparing a PV project to other investment opportunities based solely on the IRR as a project with a large initial negative cash flow in the first year may produce a lower IRR compared to a project with a small initial negative cash flow. However, the project with the large initial negative cash flow may have a higher NPV upon reaching the end of its life cycle, and therefore a higher return in the number of dollars on capital invested.

There are issues associated with using IRR with a PV project. IRR assumes that the positive cash flow will be reinvested immediately at the IRR. This is often not the case since there is rarely another project with a comparable IRR waiting to be started on a monthly or annual basis.

Another issue is that with multiple negative cash flows during a project life such as with an inverter replacement cost during year 16, the IRR may return multiple values based on the negative and positive cash flows.

Due to this a modified internal rate of return might be a better approach for PV projects.

If a high IRR is the sole reason for choosing to invest in a PV project compared to investment vehicles with a low rate of return such as a certificate of deposit, then another look at the other financial analysis methods mentioned here may be warranted.

MODIFIED INTERNAL RATE OF RETURN

The modified internal rate of return (MIRR) is just that, a modified version of the IRR which resolves two of the issues mentioned previously regarding the IRR as it relates to PV projects. The first assumption is the potential for multiple rates of return due to multiple positive and negative cash flows, and second is the assumption that all positive cash flows will be reinvested at the stated IRR.

For example, in the case of a business that has a PV system installed with net metering, the positive cash flows may be in the form of a lowered utility bill which frees up cash flow to invest within the business. Rarely is the cash flow reinvested at the same rate of return as the IRR and in some cases the cash flow may simply be paid out to the business owner as a return of capital and reinvested in low risk, low rate of return investments.

In the modified version it is assumed that positive cash flows will be reinvested at a chosen fixed rate of return which is less than the MIRR, and negative cash flows are discounted to present value using the WACC, thereby producing a single rate of return which may more closely resemble purchaser's financial situation.

SIMPLE PAYBACK

The simple payback (SPB) is often used within the PV sales industry to calculate the time it takes for the purchaser of a PV system to recoup their original investment. This method of analysis has limitations that must be understood before being relied upon.

Simple payback is just that, it does not include a discounted cash flow model, nor does not take into account risk, lost opportunity costs, O\&M expenses, or module degradation. The assumed electricity cost per kWh is fixed during the payback period.

It is simply the initial upfront non-discounted net cost of the PV project divided by the annual fixed non-discounted cash flow (annual kWh times the fixed utility rate). The end result is displayed in years or fractional years.

Caution is warranted when using only a simple payback analysis on a PV project as the PV system owners actual payback in years will often take longer once all of the other financial considerations are taken into account.

MODIFIED PAYBACK

A case can be made for a modified payback analysis which would allow a prospective PV system purchaser to determine when they would recoup their original investment.

This modified payback or MPB would take into account many of the financial considerations that are excluded from the SPB model.

The MPB is fairly easy to calculate from the present value and NPV analysis results, it is the time in years it takes for the negative cash flow (as determined in the NPV and PV calculations) to be equaled by the present value of the positive cash flow.

This may produce multiple payback timeframes, since the initial investment may be recouped before the inverter is scheduled to be replaced. If this is the case, once the inverter is replaced a new investment cycle is started with a new payback timeframe determined. If the initial investment is not recouped before the inverter is replaced, then a single payback timeframe would be produced.

The MPB timeframe will often be considerably longer than the SPB timeframe. However, it should be a more accurate presentation of the prospective PV system purchaser's recoupment of their actual investment.

Prospective PV system purchasers may find that the cost to replace an old technology inverter near the end of the PV systems life cycle in a small number of cases may not make sense, and in fact it may make more sense financially to upgrade the entire PV system at that time using current technology as it is likely that efficiencies will have improved, costs will have come down and life cycle timeframes will most likely have been extended.

RETURN ON INVESTMENT

Return on investment or ROI is a return calculated in percentage terms on the total investment. It can be calculated over a single annual period or annualized over multiple years.

Sometimes it is also used in a more unconventional sense to show the total return over an investment timeframe. This unconventional use can be somewhat meaningless to an investor. For example if the total ROI is 50% that may sound like a great investment. However, if that total return is over a 30 year timeframe and has not been annualized, then that may not be considered by some as a great ROI.

ROI calculations are difficult to perform accurately when multiple positive or negative cash flows are involved during an annual time period. In the scenario where multiple positive or negative cash flows are involved then the MIRR may be more appropriate.

FINANCIAL MODEL SUMMARY

Some things simply can't be quantified into a financial model, such as when a business owner chooses to install a PV system so they can advertise that they are a green business and most or all of their electricity needs are met with PV, or when a homeowner installs a PV system in order to be the first home on their street to generate electricity from the sun.

There are other considerations such as what happens if the utility rates go up faster than the long term growth rates. If this happens then several of the financial models presented may underestimate the value or financial return to the PV system owner.

No financial model is perfect, and each model presented here does contain flaws. However when presented together, a more accurate picture will emerge and allow a prospective PV system purchaser to make better informed decisions.

INTERNAL REVENUE CODE SECTIONS RELATING TO SOLAR

Brief excerpts of the IRS notice(s) or IRC sections are shown, although readers are encouraged to visit the IRS website and read each section thoroughly in order to determine how each section applies to their individual situation.
"The following is not to be construed as tax advice, readers are advised to consult with their own legal and tax professionals"
NOTE: As of January 2012, the IRS has not issued official guidance for several of the IRC sections mentioned below.

RESIDENTIAL SECTIONS

Section 25D (from IRS Notice 2009-41) http://www.irs.gov/irb/2009-19 IRB/ar08.html
Section 25D provides a tax credit to individuals for residential energy efficient property. The amount of a taxpayer's section 25D credit for a taxable year beginning after December 31, 2008, is equal to 30 percent of the qualified solar electric property expenditures made by the taxpayer during the taxable year.

Qualified solar electric property expenditures are further defined as expenditures for property which uses solar energy to generate electricity for use in a qualifying dwelling unit.
A qualifying dwelling unit is defined as a dwelling unit that is located in the United States and is used as a residence by the taxpayer.
The notice further states that a taxpayer claiming a credit with respect to an expenditure, is responsible for determining whether the expenditure appropriately relates to a qualifying dwelling unit and cannot rely on a manufacturer's certification for that purpose.

Section 136 Energy Conservation Subsidies Provided by a Public Utility

Gross income shall not include the value of any subsidy provided (directly or indirectly) by a public utility to a customer for the purchase or installation of any energy conservation measure.

Notwithstanding any other provision of this subtitle, no deduction or credit shall be allowed for, or by reason of, any expenditure to the extent of the amount excluded under subsection (a) for any subsidy which was provided with respect to such expenditure. The adjusted basis of any property shall be reduced by the amount excluded under subsection (a) which was provided with respect to such property.

Energy conservation measure - In general for purposes of this section, the term "energy conservation measure" means any installation or modification primarily designed to reduce consumption of electricity or natural gas or to improve the management of energy demand with respect to a dwelling unit.

The term "dwelling unit" has the meaning given such term by section 280A(f)(1).

The term "public utility" means a person engaged in the sale of electricity or natural gas to residential, commercial, or industrial customers for use by such customers. For purposes of the preceding sentence, the term "person" includes the Federal Government, a State or local government or any political subdivision thereof, or any instrumentality of any of the foregoing.

Exception: This section shall not apply to any payment to or from a qualified cogeneration facility or qualifying small power production facility pursuant to section 210 of the Public Utility Regulatory Policy Act of 1978.

See IRS PLR2010350003 for more clarity. Note: Private letter rulings only apply to the taxpayer that requested the ruling and are not to be applied to or relied on by other taxpayers.

Section 280A(d)(1) Use as residence defined

In general for purposes of this section, a taxpayer uses a dwelling unit during the taxable year as a residence if he uses such unit (or portion thereof) for personal purposes for a number of days which exceeds the greater of 14 days, or 10 percent of the number of days during such year for which such unit is rented at a fair rental. A unit shall not be treated as rented at a fair rental for any day for which it is used for personal purposes.

Section 280A(d)(2) Personal use defined

For purposes of this section, the taxpayer shall be deemed to have used a dwelling unit for personal purposes for a day if, for any part of such day, the unit is used-
For personal purposes by the taxpayer or any other person who has an interest in such unit, or by any member of the family (as defined in section 267(c)(4)) of the taxpayer or such other person;

By any individual who uses the unit under an arrangement which enables the taxpayer to use some other dwelling unit (whether or not a rental is charged for the use of such other unit); or
By any individual (other than an employee with respect to whose use section 119 applies), unless for such day the dwelling unit is rented for a rental which, under the facts and circumstances, is fair rental.

Section 280A(f)(1) Dwelling unit defined

For purposes of this section, In general the term "dwelling unit" includes a house, apartment, condominium, mobile home, boat, or similar property, and all structures or other property appurtenant to such dwelling unit.
Exception the term "dwelling unit" does not include that portion of a unit which is used exclusively as a hotel, motel, inn, or similar establishment.

COMMERCIAL SECTIONS

Section 48(a) Business Investment Tax Credit (Energy Credit)

The energy credit for any taxable year is the energy percentage of the basis of each energy property placed in service during such taxable year. The energy percentage is 30 percent in the case of energy property but only with respect to periods ending before January 1, 2017.

The term "energy property" means any property which is equipment which uses solar energy to generate electricity. The construction, reconstruction, or erection of which is completed by the taxpayer, or which is acquired by the taxpayer if the original use of such property commences with the taxpayer, with respect to which depreciation (or amortization in lieu of depreciation) is allowable.

In the case of any property with respect to which the Secretary makes a grant under section 1603 of the American Recovery and Reinvestment Tax Act of 2009. No credit shall be determined under section 45 with respect to such property for the taxable year in which such grant is made or any subsequent taxable year.

Any such grant shall not be includible in the gross income of the taxpayer, but shall be taken into account in determining the basis of the property to which such grant relates, except that the basis of such property shall be reduced under section 50 (c) in the same manner as a credit allowed under subsection (a).

Section 50(c)(1) and (3)(a) Reduction in basis for credits and grants.
If a credit is determined under this subpart with respect to any property, the basis of such property shall be reduced by the amount of the credit so determined. Special rule - In the case of any energy credit-only 50 percent of such credit shall be taken into account.

Section 168 Accelerated Cost Recovery System (5 Year Accelerated Depreciation)(100\% and 50\% Bonus Depreciation)

Section 162(a) Trade or business expenses

In general there shall be allowed as a deduction all the ordinary and necessary expenses paid or incurred during the taxable year in carrying on any trade or business.

THE VALUE of GREEN LABELS in the California Housing Market

An Economic Analysis of the Impact of Green Labeling on the Sales Price of a Home

NILS KOK Maastricht University, Netherlands / University of California, Berkeley, CA MATTHEW E. KAHN University of California, Los Angeles, CA

NILS KOK

Nils Kok currently holds positions as a visiting scholar at the Goldman School of Public Policy at the University of California at Berkeley, and as associate professor in Finance and Real Estate at Maastricht University, the Netherlands. His research on the intersection of sustainability and finance in the real estate sector has been rewarded with several international grants and prizes, and has appeared in leading academic journals. He communicates his ideas and findings in the global arena as a frequent speaker at academic and industry conferences and actively shares his expertise through workshops with investment practitioners and policy-makers. Nils is also the co-founder of the Global Real Estate Sustainability Benchmark (GRESB), a premier investor-led initiative to assess the environmental and social performance of the global real estate investment industry. More information and blog at www.nilskok.com.
kok@haas.berkeley.edu

MATTHEW E. KAHN

Matthew E. Kahn is a professor at the UCLA Institute of the Environment, the Department of Economics, the Department of Public Policy, the UCLA Anderson School of Management and the UCLA School of Law. He is a research associate at the National Bureau of Economic Research. He holds a Ph.D. in economics from the University of Chicago. Before joining the UCLA faculty in January 2007, he taught at Columbia University and the Fletcher School at Tufts University. He has served as a visiting professor at Harvard and Stanford Universities. He is the author of Green Cities: Urban Growth and the Environment (Brookings Institution Press 2006) and the co-author of Heroes and Cowards: The Social Face of War (Princeton University Press 2008). He is the author of Climatopolis: How Our Cities Will Thrive in the Hotter World (Basic Books 2010). His research areas include environmental, urban, energy and real estate economics.
mkahn@ioe.ucla.edu

Financial support for this research has been provided by the San Francisco Department of the Environment and StopWaste.Org. Nils Kok is grateful for the financial support of the Netherlands Organization for Scientific Research (NWO). We thank the US Green Building Council and Build It Green for their generous supply of data. We are grateful to Kim Goodrich, Barry Hooper and Reuben Schwartz for their helpful comments. Owen Heary provided excellent research assistance. All errors pertain to the authors.

THE VALUE of GREEN LABELS in the California Housing Market

(1) EXECUTIVE SUMMARY
(3) INTRODUCTION
(6) METHOD AND

EMPIRICAL FRAMEWORI
(9) DATA
(14) RESULTS
(20) DISCUSSION \& CONCLUSIONS
(24) REFERENCES
(25) TABLES

Abstract

"The Value of Green Labels in the California Housing Market" is the first study to provide statistical evidence that, holding other factors constant, a green label on a single-family home in California provides a market premium compared to a comparable home without the label. The research also indicates that the price premium is influenced by local climate and environmental ideology. To reach these conclusions, researchers conducted an economic analysis of 1.6 million homes sold in California between 2007 and 2012, controlling for other variables known to influence home prices in order to isolate the added value of green home labels.

K EY FIN DIN G: Green Home Labels Add 9 Percent Price Premium

This study, conducted by economists at the University of California, Berkeley and University of California, Los Angeles, finds that California homes labeled by Energy Star, LEED for Homes and GreenPoint Rated sell for 9 percent more ($\pm 4 \%$) than comparable, non-labeled homes. Because real estate prices depend on a variety of factors, the study controlled for key variables that influence home prices including location, size, vintage, and the presence of major amenities such as swimming pools, views and air conditioning. Considering that the average sales price of a non-labeled home in California is $\$ 400,000$, the price premium for a certified green home translates into some $\$ 34,800$ more than the value of a comparable home nearby.

GREEN LABELED HOMES SELL AT HIGHER PRICES

A green label adds an average $\mathbf{9 \%}$ price premium to sale price versus other comparable homes.

NON-LABELED HOME
\$434,800

GREEN LABELED HOME

GREEN LABELS FOR HOMES

Green home labels such as Energy Star, LEED for Homes, and GreenPoint Rated have been established to verify and communicate to consumers that a home is designed and built to use energy efficiently. Green homes also provide benefits beyond energy savings, such as more comfortable and stable indoor temperatures and more healthful indoor air quality. LEED and GreenPoint Rated homes also feature efficient water use; sustainable, non-toxic building materials; and other features that reduce their impact on the environment, such as proximity to parks, shops and transit.

EXPLAINING THE GREEN PREMIUM

This study yields two key insights into the effect of green labels on property values, and why these effects can be so significant. This is especially important in light of the fact that the added value of a green-labeled home far exceeds both the estimated cost of adding energy efficiency features to a home and the utility-bill savings generated by those improvements. Clearly, other factors are in play in producing this premium:

- The results show that the resale premium associated with a green label varies considerably from region to region in California, and is highest in the areas with hotter climates. It is plausible that residents in these areas value green labels more due to the increased cost of keeping a home cool.
- The premium is also positively correlated to the environmental ideology of the area, as measured by the rate of registration of hybrid vehicles. In line with previous evidence on the private value of green product attributes, this correlation suggests that some homeowners may attribute value to intangible qualities associated with owning a green home, such as pride or perceived status.

RESEARCH METHODOLOGY

> The study, conducted by Matthew E. Kahn of UCLA and Nils Kok, visiting scholar at UC Berkeley and affiliated with Maastricht University in the Netherlands, examined all of the 1.6 million single-family homes sold between 2007 and 2012 in California. Of those homes, 4,321 were certified under Energy Star Version 2, GreenPoint Rated, or LEED for Homes. Seventy percent of the homes with a green label that were sold during this time period were new construction. The economic approach used, called "hedonic pricing analysis," controlled for a large number of variables that affect real estate pricing, such as vintage, size, location (by zip code) and the presence of major amenities (e.g., pools, views, and air conditioning). The findings of this study echo the results of previous research in the commercial real estate sector, which has found that green labels positively affect rents, vacancy rates and transaction prices for commercial space in office buildings.

RESEARCH QUESTIONS:

- Commercial real estate investors and tenants value "green" building features. Do homeowners?
- How much more value do green homes have?
- What factors influence the value
homeowners place on green or energy efficient homes? Hotter climate? Higher electricity prices? Environmental ideology?

(1) INTRODUCTION

Increased awareness of energy efficiency and its importance in the built environment have turned public attention to more efficient, green building. Indeed, previous research has documented that the inventory of certified green commercial space in the U.S. has increased dramatically since the introduction of rating schemes that attest to the energy efficiency or sustainability of commercial buildings (based on criteria published by the public and private institutions administering the rating schemes). Importantly, tenants and investors value the green features in such buildings. There is empirical evidence that green labels affect the financial performance of commercial office space: Piet Eichholtz et al. (2010) study commercial office buildings certified under the LEED program of the US Green Building Council (USGBC) and the Energy Star program of the EPA, documenting that these labels positively affect rents, vacancy rates and transaction prices.

Of course, private homeowners may be different from tenants and investors in commercial buildings, especially in the absence of standardized, publicly available information on the energy efficiency of homes. But in recent years, there has been an increase in the number of homes certified as energy efficient or sustainable based on national standards such as Energy Star and LEED and local standards such as GreenPoint Rated in

California. By obtaining verification from a third party that these homes are designed and built to use energy and other resources more efficiently than prescribed by building codes, homes with green labels are claimed to offer lower operational costs than conventional homes. In addition, it is claimed that owners of such homes enjoy ancillary benefits beyond energy savings, such as greater comfort levels and better indoor environmental quality. If consumers observe and capitalize these amenities, hedonic methods can be used to measure the price premium for such attributes, representing the valuation of the marginal buyer (Patrick L. Bajari and Lanier C. Benkard, 2005, Sherwin Rosen, 1974).

In the European Union, the introduction of energy labels, following the 2003 European Performance of Buildings Directive (EPBD), has provided single-family homebuyers with information about how observationally identical homes differ with respect to thermal efficiency. Presumably, heterogeneity in thermal efficiency affects electricity and gas consumption. The EU energy label seems to be quite effective in resolving the information asymmetry in understanding the energy efficiency of dwellings: Dirk Brounen and Nils Kok (2011) estimate hedonic pricing gradients for recently sold homes in the Netherlands and document that homes receiving an " A " grade in terms of energy efficiency sell for a 10 percent price premium. Conversely, dwellings that are labeled as inefficient transact for substantial discounts relative to otherwise comparable, standard homes.

We are not aware of any large sample studies the United States that have investigated the financial performance of green homes. There is some information on the capitalization of solar panels in home prices; one study based in California documents that homes with solar panels sell for roughly 3.5 percent more than comparable homes without solar panels (Samuel R. Dastrup et al., 2012). But unlike findings in previous research on the commercial real estate sector, there is a dearth of systematic evidence on the capitalization of energy efficiency and other sustainability-related amenities in asset prices of the residential building stock, leading to uncertainty among private investors and developers about whether and how much to invest in the construction and redevelopment of more efficient homes. ${ }^{1}$

This paper is the first to systematically address the impact of labels attesting to energy efficiency and other green features of single-family dwellings on the value of these homes as observed in the marketplace, providing evidence on the private returns to the investments in energy-efficient singlefamily dwellings, an increasingly important topic for the residential market in the U.S.

Using a sample of transactions in California, consisting of some 4,231 buildings certified by the USGBC, EPA, and a statewide rating agency, Build It Green, and a control sample of some 1.6 million non-certified homes, we relate transaction prices of these dwellings to their hedonic characteristics, controlling for geographic location and the time of the sale.

[^53]The results indicate the importance of a label attesting to the sustainability of a property in affecting the transaction price of recently constructed homes as observed in the marketplace, suggesting that an otherwise comparable dwelling with a green certification will transact for about 9 percent more.
The results are robust to the inclusion of a large set of control variables, such as dwelling vintage, size and the presence of amenities, although we cannot control for "unobservables," such as the prestige of the developer and the relative quality of durables installed in the home.

In addition to estimating the average effect, we test whether the price premium is higher for homes located in hotter climates and in electric utility districts featuring higher average residential electricity prices. Presumably, more efficient homes are more valuable in regions where climatic conditions demand more cooling, and where energy prices are higher. In line with evidence on the capitalization of energy efficiency in commercial buildings (Piet Eichholtz et al., in press), our results suggest that a label appears to add more value in hotter climates, where cooling expenses are likely to be a larger part of total
housing expenses. This provides some evidence on the rationality of consumers in appropriately capitalizing the benefits of more efficient homes.

We also test whether the price of certified homes is affected by consumer ideology, as measured by the percentage of hybrid registrations in the neighborhood. A desire to be environmentally conscious may increase the value of green homes because it is a tangible signal of environmental virtue (Steven E. Sexton and Alison L. Sexton, 2011), and an action a person can take in support of their environmental commitment. The results show that the green premium is positively related to the environmental ideology of the neighborhood; green homes located in areas with a higher fraction of hybrid registrations sell for higher prices. Some homeowners seem to attribute non-financial utility to a green label (and its underlying features), which is in line with previous evidence on the private value of green product attributes (Matthew E. Kahn, 2007).

The remainder of this paper is organized as follows: Section 2 describes the empirical framework and the econometric models. Section 3 discusses the data, which represent a unique combination of dwelling-level transaction data with detailed information on green labels that have been assigned to a subsample of the data. In Section 4, we provide the main results of the analysis. Section 5 provides a discussion and policy implications of the findings.

1.6 MILLION HOMES SOLD IN CALIFORNIA DURING THE STUDY PERIOD (control group)

4,231 CALIFORNIA HOMES SOLD
with a green label from Energy Star, GreenPoint Rated or LEED for Homes

An otherwise comparable home with a green certification transacts for 8.7% more (+/-4\%).

The green homes in our sample are mostly "production homes" and not high-end custom homes. Many large residential developers, such as KB Homes, are now constructing Energy Star and GreenPoint Rated homes.

METHOD AND

EMPIRICAL FRAMEWORK

Consider the determinants of the value of a single-family dwelling at a point in time as a bundle of residential services consumed by the household (John F. Kain and John M. Quigley, 1970). It is well-documented in the urban economics literature that the services available in the neighborhood, such as schools, public transport and other amenities, will explain a large fraction of the variation in price (see, for example, Joseph Gyourko et al., 1999). But of course, the dwelling's square footage, architecture and other structural attributes will also influence its value.

In addition to attributes included in standard asset pricing models explaining home prices, the thermal characteristics and other "sustainability" features of the dwelling may have an impact on the transaction price. These characteristics provide input, which combined with energy inputs, provide comfort (John M. Quigley and Daniel L. Rubinfield, 1989). However, the energy efficiency of homes (and their equipment) is often hard to observe, leading to information asymmetry between the seller and the buyer. In fact, homeowners typically have limited information on the efficiency of their own home; it has been documented that the "energy literacy" of resident households is quite low (Dirk Brounen et al., 2011). Indeed, recent evidence shows that providing feedback to private consumers with respect to their energy consumption is a simple, but effective "nudge" to improve their energy efficiency (Hunt Allcott, 2011).

To resolve the information asymmetry in energy efficiency, and also in related green attributes, energy labels and green certificates have been introduced in commercial and residential real estate markets. The labels can be viewed as an additional step to enhance the transparency of resource consumption in the real estate sector. Such information provision may enable private investors to take sustainability into account when making housing decisions, reducing costly economic research (Robert W. Gilmer, 1989). From an economic perspective, the labels should have financial utility for prospective homeowners, as the savings resulting from purchasing a more efficient home may result in lower operating costs during the economic life, or less exposure to utility cost escalation over time. ${ }^{2}$ In addition, similar to a high quality "view," various attributes of homes, such as durability or thermal comfort, may not provide a direct cash flow benefit, but may still be monetized in sales transactions.

To empirically test this hypothesis, we relate the logarithm of the transaction price to the hedonic characteristics of single-family homes, controlling precisely for the variations in the measured and unmeasured characteristics of rated buildings and the nearby control dwellings, by estimating:
(1) $\log \left(R_{i j l}\right)=\alpha$ green $_{i t}+\beta X_{t}+\gamma_{j t}+\varepsilon_{i j t}$

In this formulation, $R_{j j t}$ is the home's sales price commanded by dwelling i in cluster j in quarter $t ; X$ is the set of hedonic characteristics of building i, and $\varepsilon_{u t}$ is an error term. To control more precisely for locational effects, we include a set of dummy variables, one for each of the j zip codes. These zip-code-fixed effects account for cross-area differences in local public goods such as weather, crime, neighborhood demographics and school quality. To capture the time-variance in local price dynamics, we interact zip-codefixed effects with year/month indicators; the transaction prices of homes are thus allowed to vary by each month during the time period, in each specific location. This rich set of fixed effects allows for local housing market trends and captures the value of time-varying local public goods, such as crime dynamics or the growth or decline of a nearby employment district. green, is a dummy variable with a value of one if dwelling i is rated by the EPA, USGBC or Build It Green, and zero otherwise. $\alpha, \beta, \gamma_{t t}$ are estimated coefficients. α is thus the average premium, in percent, estimated for a labeled building relative to those observationally similar buildings in its geographic cluster-the zip code. Standard errors are clustered at the zip code level to control for spatial autocorrelation in prices within zip codes.

[^54]In a second set of estimates, we include in equation (1) additional interaction terms where we interact "green" with a vector of locational attributes:

$$
\text { (2) } \log \left(R_{i j l}\right)=\alpha_{o} \text { green }_{i t}+\alpha_{1} \text { N green }_{i t}+\beta X_{i}+\gamma_{j t}+\varepsilon_{i j t}
$$

We estimate equation (2) to study whether the "green label" premium varies with key observables such as climatic conditions and local electricity prices. ${ }^{3}$ We posit that green homes will be more valuable in areas that experience more hot days and areas where electricity prices are high. Presumably, the present value of future energy savings is highest in those regions, which should be reflected in the valve attributed to the "green" indicator.

A second interaction effect addressed in this study is whether the capitalization effect of green labels is larger in communities that reveal a preference for "green products." A desire to appear environmentally conscious or to act on one's environmental values may increase the financial value of "green" homes because it is a signal of environmental virtue. ${ }^{4}$ Our proxy for
environmental idealism is the Toyota Prius share of registered vehicles in the zip code (these data are from the year 2007). ${ }^{5}$ Last, we test for whether the green home premium differs over the business cycle. The recent sharp recession offers significant variation in demand for real assets, which may affect the willingness to pay for energy efficiency and other green attributes.

Anecdotally, we know that the green homes in our sample are mostly "production homes" and not high-end custom homes-many large residential developers, such as KB Homes, are now constructing Energy Star and GreenPoint Rated homes. But, it is important to note that we do not have further information on the characteristics of the developers of "green" homes and conventional homes. Therefore, we cannot control for the possibility that some developers choose to systematically bundle green attributes with other amenities, such more valuable appliances in green homes or a higher-quality finishing. We assume that such unobservables are not systematically correlated with green labels. Otherwise, we would overestimate the effects of "green" on housing prices.

[^55]
(3) DATA

A. Green Homes: Measurements and Data Sources

In the U.S., there are multiple programs that encourage the development of energy efficient and sustainable dwellings through systems of ratings to designate and publicize exemplary buildings. These labels are asset ratings: snapshots in time that quantify the thermal and other sustainability characteristics of the building and predict its energy performance through energy modeling. They neither measure actual performance, nor take occupant behavior into account. The Energy Star program, jointly sponsored by the U.S. Environmental Protection Agency and the U.S. Department of Energy, is intended to identify and promote energy-efficient products, appliances, and buildings. The Energy Star label was first offered for residential buildings in 1995. ${ }^{6}$

The Energy Star label is an asset rating touted as a vehicle for reducing operational costs in heating, cooling, and water-delivering in homes, with conservation claims in the range of 20 to 30 percent, or $\$ 200$ to $\$ 400$ in annual savings. In addition, it is claimed that the label improves comfort by sealing leaks, reducing indoor humidity and creating a quieter environment. But the Energy Star label is also marketed as a commitment to conservation and environmental stewardship, reducing air pollution.

In a parallel effort, the US Green Building

[^56]Council, a private non-profit organization, has developed the LEED (Leadership in Energy and Environmental Design) green building rating system to encourage the "adoption of sustainable green building and development practices." Since adoption in 1999, separate standards have been applied to new buildings and to existing structures.

The LEED label requires sustainability performance in areas beyond energy use, and the requirements for certification of LEED buildings are substantially more complex than those for the award of an Energy Star rating. The certification process for homes measures six distinct components of sustainability: sustainable sites, water efficiency, materials and resources, indoor environmental quality, innovation, as well as energy performance. Additional points can be obtained for location and linkages, and awareness and education.?

Whereas LEED ratings for commercial (office) space have diffused quite rapidly over the past 10 years (see Nils Kok et al., 2011, for a discussion), the LEED for Homes rating began in pilot form only in 2005, and it was fully balloted as a rating system in January 2008.

It is claimed that LEED-certified dwellings

 reduce expenses on energy and water, have increased asset values, and that they provide healthier and safer environments for occupants. It is also noted that the award of a LEED designation "demonstrate[s] an owner's commitment to environmental stewardship and social responsibility."In addition to these national programs intended for designating exemplary performance in the energy efficiency and sustainability of (singlefamily) homes, some labeling initiatives have emerged at the city or state level. In California, the most widely adopted of these is GreenPoint Rated, developed by Build It Green, a non-profit organization whose mission is to promote healthy, energy- and resource-efficient homes in California.

The GreenPoint Rated scheme is comparable to LEED for Homes, including multiple components of "sustainability" in the rating process, with minimum rating requirements for energy, water, indoor air quality, and resource conservation. Importantly, the GreenPoint Rated scheme is available not just for newly constructed homes, but it is applicable to homes of all vintages. The label is marketed as "a recognizable, independent seal of approval that verifies a home has been built or remodeled according to proven green standards." Comparable to other green rating schemes, proponents claim that a GreenPoint rating can improve property values at the time of sale.

[^57]
B. Data on Homes Prices and Their Determinants

We obtain information on LEED-rated homes and GreenPoint Rated homes using internal documentation provided by the USGBC and Build It Green, respectively. Energy-Star-rated homes are identified by street address in files available from local Energy Star rating agencies. We focus our analysis on the economically most important state of California, covering the 2007-2012 time period.

The number of homes rated by the green schemes is still rather limited $-4,921$ single-family homes rated with GreenPoint Rated and 489 homes rated with LEED for Homes (as of January 2012). The number of homes that obtained an Energy Star label is claimed to be substantially larger, but we note that data on Energy Star Version 1 has not been documented, and information on homes certified under Energy Star Version 2 is not stored in a central database at the federal level. Therefore, we have to rely on information provided by consultants who conduct Energy Star inspections. We obtained details on 4,938 single-family dwellings that have been labeled under the Energy Star Version 2 program.

We matched the addresses of the buildings rated in these three programs as of January 2012 to the single-family residential dwellings identified in the archives maintained by DataQuick. The DataQuick service and the data files maintained by DataQuick are advertised as a "robust national property database and analytic expertise to deliver innovative solutions for any company participating in the real estate market." Our initial match yielded 8,243 certified single-family dwellings for which an assessed value or transaction price, and dwelling characteristics could be identified in the DataQuick files; of those homes, 4,231 transacted during the sample period.

[^58]Figure 1 shows the geographic distribution of the certified homes in our sample. There is a clustering of green rated homes in certain areas, such as the Los Angeles region and the San Francisco region. The geographic distribution is correlated with higher incomes (e.g., in the San Francisco Bay Area), but also with higher levels of construction activity in recent years (e.g., in the Central Valley). As shown by the maps, in the case of Los Angeles, many of the "green label" homes are built in the hotter eastern part of the metropolitan area. It is important to note that there is little new construction in older, richer cities such as Berkeley and Santa Monica (Matthew E. Kahn, 2011). This means that it is likely to be the case that there will be few singlefamily "green homes" built in such areas.

FIGURE 1.
Certified Homes in California (2007-2012)

N

San Francisco Bay Area

Grealer Los Angeies Area

Sources: Build It Green, EPA, and USGBC

GEOGRAPHIC DISTRIBUTION of

GREEN-LABELED HOMES is correlated with

- Higher incomes (e.g., San Francisco Bay Area)
- Higher levels of construction activity (e.g., Central Valley)
- Hotter local climate (e.g., inland areas around Los Angeles and Central Valley)

HEDONIC VARIABLES CONSIDERED:

$$
\begin{array}{ll}
\text { size } & \text { - garage } \\
\text { quality } & \text { - swimming pool } \\
\text { number of bedrooms } & \text { - air conditioning } \\
\text { renovations } & \text { - view }
\end{array}
$$

To investigate the effect of energy efficiency and sustainability on values of dwellings as observed in the market, we also collect information on all non-certified single-family dwellings that transacted during the same time period, in the same geography. In total, there are nearly 1.6 million dwellings in our sample of green buildings and control buildings with hedonic and financial data.

Besides basic hedonic characteristics, such as vintage, size and presence of amenities, we also have information on the time of sale. Clearly, during the time period that we study, many homes in our geography were sold due to financial distress (i.e., foreclosure or mortgage delinquency). This, of course, has implications for the transaction value of homes (John Y. Campbell et al., 2011). We therefore create an indicator for a "distressed" sale, based on information provided by DataQuick.

We also collect data on environmental ideology, proxied by the registration share of Prius vehicles in each zip code. ${ }^{10}$ Local climatic conditions are assessed by the total annual cooling degree days at the nearest weather station (measured by the longitude and latitude of each dwelling and each weather station) during the year of sale. ${ }^{11}$ Information on electricity prices is collected at the zip code level. ${ }^{12}$

C. Descriptive Statistics

Table 1 summarizes the information available on the samples of certified and non-certified dwellings. The table reports the means and standard deviations for a number of hedonic characteristics of green buildings and control buildings, including their size, quality, and number of bedrooms, as well as indexes for building renovation, the presence of on-site amenities (such as a garage or carport, swimming pool, or presence of cooling equipment), and the presence of a "good" view. ${ }^{13}$

Simple, non-parametric comparisons between the samples of certified and non-certified homes show that transaction prices of green homes are higher by about $\$ 45,000$, but of course, this ignores any observable differences between the two samples. Indeed, green homes are much younger-70 percent of the dwellings in the green sample have been constructed during the last five years.

More than two-thirds of the stock of green homes are those certified by Energy Star, but there is substantial overlap among the green certifications-about 20 percent of the green homes have multiple labels.

[^59]
4. RESULTS

Table 2 presents the results of a basic regression model relating transaction prices of single-family dwellings to their observable characteristics and a green rating. Zip-code-fixed effects account for cross-area differences in local public goods, such as weather, crime, neighborhood demographics and school quality. The analysis is based upon more than 1.6 million observations on rated and unrated dwellings. Results are presented for ordinary least squares regression models, with errors clustered at the zip code level. Coefficients for the individual location clusters and the time-fixed effects are not presented.

Column 1 reports a basic model, including some hedonic features: dwelling size in thousands of square feet, the number of bed and bathrooms, and the presence of a garage or carport. We also include zip-year/month fixed effects. The model explains about 85 percent of the variation in the natural logarithm of home prices.

Larger homes command higher prices; 1,000 square feet increase in total dwelling size (corresponding to an increase of about 50 percent in the size of typical home) leads to a 31 percent higher transaction price. Controlling for dwelling size, an additional bathroom adds about 10 percent to the value of a home, and a garage yields about 6 percent, on average.

In column 2, we add a vector of vintage indicators to the model. Relative to homes constructed more than 50 years ago (the omitted variable), recently developed homes fetch significantly higher prices. The relation between vintage and price is negative, but homes constructed during the 1960-1980 period seem to transact at prices similar to very old ("historic") homes. Renovation of dwellings is capitalized in the selling prices, although the effect is small; prices of renovated homes are just one percent higher. ${ }^{14}$

[^60]Column 3 includes a selection of dwelling amenities in the model. The results show that homes that were sold as "distressed," for example following mortgage default, transact at a discount of 16 percent, on average. The presence of a swimming pool, cooling system or a "view" contributes significantly to home prices.

Importantly, holding all hedonic characteristics of the dwellings constant, column 4 shows that a single-family dwelling with a LEED, GreenPoint Rated or Energy Star certificate transacts at a premium of 12 percent, on average. This result holds while controlling specifically for all
the observable characteristics of dwellings in our sample. The green premium is quite close to what has been documented for properties certified as efficient under the European energy labeling scheme. A sample of 32,000 homes classified with an energy label " A " transacted for about 10 percent more as compared to standard homes (Dirk Brounen and Nils Kok, 2011). In the commercial property market, green premiums have been documented to be slightly higher about 16 percent (Piet Eichholtz, et al., 2010).

A. Robustness Checks

In Table 3, the green rating is disaggregated into three components: an Energy Star label, a LEED certification, and a GreenPoint Rated label. The (unreported) coefficients of the other variables are unaffected when the green rating is disaggregated into these component categories. The estimated coefficient for the Energy Star rating indicates a premium of 14.5 percent. The GreenPoint Rated and LEED rating are associated with insignificantly higher transaction prices. Energy efficiency is an important underlying determinant of the increased values for green certified dwellings. ${ }^{15}$ But of course, sample sizes for homes certified under the alternative rating schemes are quite limited, and just a small fraction of those homes transacted over the past years. An alternative explanation for the lack of significant results for the GreenPoint Rated and LEED schemes is the still limited recognition of those "brands" in the marketplace ${ }^{16}$

The downturn in housing markets and the subsequent decrease in transaction prices may also have an impact on the willingness to pay for more efficient, green homes. It has been documented that prices are more procyclical for durables and luxuries as compared to prices of necessities and nondurables (see Mark Bils and Peter J. Klenow, 1998). To control for the time-variation in the value attributed to green, we include interaction terms of year-fixed effects and the green indicator in column 4. When interaction terms of year-fixed effects are included in the model (the years 2007 and 2012 are omitted due to the lack of a sufficient number of observations in those years), we document substantial variation in the premium for green dwellings over the sample period.

[^61]In the first years of the sample, labeled homes sold for a discount, albeit insignificantly (which may be related to the lack of demand for newly constructed homes during that time period), whereas the premium is large and significant in later years. The parallel with the business cycle suggests that, among private homeowners, demand for green is lower in recessions, but increases as the economy accelerates. This is contrasting evidence for the commercial market: It has been documented that green-certified office buildings experienced rental decreases similar to conventional office buildings during the most recent downturn in the economy (Eichholtz et al., in press).

As noted in Table 1, most homes certified by one of three rating schemes have been construced quite recently - some 70 percent of the green homes were constructed less than six years ago. Recognizing this point, we seek a similar control sample of non-certified single-family transactions, restricting the analysis to dwellings that are five years old or younger. ${ }^{1 ?}$

Table 4 presents the results of this simple robustness check. Control variables, location-fixed effects and time-fixed effects are again omitted. The results presented in Table 4 are not consistently different from the results in Table 3, but the green premium is slightly lower: On average, green-rated homes that were constructed during the last five years transact at a premium of some 9 percent. The Energy Star label is significantly different from zero. We note that the estimated coefficient for the LEED rating indicates a premium of some 10 percent in transaction prices, but this is not statistically significant at conventional levels.

[^62]
B. Testing for Heterogeneity in "Green Label" Capitalization

As demonstrated in the statistical models reported in Tables 2-4, there is a statistically significant and rather large premium in the market value for green-certified homes. The statistical analysis does not identify the source of this premium, or the extent to which the signal about energy efficiency is important relative to the other potential signals provided by a building of sufficient quality to earn a label. Of course, the estimates provide a common percentage premium in value for all rated dwellings. But the value of green certification may be influenced by factors related to the location of homes: Figure 1 suggests that the distribution of green-rated dwellings is not random within urban areas in California, and this may affect the geographic variation in the value increment estimated for green-certified homes. For example, non-financial utility attributed to green certification may be higher for environmentally conscious households (comparable to the choice for solar panels, see Samuel R. Dastrup et al., 2012, for a discussion) or in areas where such homes are clustered (This peer effect is referred to as "conspicuous conservation" in a recent paper by Steven E. Sexton and Alison L. Sexton, 2011).

But, the financial utility of more efficient homes may also be affected by other factors related to the location of a dwelling. The financial benefits of a more efficient home should increase with the temperature of a given location, keeping all other things constant. (Presumably, more energy is needed for the heating of dwellings in areas with more heating degree days, and more energy is needed for the cooling of buildings in areas with more cooling degree days.) To test this hypothesis, we interact the green indicator with information on cooling degree days for each dwelling in the transaction year, based on the nearest weather station in the database of the National Oceanic and Atmospheric Administration (NOAA). Similarly, in areas with higher electricity costs, the return on energy efficiency should be higher. We therefore interact the climate variable with information on the retail price of electricity in the electric utility service area.

KEY FINDING

Homeowners in areas with a hotter climates are

willing to pay more for a green, energy-efficient home.

Table 5 presents a set of models that include a proxy for ideology, green home density, climatic conditions and local electricity prices. In this part of the analysis, we seek to (at least partially) distinguish the effects of the energysaving aspect of the rating from other, intangible effects of the label itself. The results in column 1 show that more efficient homes located in

There is a statistically significant premium in the market value for of green-certified homes.

hotter climates (e.g., the Central Valley) are more valuable as compared to labeled homes constructed in more moderate climates (e.g., the coastal region). At the mean temperature level (6,680 cooling degree days), the green premium equals about 10 percent. But for
every 1000 cooling degree day increase, the premium for certified homes increases by 1.3 percent, keeping all other things constant. This result suggests that private homeowners living in areas where cooling loads are higher are willing to pay more for the energy efficiency of their dwellings. ${ }^{18}$

In column 2, we add an interaction of climatic conditions with local electricity prices. (In models 2-4, we control for location using county-fixed effects.) Presumably, energy savings are more valuable if the price of electricity per kWh is higher. However, our results do not show a difference in the capitalization of energy savings between consumers paying high rates (the maximum rate in our sample equals 0.27 cent $/ \mathrm{kWh}$) and those paying lower rates (the minimum rate in our sample equals 0.07 cent/kWh). This may be because the true driver of consumer behavior is their overall energy outlay rather than the unit cost per kWh .

[^63]
Homeowners in environmentally-conscious communities place a higher value on homes with a green label.

In Column 3, we include the share of Prius registrations for each zip code in the sample, interacted with the indicator for green certification. Quite clearly, the capitalization of green varies substantially by heterogeneity in environmental idealism: In areas with higher concentrations of hybrid vehicle registrations, the value attributed to the green certification is higher. These results on the larger capitalization effect of green homes in more environmentally conscious communities are consistent with empirical work on solar panels (Samuel R. Dastrup, et al., 2012) and theoretical work on the higher likelihood for the private provision of public goods by environmentalists (Matthew J. Kotchen, 2006).

In column 4, we include a variable for the "density" of green homes in a given street and zip code, and built by the same developer. One could argue that in areas with a larger fraction of green homes, there is a higher value attributed to such amenity by the local residents. Households who purchase a home on this street know that their neighbors also will be living in a green home and this will create a type of Tiebout sorting as those who want to live
near other environmentalists will be willing to pay more to live there. In this sense, the "green label" density acts as a co-ordination device. However, competition in the share of green homes in a given neighborhood may also negatively affect the willingness to pay for green, as such feature is becoming a commodity (see Andrea Chegut et al., 2011, for a discussion).

When including the density indicator, the point estimate for green certification does not change significantly, but the coefficient on green home density is pointing to a negative relation between the intensity of local green development and the transaction increment paid for green homes. This finding is not significant, but the sign of the coefficient is in line with evidence on green building competition in the UK. As more labeled homes are constructed, the marginal effect relative to other green homes becomes smaller, even though the average effect, relative to nongreen homes, remains positive.

KEY FINDING

No evidence that homeowners in areas with higher

 electricity prices are willing to pay more for a green, energy-efficient home.
DISCUSSION \& CONCLUSIONS

The economic significance of the green premium documented for labeled homes is quite substantial. Considering that the average transaction price of a non-labeled home equals $\$ 400,000$ (see Table 1), the incremental value of 9 percent for a certified dwelling translates into some $\$ 34,800$ more than the value of a comparable dwelling nearby.

Of course, this raises the issue of relative input costs. The increment in construction costs of more efficient, green homes is open to popular debate, and there is a lack of consistent and systematic evidence. Anecdotally, a recent industry report shows that estimated cost to reach a modeled energy efficiency level of 15 percent above California's 2008 energy code is between $\$ 1,600$ and $\$ 2,400$ for a typical 2,000 sq. ft. dwelling, depending on the climate zone. To reach a modeled energy efficiency level of some 35 percent above the 2008 code, estimated costs range from $\$ 4,100$ to $\$ 10,000$ for a typical 2,000 sq. ft . dwelling, again depending on the climate zone. ${ }^{19}$ (Some of these costs are offset by incentives, and it is estimated that about onethird of the costs could be compensated for by rebates.) These admittedly rough estimates suggest that the capitalization of energy efficiency features in the transaction price (about $\$ 35,000$) far exceeds the input cost for the developer (about \$10,000, at most).

[^64]From the perspective of a homeowner, the benefits of purchasing a labeled home, or of "greening" an existing dwelling, include direct cost savings during tenure in the home. Indeed, we document some consumer rationality in pricing the benefits of more efficient homes, as reflected in the positive relation between cooling degree days in a given geography and the premium rewarded to a certified home. Presumably, the capitalization of the label should at least reflect the present value of future energy savings. Considering that the typical utility bill for single-family homes in California equals approximately $\$ 200$ per month, and savings in a more efficient home are expected to yield a 30 percent reduction in energy costs, the annual dollar value of savings for a typical consumer is some $\$ 720$. Compared to the increment for green-labeled homes documented in this paper, that implies a simple payback period of some 48 years.

Quite clearly, there are other (unobservable) features of green homes that add value for consumers. This may include savings on resources other than energy, such as water, but the financial materiality of these savings is relatively small. However, there are also other, intangible benefits of more efficient homes, such as better insulation, reducing draft, and more advanced ventilation systems, which enhance indoor air quality. These ancillary benefits may be appealing to consumers through the comfort and health benefits they provide.

The results documented in this paper also show that the premium in transaction price associated with a green label varies considerably across geographies. The premium is positively related to the environmental ideology of the neighborhood. In line with previous evidence on the private value of green product attributes, some homeowners seem to attribute non-financial utility to a green label (and its underlying features), explaining part of the premium paid for green homes.

B. Conclusion

Buildings are among the largest consumers of natural resources, and increasing their energy efficiency can thus play a significant role towards achieving cost savings for private consumers and corporate organizations, and can be an important step in realizing global carbon reduction goals. With these objectives in mind, an ongoing effort has sought to certify buildings that have been constructed more efficiently. Considering the lack of "energy literacy" among private consumers, if homebuyers are unaware of a building's steady state (modeled) energy consumption, then they will most likely not appropriately capitalize energy savings in more efficient dwellings.

Comparable to evidence

 documented for the commercial sector in the U.S., and for the residential sector in Europe, the results in this paper provide the first evidence on the importance of publicly providing information about the energy efficiency and "sustainability" of structures in affecting consumer choice.Green homes transact for significantly higher prices as compared to other recently constructed homes that lack sustainability attributes. This is important information for residential developers and for private homeowners: Energy efficiency and other green features are capitalized in the selling price of homes.

We note that the green homes in our sample are not high-end, custom homes, but rather "production homes" built by large developers. From the developer's perspective, there are likely to be economies of scale from producing green homes in the same geographic area. If green communities command a price premium and developers enjoy cost savings from producing multiple homes featuring similar attributes, then for-profit developers will be increasingly likely to build such complexes. This has implications for the green premium, as the marginal effect relative to other green homes becomes smaller.

The findings in this paper also have some implications for policy makers. Information on the energy efficiency of homes in the U.S. residential market is currently provided just for exemplary dwellings. ${ }^{20}$ The mandatory disclosure of such information for all homes could further consumers' understanding of the energy efficiency of their (prospective) residence, thereby reducing the information asymmetry that is presumably an important explanation for the energy-efficiency gap.

An effective and cheap market signal may trigger investments in the efficiency of the building stock, with positive externality effects as a result.

Of course, we cannot disentangle the energy savings required to obtain a label from the unobserved effects of the label itself, which could serve as a signaling measure of environmental ideology and other non-financial benefits from occupying a green home. Future research should incorporate the realized energy consumption in green homes and conventional homes to further disentangle these effects. Reselling of greenlabeled homes will also offer an opportunity to further study the value persistence of certified homes, unraveling the effect of developer quality on the green premium documented in this paper.

It also important to note that this paper focuses just on the market for owner-occupied single-family dwellings. While this represents an important fraction of the housing market, the market for rental housing has been growing considerably over the course of the housing crisis, and represents the majority of the housing stock in large U.S. metropolitan areas such as New York and San Francisco. Addressing the signaling effect of green labels for tenants in multi-family buildings should thus be part of a future research agenda.

[^65]
REFERENCES

Allcott, Hunt. 2011. "Social Norms and Energy Conservation." Journal of Public Economics, 95(5), 1982-095.

Bajari, Patrick L. and Lanier C. Benkard. 2005.
"Hedonic Price Indexes with Unobserved Product Characteristics." Journal of Business and Economic Statistics, 23(1), 61-75.

Bils, Mark and Peter J. Klenow. 1998.
"Using Consumer Theory to Test Competing Business Cycle Models." Journal of Political Economy, 106(2), 233-61.

Bostic, Raphael W. and Kwan Ok Lee. 2008.
"Mortgages, Risk, and Homeownership among Low- and Moderate-Income Families." American Economic Review, 98(2), 310-14.

Brounen, Dirk and Nils Kok. 2011. "On the Economics of Energy Efficiency in the Housing Market." Journal of Environmental Economics and Management, 62, 166-79.

Brounen, Dirk; Nils Kok and John M. Quigley. 2011.
"Residential Energy Literacy and Conservation," Chicago: 47th Annual AREUEA Conference Paper.

Campbell, John Y.; Stefano Giglio and Parag Pathak. 2011. "Forced Sales and House Prices " American Economic Review, 101 (5), 2108-31.

Chegut, Andrea; Piet M. Eichholtz and Nils Kok. 2011. "Supply, Demand and the Value of Green Buildings," Chicago: 47th Annual AREUEA Conference Paper.

Dastrup, Samuel R.; Joshua S. Graff Zivin; Dora L. Costa and Matthew E. Kahn. 2012. "Understanding the Solar Home Premium: Electricity Generation and green Social Status." European Economic Review, 56(5), 961-73.

Derwall, Jeroen; Kees Koedijk and Jenke Ter Horst. 2011. "A Tale of Values-Driven and Profit-Seeking Social Investors." Journal of Banking and Finance, 35(8), 2137-47.

Eichholtz, Piet M.A.; Nils Kok and John M. Quigley. 2010. "Doing Well by Doing Good: Green Office Buildings." American Economic Review, 100(5), 2494-511.
\qquad in press. "The Economics of Green
Building." Review of Economics and Statistics.

Ferreira, Fernando; Joseph Gyourko and Joseph
Tracy. 2010. "Housing Busts and Household Mobility." Journal of Urban Economics, 68(1), 34-45.

Gilmer, Robert W. 1989. "Energy Labels and Economic Search." Energy Economics, 213-18.

Gyourko, Joseph; Matthew E. Kahn and Joseph Tracy. 1999. "Quality of Life and Environmental Comparisons," P. C. Cheshire and E. S. Mills, Handbook of Regional and Urban Economics. Elsevier, 1413-54.

Kahn, Matthew E. 2007. "Do Greens Drive Hummers or Hybrids? Environmental Ideology as a Determinant of Consumer Choice." Journal of Environmental Economics and Management, 54, 129-45.
__ 2011. "Do Liberal Cities Limit New Housing Development? Evidence from California." Journal of Urban Economics, 69(2), 223-28.

Kain, John F. and John M. Quigley. 1970. "Measuring the Value of House Quality." Journal of American Statistical Association, 65(330), 532-48.

Kok, Nils; Marquise McGraw and John M. Quigley. 2011. "The Diffusion of Energy Efficiency in Building." American Economic Review, 101(3), 77-82.

Kotchen, Matthew J. 2006. "Green Markets and the Private Provision of Public Goods." Journal of Political Economy, 114(4), 816-34.

Quigley, John M. and Daniel L. Rubinfield. 1989. "Unobservables in Consumer Choice: Residential Energy and the Demand for Comfort." Review of Economics \& Statistics, 71 (3), 415-25.

Rosen, Sherwin. 1974. "Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition." Journal of Political Economy, 82(1), 34-55.

Sexton, Steven E. and Alison L. Sexton. 2011. "Conspicuous Conservation: The Prius Halo and Willingness to Pay for Environmental Bona Fides," UC Center for Energy and Environmental Economics Working Paper Series. Berkeley: University of California at Berkeley.

TABLE 1. Comparison of Green-Labeled Buildings and Nearby Control Buildings (standard deviations in parentheses)

	RATED BUILDINGS	CONTROL BUILDINGS		RATED BUILOINGS	CONTROL BUILDINGS
Sample Size	4,321	1,600,558	TRANSACTION YEAR		
- Sales Price	445.29	400.51	2007	0.01	0.13
(thousands of dollars)	(416.58)	(380.47)	(percent)	(0.09)	(0.34)
Assessed Value	425.95	355.21	2008	0.04	0.19
(thousands of dollars)	(376.86)	(347.34)	(percent)	(0.20)	(0.39)
Dwelling Size	2.06	1.80	2009	0.15	0.23
(thousands of sq. ft.)	(0.69)	(0.86)	(percent)	(0.36)	(0.42)
Lot Size	8.40	16.94	2010	0.55	0.21
(thousands of sq. ft .)	(14.01)	(41.23)	(percent)	(0.50)	(0.41)
Age	1.68	32.23	2011	0.23	0.21
(years)	(9.49)	(24.39)	(percent)	(0.42)	(0.41)
VINTAGE:			2012	0.01	0.02
$V \mathrm{n}$ tage <6 years	0.70	0.18	(percent)	. (0.08)	(0.14)
(parcent)	(0.46)	(0.38)			
Vintage >5 years <11	0.00	0.08			
- (percent)	(0.02)	(0.28)			
Vintage >10 years <21	0.00	0.11			
(percent)	(0.00)	(0.31)			
Vintage >20 years <31	0.00	0.14			
(percent)	(0.02)	(0.35)			
Vintage > 30 years < 41	0.00	0.12			
(percent)	(0.02)	(0.33)			
Vintage >40 years < 51	0.00	0.09			
(percent)	(0.02)	(0.29)			
Vintage >50 years	0.01	0.20	.		
(percent)	(0.08)	(0.40)			
Renovated Building	0.04	0.12			
(percent)	(0.19)	(0.33)			
Garage	0.15	0.61			
(number)	(0.55)	(0.94)			
Number of Bedrooms	2.64	2.96			
(percent)	(1.63)	(1.18)			
Number of Bathrooms	2.03	2.11			.
(percent)	(1.26)	(0.94)			
GREEN LABEL					
Energy Star	0.68	-		-	
(percent)	(0.47)	-			
GreenPoint Rated	0.47	-			
(percent)	(0.50)	-			
LEED for Homes	0.03	0.49			
(percent)	(0.16)	(0.50)			
Multiple Certifications	0.17	0.39			
(percent)	(0.38)	(0.49)			
Distressed Sale	0.08	0.11			
($1=y e s$)	(0.26)	(0.31)			
Cooling Equipment	0.45	0.02			
(1 = yes)	(0.50)	(0.15)		.	
Swimming Pool	0.01	0.42			
($1=$ yes)	(0.09)	(0.41)			
View	0.00	6.37			
(1 = yes)	(0.02)	(4.34)			
Prius Registration Share	0.45	14.94			
(percent x100)	(0.38)	(1.37)			
Cooling Degree Days Per Year	6.86				
(thousands)	(3.86)				
Electricity Price	15.06				
	(0.84)				

TABLE 2. Regression Results

Dwelling Characteristics, Amenities, and Sales Prices
(California, 2007-2012)

	(1)	(2)	(3)	(4)
Green Rating $\text { (} 1=\text { yes) }$				$\begin{aligned} & 0.118^{* * *} \\ & {[0.023]} \end{aligned}$
Dwelling Size	$0.309 * * *$	0.289***	0.273***	0.273***
(thousands of sq. ft.)	[0.008]	[0.008]	[0.007]	[0.007]
Wumber of Bathrooms	0.095***	0.070***	0.066***	0.066***
	[0.005]	[0.005]	[0.005]	[0.005]
Number of Bedrooms	0.015***	0.019***	0.022***	0.022***
	[0.003]	[0.003]	[0.003]	[0.003]
Number of Garages	0.059***	0.062***	0.058***	0.058***
	[0.005]	[0.005]	[0.005]	[0.005]
AGE ${ }^{\circ}$				
New Construction		0.248***	0.190***	$0.186^{* * *}$
(1 = yes)		[0.017]	[0.016]	[0.016]
1-2 years		0.259***	0.209***	0.206***
(1 = yes)		[0.015]	[0.015]	[0.015]
2 -3years		0.239***	$0.223 * * *$	0.221***
(1 = yes)		[0.015]	[0.015]	[0.015]
$3-4$ years		$0.207 * * *$	$0.219^{* * *}$	$0.219^{* * *}$
(1 = yes)		[0.014]	[0.014]	[0.014]
$4-5$ years		0.195***	0.213***	$0.213 * * *$
(1 = yes)		[0.014]	[0.014]	[0.014]
$5-6$ years		0.186***	$0.203 * * *$	0.203***
(1 = yes) .		[0.014]	[0.014]	[0.014]
$6-10$ years		$0.191^{* * *}$	$0.193^{* * *}$	0.193***
(1 = yes)		[0.014]	[0.014]	[0.014]
10-20 years		$0.158^{* * *}$	$0.149^{* * *}$	$0.149^{* * *}$
($1=$ yes)		[0.012]	[0.012]	[0.012]
20-30 years		0.072***	0.064***	0.064***
(1 = yes)		[0.011]	[0.011]	[0.011]
$30-40$ years		0.009	0.001	0.001
($1=\mathrm{yes}$)		[0.010]	[0.010]	[0.010]
$40-50$ years		0.007	-0.002	-0.002
(1 = yes)		[0.008]	[0.007]	[0.007]
Renovated		0.012**	$0.011{ }^{\text {** }}$	0.011**
($1=$ yes)		[0.005]	[0.005]	[0.005]
Distressed Sale			-0.161***	-0.161***
($1=y$ yes)			[0.003]	[0.003]
View			0.063***	0.063***
(1 = yes)			[0.011]	[0.011]
Swimming Pool			0.086***	0.086***
(1 = yes)			[0.005]	[0.005]
Cooling Systenis			0.060***	0.060***
($1=y e s$)			[0.008]	[0.008]
TIME-ZIP-IIXED EFFECTS	Y	Y	Y	Y
Constant	$11.743^{* * *}$	11.651***	11.795***	11.681***
	[0.203]	[0.177]	[0.161]	[0.163]
1	1,609,879	1,609,879	1,609,879	1,609,879
R^{2}	0.849	0.854	0.864	0.864
Adj R^{2}	0.856	0.861	0.871	0.871

Notes:
*Omitted variable: vintage >50 years
Regressions include: fixed effects by quarter year, 20071-20121, interacted with fixed effects by zip code. (Coefficients are not reported.)
Standard errors, clustered at the zip code level, are in brackets. Significance at the $0.10,0.05$, and 0.01 levels are indicated by *, **, and ***, respectively.

TABLE 3. Regression Results

Green Labeling Schemes and Sales Prices

(Energy Star, GreenPoint Rated and LEED for Homes)

	(1)	(2)	(3)	(4)
Energy Star $\text { (} 1 \text { = yes) }$	$\begin{aligned} & 0.145 * * * \\ & {[0.027]} \end{aligned}$			
GreenPoint Rated		0.024		
($1=y e s$)		[0.024]		
LEED for Homes			0.077	
(1 = yes)			[0.082]	
Green*Year 2008				-0.011
($1=$ yes)				[0.057]
Green*Year 2009				0.052
($1=\mathrm{yes}$)				[0.033]
Green ${ }^{*}$ Year 2010				0.144***
(1 = yes)				[0.024]
Green*Year 2011				0.131***
($1=y e s$)				
Time-ZIP-Fixed Effects	Y	Y	Y	Y
Control Variables	Y	Y	Y	Y
Constant	11.759***	11.778***	11.795***	11.668***
	[0.162]			
II	1,609,879	1,609,879	1,609,879	1,609,879
R^{2}	- 0.871	0.871	0.871	0.871
Adj R^{2}	0.864	0.864	0.864	0.864

Notes:

Regressions include: fixed effects by quarter year, 20071-20121, interacted with fixed effects by zip code; as well as vintage, amenities and other measures reported in Table 2 (column 4). (Coefficients are not reported.)
Standard errors, clustered at the zip code level, are in brackets. Significance at the $0.10,0.05$, and 0.01 levels are indicated by *, **, and ***, respectively.

TABLE 4. Regression Results

 Robustness Check: Recently Constructed Homes *

Notes:

*Sample restricted to dwellings constructed during the 2007-2012 period.
Regressions include: fixed effects by quarter year, 20071-20121, interacted with fixed effects by zip code; as well as vintage (ranging from 1-5 years), amenities and other measures reported in Table 2 (column 4). (Coefficients are not reported.)
Standard errors, clustered at the zip code level, are in brackets. Significance at the $0.10,0.05$, and 0.01 levels are indicated by *, ${ }^{* *}$, and ***, respectively.

TABLE 5. Regression Results

Green Labels, Climatic Conditions, Electricity Costs, and Sales Prices \#

	(1) ${ }^{\text {ta }}$	(2) $* *$	(2) ${ }^{* m p}$	(3) ${ }^{*+9}$
Green Rating	-0.013	0.098*	-0.057	0.082**
($1=$ yes)	[0.026]	[0.054]	[0.039]	[0.033]
Green Rating*Cooling Degree Days	0.014***	0.006		
	[0.003]	[0.075]		
Green Rating*Cooling Degree Days*Electricity Price		-0.001		
		[0.005]		
Green Rating*Prius Registration			21.957***	
			[5.355]	
Green Rating*Green Density				-0.002
				[0.001]
Distance to Closest Rail Station		-0.004***	-0.004***	-0.004***
(in kilometers)		[0.001]	[0.001]	[0.001]
Distance to CBD		-0.001	-0.001	-0.001
(in kilometers)		[0.001]	[0.001]	[0.001]
Time-ZIP-fixed Effects	Y	N	N	N
Time-FIPS-Fixed Effects	N	Y	Y	Y
Control Variables	Y	Y	Y	Y
Constant	12.055***	12.494***	12.378***	12.759***
	[0.023]	[0.067]	[0.161]	[0.240]
1	323,840	238,939	242,678	286,325
R^{2}	0.877	0.758	0.758	0.747
Adj R ${ }^{\text {2 }}$	0.893	0.760	0.761	0.749

Notes:

*Sample restricted to dwellings constructed during the 2007-2012 period.
"* Regression in column 1 includes fixed effects by quarter year, 20071-20121, interacted with fixed effects by zip code; as well as vintage, amenities and other measures reported in Table 2 (column 4). (Coefficients are not reported.)
**ง Regressions in columns 2-4 include fixed effects by quarter year, 20071-2012l interacted with fixed effects by Census tract; the following Census variables at the zip code level: percentage of the population with at least some college education, percentage blacks, and percentage Hispanics, percentage in age categories 18-64, >64; as well as vintage, amenities and other measures reported in Table 2 (column 4).
(Coefficients are not reported.)
Standard errors, clustered at the zip code level, are in brackets. Significance at the $0.10,0.05$, and 0.01 levels are indicated by *, ${ }^{* *}$, and ${ }^{* * *}$, respectively.
-

NREL HOME

ABOUT NREL ENERGY ANALYSIS

SCIENCE \& TECHNOLOGY TECHNOLOGY TRANSFER APPLYING TECHNOLOGIES ENERGY SYSTEMS INTEGRATION

Renewable Resource Data Center

PVWatts

Launch Viewer ;

About PVWatts .
Help

PVWatts supports the U.S. Department of Energy's Solar Energy Technologies Program.

NREL's PVWatts ${ }^{\text {TM }}$ calculator determines the energy production and cost savings of gridconnected photovoltaic (PV) energy systems throughout the world. It allows homeowners, installers, manufacturers, and researchers to easily develop estimates of the performance of hypothetical PV installations.

The PVWatts calculator works by creating hour-by-hour performance simulations that provide estimated monthly and annual energy production in kilowatts and energy value. Users can select a location and choose to use default values or their own system parameters for size, electric cost, array type, tilt angle, and azimuth angle. In addition, the PVWatts calculator can provide hourly performance data for the selected location.

Using typical meteorological year weather data for the selected location, the PVWatts calculator determines the solar radiation incident of the PV array and the PV cell temperature for each hour of the year. The DC energy for each hour is calculated from the PV system DC rating and the incident solar radiation and then corrected for the PV cell temperature. The AC energy for each hour is calculated by multiplying the DC energy by the overall DC-to-AC derate factor and adjusting for inverter efficiency as a function of load. Hourly values of AC energy are then summed to calculate monthly and annual AC energy production.

The PVWatts calculator is available in two versions. Site Specific Data Calculator (Version 1) allows users to select a location from a map or text list of predetermined locations throughout the world. Grid Data Calculator (Version 2) allows users to select any location in the United States.

The PVWatts calculator was developed by NREL's Electricity, Resources, and Building Systems Integration Center.

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Content Last Updated: July 27, 2012
Need Help? | Security \& Privacy | Disclaimer | NREL Home

Market Impacts of ENERGY STAR ${ }^{\circledR}$ Qualification for New Homes

ENERGY STAR HOMES

Appalachian State University ASU Box 32122
730 Rivers Street
Boone, NC 28608-2122
Office: (828) 2628331
Fax: (828) 2628696
ncenergystar.org
info@ncenergystar.org

Market Impacts of ENERGY STAR ${ }^{\circledR}$ Qualification for New Homes

Table of Contents

Table of Contents 1
Acknowledgements2
Abstract 3
Introduction 4
The North Carolina Energy Efficiency Alliance 5
Building Certification Programs and ENERGY STAR ${ }^{\circledR}$ 6
Valuation of Energy-efficient Homes \& Home Features 7
Statement of the Problem 11
Purpose of the Study 12
Hypothesis and Research Questions 13
Limitations of the Study 14
Significance of the Study 16
Research Methods 17
Sample 17
Data Collection 18
ENERGY STAR Homes data set. 18
Appraisal properties data set. 20
Data Analysis Procedures 22
Results and Discussion 24
Sales Price Analysis 24
Proportion of List Price Analysis 30
Price per Square Foot Analysis 34
Days on Market Analysis 40
Conclusion 45
Implications for Home buyers 45
Implications for Home Builders and Real Estate Agents 47
Implications for the Appraisal and Lending Industries 47
Summary 49
References 50

Acknowledgements

This project is the result of the collaboration and expertise of many individuals, and we would like to extend thanks to all who were involved. This study could not have been possible without financial assistance from the American Recovery and Reinvestment Act as well as guidance, oversight, and diligent project administration from the North Carolina Energy Office. Thank you for the opportunity to pursue the information in this study that will certainly impact both homeowners and homebuilding professionals around the state and across the nation.

Thank you to Ann Griffin of the Earth Advantage Institute for consulting with us on her line of similar research. Much of the methodology employed by this investigation has its origins in Ann Griffin's and others' research. Additionally, thank you to Dave Porter of PorterWorks, Inc. who loaned his expertise to this project to help generate the guidelines furnished to appraisers used by the study. Thank you to Quick Turn Quality Appraisals for providing the appraisals used in the study, which allowed examination of market data beyond a generic market analyses typically published. The requirements set forth were not easily met and we thank you for your hard work in providing the project with the best information available. Thank you to Christy New and the Triangle MLS for being a leader in providing information pertaining to green home features and building certifications in the MLS database. Providing valuable information pertaining to energy efficiency and home certifications makes research like this possible. We applaud the efforts your organization has undertaken to record data on energy efficiency and hope others look to you as a model for "greening" their regional MLS.

Finally, we must thank the faculty and staff of Appalachian State University, who have participated in similar investigations and have helped vet the methodology and analysis of this study. A special thanks is due to Dr. Marie Hoepfl for her tireless efforts and editorial commentary, to Dr. Lee Ball for his previous research and insights in the real estate appraisal industry, and to Dr. Shawn Bergman and Dr. Kevin Howell for lending their extensive expertise in statistical analysis to the project. Your efforts have benefitted the research community, the real estate and appraisal industries, and all homeowners and consumers concerned with energy efficiency.

Abstract

Buildings represent 41% of the annual energy consumption, more than either industry or transportation, in the United States (U.S. Energy Information Administration [USEIA], 2009). As society becomes increasingly energy conscious, individuals are seeking new ways to reduce residential energy usage. Third-party verified energy efficiency programs aimed at making buildings more efficient are gaining popularity in residential construction and offer many benefits to home builders and buyers alike. ENERGY STAR ${ }^{\circledR}$ is a popular third-party verified construction program that can reduce home energy consumption by a minimum of 15% compared to homes built in accordance with the 2004 International Residential Building Code. Furthermore, these homes can include additional features that make them 20 to 30% more efficient than code-built homes (Qualified New Homes, n.d.), saving homeowners hundreds of dollars annually in utility costs.

Obstacles to widespread implementation of the ENERGY STAR program include the added costs involved in building an ENERGY STAR qualified home and home builder reservations concerning financial return on investment. Additionally, the appraisal industry has had difficulty establishing a standard valuation method for these energy efficiency upgrades, in large part because market data has not been available to compare ENERGY STAR Homes with their comparable code-built counterparts.

The present study provides statistically significant analysis that ENERGY STAR qualified new homes sell faster (i.e., fewer days on the market) and for higher prices (i.e., sell for higher prices, or sell for a greater percentage of the listing price, or have a higher price per square foot) than comparable nonqualified homes, providing valuable evidence that there is a market advantage for ENERGY STAR qualified homes.

Introduction

Energy efficiency has recently become a topic of interest in the United States due to the enactment of several government-backed and energy industry related green initiatives. The American Recovery and Reinvestment Act (ARRA) of 2009, the Energy Policy Act of 2005, and the Energy Independence and Security Act of 2007 are ongoing efforts to change the way energy is utilized on a national scale. The United States leads the world in energy consumption, and demand for energy will only increase in the future. As a result, these new laws encourage alternative energy management practices. To accomplish this initiative, both the number of tax incentives and the amount of direct federal spending on energy efficiency have reached an alltime high. Increasing efficiency in the way energy is utilized across sectors of the country's infrastructure is viewed by many as the most practical, cost effective, and directly implementable method for reducing energy use (Dixon, McGowan, Onysko, \& Sheer, 2010).

In the US, residential and commercial buildings represent roughly 41% of the annual energy consumption including electricity use and the use of other energy sources like natural gas and fuel oil. This figure constitutes more energy usage than any other sector, including transportation and industry, which contribute 29% and 30% of consumption, respectively. Residential buildings are responsible for 22% of US energy consumption alone (United States Energy Information Administration [USEIA], 2009). Operating commercial and residential buildings represents an even greater proportion of the country's electricity usage, consuming 75% of the electricity produced (Use of electricity, 2010). In the residential sector, building energy is primarily utilized for space conditioning (heating and cooling) followed by water heating and lighting (USEIA, 2005). It is clear from these statistics that buildings in the US are responsible for consuming a majority of the country's energy resources. Efficiency improvements must be made to buildings so that the nation can manage its available energy resources more effectively as demand for these resources increases in the future.

The North Carolina Energy Efficiency Alliance

The North Carolina Energy Efficiency Alliance (NCEEA) is an organization created with the intention of changing the prevailing outlook of the ENERGY STAR qualification process. Many home builders feel that additional investment in ENERGY STAR qualification is not recoverable at the time of sale, and appraisers and lenders often overlook the value associated with a more efficient home. Little research, however, has been conducted to investigate the legitimacy of these claims in today's market. One purpose of the NCEEA is to quantitatively investigate the impact of the ENERGY STAR label and its effect on new home sales and market performance.

The NCEEA is funded through a grant from the North Carolina State Energy Office as part of the American Recovery and Reinvestment Act (ARRA) of 2009. The organization's purpose is to increase the number of high efficiency homes built throughout the state. The four founding partners of the NCEEA include Appalachian State University, the North Carolina Solar Center, Advanced Energy, and Southern Energy Management. This Alliance bridges the gap between many of the key energy-efficient housing industry stakeholders including home builders, Home Energy Raters, designers, appraisers, real estate agents, lenders, electric and gas utilities, and other allied organizations.

The NCEEA aims to benefit the housing industry by overcoming market barriers by educating home buyers, training home builders and real estate agents, strengthening the Home Energy Raters (HERS) network, and educating appraisers and lenders on the benefits and value of energy efficiency. By engaging each of these groups collectively, the NCEEA intends to stimulate and support the market for energy-efficient homes in the state of North Carolina and pave the way for the adoption of energy-efficient building practices in other states. The Alliance offers regular workshops for building professionals, continuing education trainings, networking opportunities, as well as printed publications, online resources, and consumer outreach initiatives across the state. (About the Alliance, 2011).

Building Certification Programs and ENERGY STAR ${ }^{\text {® }}$

In response to the need to make buildings more efficient, a growing number of organizations have created building certification programs. These programs focus on many aspects of construction with an emphasis on energy efficiency, use of sustainable building materials, improved indoor air quality, minimization of potable water consumption, use of alternative energy, and appropriate site selection and management, to name a few. ENERGY STAR ${ }^{\circledR}$ is a voluntary labeling program operated jointly by the US Environmental Protection Agency and the US Department of Energy. It was created in 1992 in an effort to raise awareness of, and to reduce, air pollution and climate change (Banerjee \& Solomon, 2003). Its purpose is to promote products that meet specified energy efficiency requirements and performance criteria with the use of the ENERGY STAR label. While the ENERGY STAR label is readily recognized on many household appliances and electronics, it is less well-known as a building program and housing qualification. ENERGY STAR for homes, first implemented in 1996, constitutes a comprehensive approach focused on increasing a building's efficiency. More advanced applications of ENERGY STAR also focus on indoor air quality and domestic water use. To qualify as an ENERGY STAR Home the home must reduce energy consumption by a minimum of 15% compared to homes built in accordance with the 2004 International Residential Building Code. ENERGY STAR Homes may also include additional features that can make them 20% to 30% more efficient than standard code-built homes (Qualified New Homes, n.d.).

ENERGY STAR Homes have been demonstrated to be more efficient than standard code-built homes. A case study conducted in Gainesville, Florida by Jones and Vyas (2008) found that over two separate calendar years ENERGY STAR buildings were more efficient than their code-built counterparts. Furthermore, this efficiency increase brought with it appreciable savings on monthly utility bills due to reduced energy consumption. In addition to lowering monthly bills, this meant the average homeowner from the study could afford a larger mortgage payment (Jones \& Vyas, 2008). The implications of this case study suggest that prospective home buyers will be able to spend more on their new homes and at the same time save on their monthly expenses. In addition to being more efficient, ENERGY STAR Homes guarantee a build quality superior to that of a code-built home. A third-party verification system included in the ENERGY STAR qualification process ensures that a higher building standard is met, making ENERGY STAR

Homes more comfortable and more durable. ENERGY STAR Homes are required to have properly installed insulation, high-performance windows, air-tight construction and ductwork, and more efficient heating and cooling equipment, along with efficient appliances and lighting. These features can translate into a number of consumer benefits including a higher performance home that keeps owners more comfortable, increases annual savings, and diminishes the home's negative impact on the environment (Features \& Benefits, n.d.).

Despite these positive attributes, market penetration of ENERGY STAR Homes is limited, about 21% nationwide (2009 ENERGY STAR, 2009), and builders are hesitant to undertake the necessary education and financial investment to modify their construction practices and techniques. Similarly, prospective home buyers are cautious about spending more on efficient housing because of the added up-front costs and their subsequent ability to qualify for a mortgage. Additionally, potential ENERGY STAR home buyers are often unaware of the longterm advantages of high efficiency homes.

Valuation of Energy-efficient Homes \& Home Features

The process of changing appraisal practices commenced decades ago. An investigation conducted by Corgel, Goebel, and Wade (1982) argued that appraisers should gather information on a home's efficiency, taking infrared photos of it and examining utility bills, for example, and objectively interpret its added value based on market comparisons. They found that of a sample of 100 single family homes in Lubbock, Texas, homes that were designated as relatively energy efficient through these techniques sold for an average premium of $\$ 3,416$. Additionally, the savings on monthly utility costs that energy-efficient homes yield are not considered when potential home buyers seek to obtain mortgages. This means that, despite having an appreciable decrease in monthly expenditures, lenders do not consider this money available to use on mortgage payments. Furthermore, even if energy-efficient home features pay for themselves in energy savings over time, investing in them in the first place can adversely affect one's ability to qualify for a mortgage because of the higher up-front cost. This problem results from the standard underwriting criteria utilized in the lending industry, which take into account an applicant's housing-cost-to-income ratio, debt-to-income ratio, and loan-to-home value ratio. The housing-cost-to-income ratio does not take into account the monthly costs associated with
owning the home, including items like monthly utility bills. Instead, it utilizes a preset percentage constraining limit designed to capture what the potential home buyer can afford. Unfortunately, the savings earned from having energy-efficient features in the home are not captured by this predetermined percentage. This practice ignores that buyers of high performance homes actually have better housing-cost-to-income ratios and should therefore qualify for a larger mortgage (Nevin \& Watson, 1998). In short, because owners of high efficiency homes spend less on monthly utility bills, they have more money available to make monthly mortgage payments, resulting in the ability to pay off a larger mortgage. Unfortunately, standard lending practices ignore this benefit of purchasing an energy-efficient home.

Historically, there is reason to believe that homes built to a higher efficiency standard are worth more. In the mid-1970s an oil embargo in the US resulted in drastically higher oil prices. At that time, many US homes were heated with heating oil, and as a result the cost to heat homes in the US increased dramatically. Consequently, during the late 1970s and early 1980s home construction in the US became much more focused on energy savings in order to keep heating costs down. Unfortunately, this trend did not continue as oil prices dropped by the mid-1980s, and building efficiency lapsed thereafter and through much of the 1990s (Nevin, 2010). However, several interesting trends in the housing market began to develop around this time that were directly linked to improvements in efficiency.

A study conducted by Halvorsen and Pollakowski (1981) found that homes which utilized a more efficient heating method rather than heating oil sold for an average premium of about $\$ 4,600$. Additionally, Corgel et al. (1982) found that people were willing to spend more on energy-efficient homes as long as there was a rational trade-off between utility bill savings and mortgage payment increases. This rational trade-off meant that homeowners were willing to spend more on an energy-efficient home as long as the energy-efficient features provided monthly utility bill savings in access of their added monthly mortgage cost. This result has been replicated or substantially supported by other findings since the study was initially published.

Johnson and Kaserman (1983) found that for every dollar reduction in a home's annual energy consumption, its value increased by $\$ 20.73$. Dinan and Miranowski (1989) found that a home's
value increased slightly less, an average of $\$ 11.63$ for every one dollar reduction in home fuel expenditures. In 1990, Horowitz and Haeri replicated these results, finding that the value of every a one dollar reduction in annual electricity bills increased the home's value $\$ 12.52$. Nearly ten years later these findings were upheld again by Nevin and Watson in 1998, who found that home values increased about twenty dollars for every one dollar reduction in annual utility bills. These findings are particularly striking since ENERGY STAR Homes are known to reduce energy costs around $15-30 \%$, meaning there should be an appreciable increase in those homes' market values.

ENERGY STAR Homes implement a range of methodologies in a whole-house approach to improve a building's energy efficiency. One method employed by ENERGY STAR Homes to achieve part of their $15-30 \%$ reduction in energy consumption is through the use of effective insulation. Historically, studies have demonstrated that simply improving a home's insulation and thermal integrity alone can add to its value. Laquatra (1986) demonstrated that improving a home's thermal integrity factor led to an increase in the home's value by $\$ 2,510$ for every one point increase in the thermal integrity factor. Additionally, adding insulation to a home's walls and ceiling increased its value. Specifically, she found that a one inch increase in wall insulation increased the value by $\$ 1.90$ per square foot of conditioned space. Concurrently, she found a one inch increase in ceiling insulation increased the value by $\$ 3.37$ per square foot of conditioned space (Longstreth, 1986; see also Nevin \& Watson, 1998).

More recently, there has been additional evidence suggesting the positive role energy efficiency and energy efficiency certifications can play on market performance. An investigation conducted by Griffin (2009) found statistically significant evidence that green certifications, including ENERGY STAR, played a positive role in a home's market performance. Specifically, Griffin found that certified homes in Portland, Oregon sold for an average of 4.2% more and sold 18 days faster compared to non-certified homes. Additionally, certified homes in Seattle, Washington were found to sell for an average of 9.6% more, but did not demonstrate differences in time spent on the market. An investigation of the housing market in Asheville, NC conducted by Mosrie (2011) found that green buildings were able to defy the downward trend in the housing market. Mosrie found that the price per square foot of green homes actually increased

[^66]steadily since 2007, while standard homes' price per square foot declined. A market analysis conducted by Atlanta, Georgia-based eco-broker Carson Matthews (2009) found that green certified homes, including ENERGY STAR Homes, sold for a higher percentage of their asking price (94.5% vs. 90.9%) and spent an average of 31 fewer days on the market compared to conventional homes. Another market analysis conducted by Quick Turn Quality Appraisals, LLC, utilizing the Triangle MLS in North Carolina, found in 2010 that new high performance homes with certifications sold for 12.9% more overall, an average of $\$ 13.82$ more per square foot, and were on the market 42 less days compared to non-certified homes (Argeris, 2010). These previous findings are encouraging and suggest that ENERGY STAR qualified homes do have a market advantage compared to non-qualified homes. The current investigation includes similar results showing a significant financial return in investing in the ENERGY STAR program.

Statement of the Problem

Residential buildings in the US are responsible for a disproportional amount of the country's energy consumption. Many building energy efficiency certification programs, including ENERGY STAR, have been created to combat this problem by reducing a home's energy consumption. ENERGY STAR qualification and other certification programs generally require added upfront costs for home builders and home buyers, which unfortunately deter many from investing in efficient homes or which may place the home outside of their financial means. Compounding this problem, the lending and appraising industries often ignore the financial benefits associated with more efficient housing (Ball, 2011). Although changing the standard practices in these industries so that they do account for energy efficiency is vital, the process has been slow-moving despite strong evidence to support this initiative.

While it is true that some parallels exist between today's tough economic climate and the economic conditions present when many of the mentioned past studies were conducted, new evidence gathered from recent homes sales is needed. Additionally, current market analyses, discussed previously, do not consider the impact of ENERGY STAR qualified homes alone. Instead, these analyses group all homes with any type of building certification together and compare them against code-built homes. This procedure represents an unfair analysis because many building certification programs require a large financial investment beyond that of a codebuilt home and that financial inequity is expected to be reflected in the home's market performance. ENERGY STAR qualification represents a relatively small additional investment for the builder, typically around $0.5 \%-1.5 \%$ (depending on economies of scale) of the home's listed retail value, making a side-by-side comparison against a code-built home much more favorable. The present investigation seeks to add to the body of evidence concerning the added value energy efficiency can bring to a home, and, more specifically, to document the impact of ENERGY STAR Home certification by presenting evidence about the market advantages that home builders, real estate agents, and home buyers might capitalize on in today's economic climate through ENERGY STAR.

Purpose of the Study

The present investigation seeks to build upon the findings of prior studies that demonstrate benefits of home certifications and to provide new information specific to the impact an ENERGY STAR qualification alone can add to the value of a new home beyond that of monthly utility savings. It has previously been demonstrated that ENERGY STAR Homes provide savings to owners on monthly utility bills (Jones \& Vyas, 2008), but do these efficiency features translate into a willingness of consumers to pay more? Additionally, do consumers seek out ENERGY STAR Homes in such a way that these homes spend less time on the market? Because the majority of home sales databases, including the Multiple Listing Service (MLS), do not provide information regarding home certifications such as ENERGY STAR, little or no data has been available to address these important questions. The present investigation, however, utilizes information obtained from the Triangle MLS. The Triangle MLS has been an industry leader in providing information on energy-efficient certifications for homes since April of 2009, making research in this area possible for the first time (Triangle MLS adds green fields, 2009).

The process of changing appraisal standards and lending criteria is not one that will happen quickly. Although efforts are underway to accomplish this task, home builders need evidence that their investment in making their homes energy efficient is beneficial now. Likewise, the potential home buyer needs to know that paying more for an efficient home is a smart investment beyond monthly utility bill savings. Furthermore, both parties need evidence that energy efficiency is an investment they will likely recoup. To that end, the present investigation seeks to determine if homes that are ENERGY STAR qualified hold a market advantage over similar code-built homes, giving home builders and home buyers security in efficiency investments. Additionally, the present investigation seeks to add to the body of evidence convincing lenders and appraisers of the advantages of energy-efficient housing in an effort to account for these benefits during loan origination and market valuation.

Hypothesis and Research Questions

The present investigation hypothesizes that ENERGY STAR qualification gives a home a competitive market advantage. Competitive market advantage will be operationally defined as a home selling for a higher sales price, selling for a greater percentage of the list price (i.e. better sale price to list price ratio), selling for a higher price per square foot, or spending less time on the market prior to sale. A home's value is important for home buyers and home builders alike, but it can be examined in several ways. The sale price is one method of determining a home's value, but it may be equally important for a builder to understand the ratio of actual sale price to the original list price as well as how much the home sold for on a per square foot basis. These ratios of sale price to list price and price per square foot help to indicate the potential room for profit or loss, and it is important for builders to know if an ENERGY STAR qualified home reliably brought in more profit. Additionally, knowing how long a home will take on average to sell is important for the builder because there are substantial costs tied to holding a home while a buyer is found. The specific research questions formulated to document whether ENERGY STAR Homes have a market advantage include:
1.) Do ENERGY STAR qualified homes sell for higher prices compared to similar codebuilt homes?
2.) Do ENERGY STAR qualified homes sell for a greater percentage of their list price compared to similar code-built homes?
3.) Do ENERGY STAR qualified homes sell for a higher price per square foot compared to similar code-built homes?
4.) Do ENERGY STAR qualified homes sell faster (fewer days on the market) compared to similar code-built homes?

Limitations of the Study

The present investigation is designed to provide evidence supporting the hypothesis that ENERGY STAR Homes have a competitive market advantage compared to similar code-built homes. Given the nature of the study and its use of data representing actual home sales a number of limitations must be acknowledged.

The generalizability or external validity of the results of this study may be limited by the specific region from where the sample was drawn. Because real estate markets can vary dramatically from location to location and because this study only includes data drawn from a relatively small area of North Carolina, it may be difficult to suggest that findings could equally apply to southern California or Alaska as they would North Carolina. It should also be mentioned, however, that a small geographic sampling area is a limitation encountered by most investigations of this kind.

The data used were limited to only those new construction homes listed on the Triangle MLS. MLS listings generally embody the vast majority of new residential real estate listings. However, it may be possible that homes not listed on the MLS could contribute to findings surrounding the questions under investigation herein (such as some custom homes or presales). Unfortunately, this data is not captured by the MLS and as a result is not represented in the study. Additionally, MLS records are most commonly created through data entered directly by real estate agents or personnel within a real estate office. Because there are no strict guidelines or oversight to most MLS systems, input errors and errors of omission are possible. Furthermore, the green certifications data field was only recently introduced to the Triangle MLS database. It is conceivable that some persons responsible for inputting the MLS data are unaware of the field's existence. Concurrently, these persons may be unaware that a particular home has any green certification due to a lapse of communication by the home builder or other involved party.

The study may also have a time/context confound surrounding the fact that real world data, not experimental data, were utilized. It may not always be possible to find acceptably similar homes
that were sold around similar timeframes. In this instance, the ability to have similar homes to compare took precedence over when the homes sold. Thus, the time of sale may have varied as much as eighteen months, and therefore the sale prices may have been affected by differences in the economic climate surrounding the real estate market. It should be noted that only one comparable home in the study sold as far as eighteen months from its subject property and one other sold fifteen months prior to its subject property. However, an overwhelming majority of comparable homes in the study, over 75%, sold within approximately six months or less of their subject property. Compounding this problem, each ENERGY STAR Home in this study is compared to three code-built homes, making the availability of acceptable comparison properties that much more difficult. Despite this difficulty, having three comparison properties captures a much more accurate representation of properties that approximate the subject property. To best combat this problem the current investigation should be replicated incrementally over the next few years to see if any lasting trends emerge. Alternatively, the findings could be replicated after the economy has become reasonably stabilized.

Finally, the results produced by the current investigation may be impacted by inequities between ENERGY STAR and code-built homes that are not accurately accounted for or are simply ignored during the appraisal process. Measures were taken to address this potential limitation. However, standard appraisal industry practice, which historically has ignored the value of energy-efficient home features, is the most common and best established and regulated method for accounting for differences between properties. The current investigation utilized standard appraisal industry practices combined with a number of researcher specified requirements aimed at making the processes more accurate. These additional appraisal guidelines will be discussed in the section titled "Appraisal property data set."

Significance of the Study

The results of the present investigation provide home construction industry professionals with powerful evidence on the market advantages of building to ENERGY STAR qualification standards. Furthermore, the results offer much needed evidence for the lending and appraising industries with regard to market impact that up until now has given little consideration to the energy efficiency of buildings. Additionally, no study has been conducted trying to link ENERGY STAR qualification alone with potential added market value. Previous studies and market summaries, like Griffin's (2009) study, examined homes that had any type of green certification or that had multiple certifications. Many other green certifications (e.g., LEED, Passivhaus, etc.) can add substantial financial investment and may require specialized equipment installations (e.g., alternative energy systems) compared to ENERGY STAR qualification. Because of this added investment it would logically follow that these homes would sell for more compared to their code-built counterparts. ENERGY STAR qualification alone, representing a relatively modest investment, is a program better suited for widespread implementation.
Demonstrating its financial viability to lenders, appraisers, home builders, and home buyers alike represents a critical step in reducing home energy use.

Research Methods

The present investigation aims to determine if there is a statistically significant market advantage for new homes that have obtained ENERGY STAR qualification compared to similar code-built homes. A market advantage for the purposes of this investigation is operationally defined along the dimensions of homes having reached a higher sale price, having sold for a larger percentage of the list price, having sold at a higher price per square foot, and/or having spent fewer days on the market before sale. Data examining the home's value (sale price, price per square foot) are important indicators of whether an ENERGY STAR Home is valued more because of its ENERGY STAR label and the energy efficiency tied to that certification compared to nonENERGY STAR Homes. Additionally, knowing if ENERGY STAR Homes sell for a greater percentage of the listing price can be an important indicator to home builders of consumer willingness to pay for energy efficiency. Furthermore, the carrying costs associated with holding a new home while a buyer is found can significantly impact financial return on investment for home builders. Therefore, examining if ENERGY STAR Homes spend less time on the market is of particular importance to builders and real estate agents.

Sample

The investigation uses two sets of data for statistical analysis. The first data set consists of a proportional stratified random sample of 100 ENERGY STAR qualified new homes. A proportional stratified randomized sample was implemented to ensure that the most representative sample was obtained, while still allowing for random selection. This sampling procedure included measures to account for a home's size and location, because these are two of the larger variables that contribute to home pricing and how long a home is expected to be on the market. The implemented sampling procedure will be discussed in greater depth later in this report in the section titled "ENERGY STAR Homes data set." The second set of data consists of 300 homes that have been appraised to be as similar to the ENERGY STAR Homes as possible given real world constraints and construction differences. Each ENERGY STAR Home has three comparable properties in the non-ENERGY STAR Homes group. These comparable properties have been determined to be as similar to the ENERGY STAR Home as possible as designated by
a third-party appraisal company. Furthermore, the appraisal company made financial adjustments to applicable comparison properties based on the features found in each individual home and according to standard appraisal industry practices. These adjustments ensure comparison property home prices were not detrimentally impacted by differences in features found between an ENERGY STAR Home and its comparison properties when these features were not tied directly to the ENERGY STAR qualification. For example, it is not uncommon to compare an ENERGY STAR Home containing three bedrooms and two full baths to a property that includes three bedrooms and three bathrooms. Logically, this means a difference in the number of bathrooms could be driving a price difference between the two homes. The appraisal company determines the value of the extra bathroom in the comparison property and would make a corresponding adjustment in its price to account for this difference. These adjustments provide a quasi-control for home pricing since not every home is exactly the same in terms of location and features/amenities.

Data Collection

Both sets of data used were generated from the Triangle Multiple Listing Service (MLS) from the years 2009 and 2010. The Triangle MLS contains data on the majority of new homes sold in and around the Raleigh/Durham area of North Carolina.for the years encompassed by the study and is one of the few such real-estate listing services in North Carolina that indicates whether these homes contain green features or any green building certifications. Data for both groups comprising the sample contain only new construction, single family, detached homes.

ENERGY STAR Homes data set.

The first set of data was generated from all homes listed as ENERGY STAR qualified and that had no other green building certification(s) for 2010 in the Triangle MLS. Homes with ENERGY STAR qualification and additional building certification, like LEED, NAHB, NCHBH, etc., were not considered. The present investigation is interested in the impact of ENERGY STAR qualification alone, and additional investments in homes earning dual or more certifications could mask or otherwise confound the results of the study.

ENERGY STAR Homes were identified in ten separate counties of the Triangle MLS. Only homes from the counties of Wake, Durham, Orange, Chatham, and Johnston were considered for the sample and for subsequent comparable properties. These counties were used because they contained an overwhelming majority of the ENERGY STAR Homes listed by the Triangle MLS (over 94\%) and because the ability to find valid comparison properties was considered to be greater than it would have been from the other counties due to the higher density of home sales in the selected counties.

After the five county region was determined, 100 homes were selected on a proportional, stratified random basis. This procedure was undertaken to ensure that the sample of ENERGY STAR Homes was as representative of the population as possible while still allowing for random selection. Home selection was based on proportionally dividing the sample pool by county and by the size (square footage) of the home. The home size was proportionally stratified based on standard deviation from the population mean home size. Properties were then randomly selected from each category using a randomly assigned identification number and a random number generator. Furthermore, the ENERGY STAR sample had a proportionally similar number of homes from each county and each county contained a proportionally similar stratification of home sizes when compared to the population. In short, this selection method prevented a disproportionally high numbers of ENERGY STAR Homes that were unrepresentative of the population (three standard deviations from the population mean, for example) from being included in the sample. Likewise, it also prevented a disproportionally high number of homes coming from any one county.

The importance of having a representative and random sample is paramount. It is easy to imagine the inaccuracies that might arise from a simple random sampling procedure that produces a sample containing too many homes from one particular area. This area could be more affluent and contain homes that are unrepresentatively large in size and high in price. When using data from the Triangle MLS this scenario is likely because the vast majority of sales are found in Wake County. In this area, homes in general tend to have a
higher value simply due to location compared to many of the surrounding counties. If simple random selection alone was employed to gather the sample, the likelihood of attaining a sample containing an unrepresentative majority of homes from Wake County would be high, leaving the surrounding areas misrepresented. Inaccuracies like this and other similar complications that could arise from simple random selection might artificially drive the price of ENERGY STAR Homes.

Concurrently, a simple random sample could adversely impact the accuracy of how long a home spent on the market, making any comparisons less valid or insignificant. For example, a home may sell faster in the state capital than in a rural county adjacent to it. The present investigation uses a proportional stratified random selection procedure to avoid these inaccuracies and to ensure the most representative sample was generated for comparisons.

Appraisal properties data set.

After the sample of 100 ENERGY STAR Homes was generated, it was sent to a thirdparty appraisal company. Using predefined criteria (discussed later in this section) and standard appraisal industry practices, three comparable properties were generated for each ENERGY STAR Home to create the second data set of 300 code-built homes. A third-party appraisal company was chosen because of their licensed ability to conduct the appraisal process. A licensed appraiser is subject to review, continuing education requirements, and must uphold industry standard practices.

The procedure for appraising property value contains a set of prescribed and acceptable practices that are relatively standardized. This procedure was developed by Freddie Mac and Fannie Mae, and is called the "Uniform Residential Appraisal Report." Appraisers can choose between three methods of appraising a home: the cost approach, the income approach, and the comparison approach (National Association of Home Builders Research Center, Inc., 2005). Generally the most common appraisal approach concerning residential property is the comparison approach. This approach was the one employed by

Office: (828) 2628331
Fax: (828) 2628696
the third-party appraisal company in the current investigation. In this approach, the subject property is compared to homes thought to be similar or the same along several dimensions (Advanced Energy, 2010). These comparable properties are generally close in geographic location to the subject property and have sold within a similar timeframe, usually within six months before the subject property. This time frame is adjusted depending on the housing market such that the comparable properties have sold within the closest possible time to eliminate any pricing variances due to changes in the economic climate. After a number of comparable properties are chosen (usually at least three comparables are generated for each subject property), adjustments for inequities between the subject property and its comparison properties are made. These adjustments are made to the comparison property's sale price to better reflect what the home would have cost if it were as similar to the subject property as possible. Once the adjustments are in place, the comparable home prices are averaged to create the appraisal value of the subject property.

Predefined criteria furnished by the researcher were also followed by the appraisal company and were created to ensure comparison properties were suitable beyond that of standard appraisal practices. These ten additional guidelines were developed so that comparison properties would be as similar to their ENERGY STAR counterparts as possible. Ensuring the highest degree of similarities between ENERGY STAR Homes and their comparables is essential for determining if the ENERGY STAR label and its related efficiency increases have a significant impact on a home's marketability. The ten selection guidelines that were used along with standard appraisal industry practices are discussed in terms of the subject property (the ENERGY STAR Home) and its comparison properties (comps), and include the following:
1.) The comp should not be chosen or otherwise influenced on the basis of the subject property's sale price. Comps should be chosen because they are of similar construction, location, date sold, number of rooms (bed and baths), garage, property size, etc. The study will determine if sale price is affected by ENERGY STAR qualification, so every possible effort needs to be made to select homes that are as similar as possible to the subject property without matching them along
the dimension of price. The NCEEA researcher will statistically examine differences in sales impact.
2.) Comps need to have adjustments that control for all known inequities between them and the subject property. Because sales price differences are of interest, it is important that the comp home sale price be adjusted for features not shared with the subject property to gain as accurate an estimate of price as possible. These adjustments should be made in accordance with standard practices implemented by appraisal professionals.
3.) Comps should have no green certifications. In addition, comps ideally will not have any distinguishing or uncommon green features (like a photovoltaic system or solar thermal system). If they do, an appropriate value adjustment should be made. Common inexpensive green features (low VOC paint, formaldehyde-free insulation, etc.) will be allowed on comps.
4.) Comps should be within $+/-10 \%$ of the subject property's size (conditioned sq. ft .).
5.) Comps should bracket the subject property in data categories where applicable and if possible. Comps should NOT bracket the subject property for sale price; this variable should not be considered.
6.) Comps should have a similar quality of construction and similar aesthetic design (the way they are built and the finishes and materials used inside and outside).
7.) Comps should be located in the same geographic area or a similar area as the subject property. If significant inequities exist in geographic location, an adjustment should be made based on best appraisal practices.
8.) Comps should have sold within no more than $+/$ three months of the subject property. Exceptions to this guideline can only be made when no suitable comparison has been sold within the three month window.
9.) Comps will only be new homes sales.
10.) Each subject property is required to have three (3) unique comps.

Data Analysis Procedures

Data were analyzed using paired-sample t-tests to determine if any significant differences exist between the ENERGY STAR Homes and code-built comp homes. This metric examined
whether the two groups' means were statistically different from one another with statistical certainty. A paired-sample t-test was selected because the code-built comp homes were matched to the ENERGY STAR Homes on a number of dimensions such that they were as similar as possible without having any known building certification. Furthermore, the code-built homes were selected specifically for each of the ENERGY STAR Homes as part of the appraisal process, not randomly. Having equal sample sizes is necessary to perform a paired-sample t-test. To accomplish equal sample sizes the three comp home data points generated for each ENERGY STAR Home were averaged to create one aggregate composite data point. Additionally, the t-test was used because of its robust nature when considering inferences about group means, even when examining nonparametric data (Rasch \& Guiard. 2004).

Page 23 of 53

Results and Discussion

Data analyses were carried out on a number of variables and the results and subsequent discussion are given below. The groups being compared were ENERGY STAR Homes and the aggregate composite scores for the code-built comp homes. Group means were compared on a number of different dimensions to determine if ENERGY STAR qualified homes held a significant market advantage over non-qualified homes. Group means were analyzed for differences in: (a) sale price; (b) sale price to list price ratio (i.e., the percentage of the listing price the home sold for); (c) price per square foot, and (d) number of days spent on market. Frequency distributions, a number of descriptive statistics, t -test values, and the actual p-values for each t-test are given for each group and variable of interest.

Sales Price Analysis

The data regarding a home's sale price was examined using three distinct approaches. A home's sale price is a good indicator of market performance because it demonstrates what consumers are willing to pay for a product, in this case homes that are either ENERGY STAR qualified or not. The first approach looks at an ENERGY STAR Homes' sale prices and compares them to the code-built comp homes' sale prices. The sale price data was generated from the data field on the MLS datasheets labeled "sale price" and is the recorded price the home sold for. The second approach took into consideration any financial concessions that were made to home buyers at the time of sale and removed these concessions from the reported sale price. It is not uncommon for builders to sell a home at or close to its list price while offering the buyer some type of financial concession at the time of closing. Thus, examining sale price with any financial concessions removed is a more accurate way of judging a home's true sale price as reflected by the total cost to the home buyer. The final approach considers both financial concessions and adjustments made to code-built comp homes' sale prices determined by the third-party appraisal company to account for inequities between them and their subject ENERGY STAR properties. These adjustments are made in order to make the properties as similar to each other as possible using established appraisal industry standards. This comparison is of the highest interest because it demonstrates the most tightly controlled conditions, minimizing the degree of difference between
the two groups. It is important to note that adjustments both increased and decreased code-built comp home prices and were not biased in either direction.

When examining the data comparing reported sale prices, ENERGY STAR Homes ($M=$ $\$ 339,360, S D=\$ 147,002$) were found to sell for statistically significantly more than code-build comp homes $(M=\$ 335,103, S D=\$ 139,949), t(199)=1.47, p<.10(p=0.0717)$. ENERGY STAR Homes $(M=\$ 337,106, S D=\$ 147,997)$ also sold for statistically significantly more than code-build comp homes $(M=\$ 332,597, S D=\$ 140,656)$ when financial concessions were removed from the sale prices, $t(199)=1.52, p<.10(p=0.0660)$. Finally, ENERGY STAR Homes $(M=\$ 337,106, S D=\$ 147,992)$ sold for statistically significantly more than code-build comp homes $(M=\$ 331,539, S D=\$ 142,306)$ when financial concessions were removed from the sale prices and adjustments were made to the code-built comp home prices to account for inequities between their corresponding ENERGY STAR subject property, $t(199)=1.18, p<.05$ ($p=0.0154$). Results of the analyses, their distributions, and the distribution of sale price differences are shown in Figures 1-7. A summary of group means, standard deviations, mean differences, and t -test results including significance level and p -values can be found in Table 1.

Table 1. Sale price analyses statistics including group means, standard deviations, group mean differences, and t-test results including significance level and p-values by analysis type.

Sale Price Analyses Statistics								
Group	Mean	Standard Deviation	Mean Difference	p -value	Level of Significance (Alpha Level)			
Sale Price Analysis:								
ENERGY STAR Homes	\$339,360	\$147,002	\$4,258	0.0717	0.10			
Code-Built Comp Homes	\$335,103	\$139,949						
Analysis w/ Financial Consessions Removed;								
ENERGY STAR Homes	\$337,106	\$147,992	\$4,509	0.0660	0.10			
Code-Built Comp Homes	\$332,597	\$140,656						
Analysis w/ Financial Concessions Removed and Adjustments								
ENERGY STAR Homes	\$337,106	\$147,992	\$5,566	0.0154	0.05			
Code-Built Comp Homes	\$331,539	\$142,306						

Figure 1. Group mean comparison for sale price data for all three analytic approaches.

Figure 2. Frequency distribution of sale prices of ENERGY STAR and code-built homes combined, in $\$ 25,000$ increments.

Figure 3. Frequency distribution of sale prices after financial concessions are removed of ENERGY STAR and code-built homes combined, in \$25,000 increments.

Frequency of Sale Price (w/ Financial Concessions Removed and Adjustments Factored)

Figure 4. Frequency distribution of sale prices after financial concessions are removed and financial adjustments are accounted for of ENERGY STAR and code-built homes combined, in $\$ 25,000$ increments.

Distribution of Sale Price Differences

Figure 5. Frequency distribution of sale prices differences between ENERGY STAR Homes and code-built comp homes in $\$ 10,000$ increments.

Figure 6. Frequency distribution of sale prices differences between ENERGY STAR and codebuilt homes after financial concessions are removed in $\$ 10,000$ increments.

Distribution of Sale Price Differences (w/ Financial Concessions Removed and Adjustments Factored)

Sale Price Difference in $\$ 10,000$ Bins
Figure 7. Frequency distribution of sale prices differences between ENERGY STAR and codebuilt homes after financial concessions are removed and financial adjustments are accounted for of in $\$ 10,000$ increments.

These findings strongly indicate that ENERGY STAR qualified homes sell for more than codebuild homes that are similar in construction and location. Significant group differences were found regardless of the approach used to analyze the data. Expectedly, the strongest finding was exhibited when using the approach that minimized differences between the code-built comp homes and their ENERGY STAR subject properties. This analysis represents the closest "apples-to-apples" comparison and reached the highest level of significance. Findings indicate that it can be expected that an ENERGY STAR Home will sell for more than a comparable code-built home in a market similar to the one sampled herein. The data from the sample indicate that ENERGY STAR Homes sold for an average of \$5,566 more than the code-built comp homes when the differences between the homes were minimized. This difference is large enough to suggest that costs associated with ENERGY STAR qualification, on average, can be recovered by builders at the time of sale. Additionally, this finding illustrates that the value of an energyefficient home reflected by its sales price is greater than those simply built to code, providing solid evidence for the appraisal industry to assign value to energy-efficient home features including ENERGY STAR qualification.

Proportion of List Price Analysis

Two different approaches were used to analyze the data surrounding how much of the list price a home sold for. The first approach used reported sale price data and divided it by the home's initial list price. The second approach considered financial concessions, removing them from the sale price, and then divided this new sale price by the original list price. Using the adjusted codebuilt comp home prices to conduct a third analysis of proportion of the list price was not utilized. This analysis would be inappropriate because an adjusted sale price would be compared to a list price that had not undergone similar adjustments, thus distorting the relationship between sale price and list price.

When examining the sale price to list price ratio, ENERGY STAR Homes $(M=98.61 \%, S D=$ 3.56%) were found to have sold for a greater percentage of the list price compared to code-built comp homes ($M=98.17 \%, S D=2.51 \%$), but this result failed to reach statistical significance, t $(199)=1.06, p=$ n.s. $(p=.1463)$. ENERGY STAR Homes were found to sell for 0.45% more of
their list price compared to the code-build comp homes, but this difference was not great enough to produce a significant result. Similarly, when considering the proportion of the list price homes sold for when financial concessions were removed, ENERGY STAR Homes ($M=97.69 \%, S D=$ 3.80%) achieved a greater percentage compared to code-built comp homes ($M=97.21 \%, S D=$ $2.61 \%)$, but this result also failed to reach statistical significance, $t(199)=1.10, p=$ n.s. $(p=$.1362). Using this approach, ENERGY STAR Homes were found to sell for 0.48% more of their list price compared to the code-build comp homes. Results of the analyses and their distributions are shown in Figures 8-10. A summary of group means, standard deviations, mean differences, and t -test results including significance level and p -values can be found in Table 2.

Table 2. Proportion of list price analyses statistics including group means, standard deviations, group mean differences, and t-test results including significance level and p-values by analysis type.

Proportion of List Price Analyses Statistics					
		Standard Deviation	Mean Difference	Level of (-value	Significance (Alpha Level)
Proportion of List Price Analysis:					
ENERGY STAR Homes	98.61%	3.56%	0.45%	0.1463	Not significant
Code-Built Comp Homes	98.17%	2.51%			
Analysis w/ Financial Consessions					
Removed;				0.1362	Not significant
ENERGY STAR Homes	97.69%	3.56%	0.48%	0.6	
Code-Built Comp Homes	97.21%	2.61%			

Figure 8. Group means of the proportion of list price ENERGY STAR and code-built homes sold for by group and condition.

Figure 9. Frequency distribution of the proportion of list price ENERGY STAR and code-built homes sold for in one percent increments.

Figure 10. Frequency distribution of the proportion of list price ENERGY STAR and code-built homes sold for after financial concession were removed in one percent increments.

The data on proportion of list price suggests that while ENERGY STAR Homes were observed to sell for a higher proportion of their list price, this difference is not great enough to reach statistical significance. However, these results did approach significance with p-values only a few hundredths of a percent away from statistical significance. This lack of statistical evidence could be occurring for several reasons. Mathematically, there may not be enough statistical power to generate a significant result, which could be due to limitations in the sample size. Additionally, these homes may be priced very close to market value such that there is little room for concessions that could yield larger differences between the list price and sale price. This instance may be especially true in today's economic climate with a depressed housing market. In such a market, home builders may price homes to sell, minimizing profit margins and subsequent negotiating room on the sale price.

Other notable findings are revealed by analyzing sale price data. If an ENERGY STAR Home's list price was set above that of a similar non-certified home by the demonstrated sale price premium of $\$ 5,566$, then no difference in the proportion of the list price would be expected. Put another way, ENERGY STAR Homes may have the additional cost of ENERGY STAR
qualification absorbed by a listing price increase. However, an analysis of home list prices revealed only moderate, non-statistically significant, differences in the list prices of ENERGY STAR Homes $(M=\$ 344,219, S D=\$ 148,855)$ and the code-built comp homes $(M=\$ 341,858$, $S D=\$ 144,575), t(199)=0.8371, p=$ n.s. $(p=0.2018)$. This finding means that ENERGY STAR Homes are not necessarily priced above similar code-built homes and the sale price premium is not indicative of a list price increase.

Home buyers may not understand the energy savings and other benefits encompassed by an ENERGY STAR Home. Seemingly, home buyers are willing to pay a slightly higher, statistically insignificant amount of the list price. The fact that a difference was observed at all may represent a small percentage of home buyers that actively sought and were willing to pay more for efficient housing. However, this statistically insignificant difference most likely reflects the fact that most consumers view an ENERGY STAR Home as the same product as a noncertified home and are therefore willing to pay approximately the same percentage of the listing price for any home. Future research should be developed targeting consumer comprehension of the economic benefits of ENERGY STAR qualification over the span of a thirty-year mortgage and their willingness to pay for energy efficiency. Research along these lines would provide greater insight into possible reasons ENERGY STAR Homes did not sell for a statistically significant greater proportion of their list price compared to the code-built comp homes.

Price per Square Foot Analysis

The price per square foot of a home is calculated by dividing a home's sale price by its reported conditioned square footage. Understanding the value of a home on a price per square foot basis is important because it creates a standard unit of measurement that can be equally applied to any home. Examining only the sale price of a home is helpful, but cannot accomplish a universal unit that defines how the price was reached. Although, the study tried to control for inequities between home sizes, it is often the case that an ENERGY STAR Home is compared to homes that are not the exact same square footage. In this instance the size differences could drive differences in home prices because it would logically follow that a larger home requiring more time and material would cost more. Financial adjustments were made on the basis of size

[^67]Office: (828) 2628331
Fax: (828) 2628696
inequities between the subject and comparison properties, but this difference may not cover the full amount a particular builder may charge for a home on a per square foot basis. Therefore, a methodological approach to examine home sales price employing a standard unit is necessary. The analysis of price per square foot employed three approaches similar to those used to analyze data regarding sale price. The price per square foot was calculated for basic sale price data, sale price data after any financial concessions were removed, and sale price data with a combination of removing financial concessions and taking into account adjustments made to the code-built comp homes to minimize differences between them and their ENERGY STAR subject properties. Again, this latter analysis is the most important because it represents the most "apples-to-apples" comparison.

When examining the price per square foot for sale price data, ENERGY STAR Homes ($M=$ $\$ 121.81, S D=\$ 29.97$) were found to sell for statistically significantly more than code-build comp homes $(M=\$ 119.25, S D=\$ 23.59), t(199)=, p<.05(p=0.0350)$. ENERGY STAR Homes $(M=\$ 120.85, S D=\$ 30.49)$ also sold for statistically significantly more than code-build comp homes $(M=\$ 118.23, S D=\$ 24.06)$ when financial concessions were removed from the sale prices, $t(199)=, p<.05(p=0.0337)$. Finally, ENERGY STAR Homes $(M=\$ 120.85, S D=$ $\$ 30.49$) sold for statistically significantly more than code-build comp homes ($M=\$ 117.86, S D=$ $\$ 24.46$) when financial concessions were removed from the sale prices and adjustments were made to the code-built comp home prices to account for inequities, t (199) $=$, $p<.05$ ($p=$ 0.0129). Results of the analyses as well as their distributions are shown in Figures 8-11. Results of the analyses, their distributions, and the distribution of sale price differences are shown in Figures 11-17. A summary of group means, standard deviations, mean differences, and t-test results including significance level and p-values can be found in Table 3.

Table 3. Price per square foot analyses statistics including group means, standard deviations, group mean differences, and t-test results including significance level and p-values by analysis type.

Price per Square Foot Analyses Statistics								
Group	Mean	Standard Deviation	Mean Difference	p-value	Level of Significance (Alpha Level)			
Price per Square Foot Analysis:								
ENERGY STAR Homes	\$121.81	\$29.97	\$2.56	0.0350	0.05			
Code-Built Comp Homes	\$119.25	\$23.59						
Analysis w/ Financial Consessions								
Removed;			\$2.62		0.05			
ENERGY STAR Homes	\$120.85	\$30.49		0.0337				
Code-Built Comp Homes	\$118.23	\$24.06						
Analysis w/ Financial Concessions Removed and Adjustments								
ENERGY STAR Homes	\$120.85	\$30.49	\$2.99	0.0129	0.05			
Code-Built Comp Homes	\$117.86	\$24.46						

Figure 11. Group mean comparison for price per square foot data for all three analytic approaches.

Figure 12. Frequency distribution of price per square foot of ENERGY STAR and code-built homes in bins of $\$ 10$.

Figure 13. Frequency distribution of the price per square foot that ENERGY STAR and codebuilt homes sold for after financial concessions were removed in bins of $\$ 10$.

Figure 14. Frequency distribution of the price per square foot that ENERGY STAR and codebuilt homes sold for after financial concession were removed and adjustments were considered in bins of $\$ 10$.

Figure 15. Frequency distribution of price per square foot differences between ENERGY STAR Homes and code-built comp homes in $\$ 5.00$ increments.

Figure 16. Frequency distribution of price per square foot differences between ENERGY STAR and code-built homes after financial concessions are removed in $\$ 5.00$ increments.

Figure 17. Frequency distribution of price per square foot differences between ENERGY STAR and code-built homes after financial concessions are removed and financial adjustments are accounted for, in $\$ 5.00$ increments.

The analyses regarding price per square foot revealed strong evidence indicating ENERGY STAR Homes encompass a significant market advantage over similar code-built homes. These results largely followed the trends uncovered when examining the sale price data, but yielded even stronger evidence due to the use of a universal unit measuring price. Again, the strongest finding was the analysis completed where the differences between ENERGY STAR Homes and the code-built comp homes were minimized. This analysis took into consideration both the financial concessions and the adjustments made by the third-party appraiser. When examining the data in this way, the data yielded results approaching the $p<0.01$ significance level and indicated the average ENERGY STAR Home from the sample sold for nearly $\$ 3.00$ more per square foot than a code-built comp home. Since ENERGY STAR qualification represents a modest additional investment, typically between $0.5 \%-1.5 \%$ (depending on economies of scale) of its retail value, there is a strong likelihood of recovering initial investment and even increasing profit margins for the builder.

Days on Market Analysis

The data concerning the number of days a home spent on the market originates from a data field contained within the MLS datasheets. It is important to note that the MLS datasheets contain two distinct data fields pertaining to the days a home spends on the market. Only one is examined by the study. The first data field pertains to the days a home has spent on the market for its most current listing. The second includes a cumulative count of the days a home has spent on the market for its current listing in addition to any previous listings that particular home may have had. Often, if a home has spent a relatively long period of time on the market, the buyer may choose to switch real estate agents or pull the home from the market and relist it later. Relisting the home will reset the first data field so that when the home comes back on the market, its listed days on market resets to zero. This act keeps the days on market count low and is often strategically employed by real estate agents and homeowners to discourage low offers. This day count however, is thus not always representative of the true amount of time a home has spent on the market. The current analysis examined the cumulative days a home has spent on the market. This number may not be a perfect indicator and could still underestimate the true time a home has spent on the market. This situation is rare but could occur if a home was able to acquire a different MLS number when relisted or if it was on the market for any period of time without an

MLS number, as could be the case if the owner listed it for sale without the aid of a real estate agent. The analysis in this study examines the cumulative days spent on market tied to one MLS number for the sampled homes.

When statistically analyzing the data regarding the days the sample homes spent on the market, an overwhelmingly robust difference is revealed. ENERGY STAR Homes ($M=98, S D=$ 117.88) spent statistically significantly fewer days on the market compared to code-built comp homes $(M=187, S D=145.63), t(199)=-4.88, p<.01(p=0.0000)$. Results of the analysis, their distributions, and the distribution of sale price differences are shown in Figures 18-21. A summary of group means, standard deviations, mean differences, and t-test results including significance level and p-values can be found in Table 4.

Table 4. Days on market analysss statistics including group means, standard deviations, group mean differences, and t-test results including significance level and p-values by analysis type.

	Days on Market Analysis Statistics				
Group	Mean	Standard Deviation	Mean Difference	p-value	Level of Significance (Alpha Level)
Sale Price Analysis:	98	117.88			
ENERGY STAR Homes	187	145.63	89	0.000002	0.01
Code-Built Comp Homes					

Figure 18. Group mean comparison for days on market data.

Figure 19. Frequency distribution of the days spent on the market by ENERGY STAR and codebuilt homes together in bins of 30 days.

Figure 20. Frequency distribution of the differences in the days spent on the market between ENERGY STAR and code-built home in 60 days bins.

Figure 21. Frequency distribution of the days spent on the market by ENERGY STAR and codebuilt homes separated in bins of 30 days. Note the ENERGY STAR distribution is shifted left and has a pronounced difference in the number of homes selling in under 30 days and has far fewer homes needing over 180 days to sell.

ENERGY STAR Homes again demonstrated a market advantage compared to the code-built comp homes when considering how long a home takes to sell. Results indicate that the sampled ENERGY STAR Homes sold significantly faster, far exceeding the $p<.01$ significance level, by an average of 89 days compared to their code-built counterparts. In similar real estate markets, real estate agents, builders, and homeowners can expect their ENERGY STAR listings to sell faster than a non-certified home. The large discrepancy uncovered in the analysis of days on market for the study sample was mathematically the strongest piece of evidence regarding ENERGY STAR Homes' market advantage. The days on market data suggest that even if other demonstrated market advantages, including sale price and price per square foot, were ignored, ENERGY STAR Homes could be sold fast enough to recover financial investments by simply saving on the carrying costs of holding a home while a buyer is found.

Conclusion

The ENERGY STAR Homes sampled for the investigation demonstrated a significant market advantage in three of the four analyses carried out when compared against the code-built comp homes. Interestingly, evidence of market advantages surfaced even when differences between groups were not minimized. This evidence was found when the financial adjustments made by the third-party appraisal company (for the purpose of best controlling for differences between the properties) were not considered in the analysis. However, where applicable, when the differences between ENERGY STAR Homes and their code-built counterparts were minimized through the appropriate use of these financial adjustments, the strongest evidence signifying ENERGY STAR Homes' market advantage was exemplified. It was found that when the differences were minimized, ENERGY STAR Homes sold for an average sale price premium of $\$ 5,566$ per home and $\$ 2.99$ more per square foot over the code-built comp homes. Additionally, ENERGY STAR Homes sold an average of 89 days faster than the code-built comp homes. On average, ENERGY STAR Homes also sold for 0.48% greater as a proportion of the list price compared to the codebuilt comp homes, although p-values for these analyses did not reach statistical significance. Still, these findings indicate that ENERGY STAR Homes do have a strong, multidimensional market advantage when compared with similar code-built homes.

Implications for Home buyers

At first glance, these results may seem problematic for the average home buyer. That is, this study indicates that ENERGY STAR Homes carry a higher up-front cost compared to a standard code-built home. Given the current economy, an average home buyer may feel uneasy or may be unwilling to make the additional investment to buy a new home that has achieved ENERGY STAR qualification. However, while it was found that ENERGY STAR Homes sold for more money, real estate agents and builders were not initially asking for more despite the many additional and beneficial features that are built into the qualification process. Likewise, the upfront cost savings gained by choosing a non-certified home is quickly negated by immediate positive cash flow due to energy savings. Additionally, the implications of days spent on market will likely transfer to a quicker turnover for that homeowner when they sell their home in the future.

ENERGY STAR Homes earn the homeowner monthly savings on utility bills of around 15% to 30% or more (Jones \& Vyas, 2008; Qualified New Homes, n.d.). For the average homeowner this translates into appreciable savings that can pay for the added costs of ENERGY STAR qualification, typically in around five years. If looked at in terms of a thirty-year mortgage, using the common rule of thumb, for every $\$ 1,000$ lent one can expect to have approximately $\$ 1$ of additional monthly mortgage payments, ENERGY STAR Homes can produce a positive cash flow. This positive cash flow is achieved because the monthly savings on utilities will exceed the additional monthly mortgage cost associated with ENERGY STAR qualification. Additionally, while not widely available, some lending institutions provide mortgage incentives for ENERGY STAR homeowners.

The results of the study also indicate two other important factors for the prospective home buyer to be aware of when choosing between an ENERGY STAR Home and a non-certified home. The first recognizes that there is a growing body of research pointing towards the added value of energy-efficient features in homes. This research indicates that homeowners will be able to recoup investments in energy efficiency through faster sale/resale or reduced operating costs over the first few years of living in their home. Many studies (Halvorsen \& Pollakowski, 1981; Johnson \& Kaserman, 1983; Longstrenth, 1986; Laquatra, 1986; Dinan \& Miranowski, 1989; Horowitz \& Haeri, 1990; and Nevin \& Watson, 1998) have found that more efficient homes sell for higher sale prices. Moreover, the appraisal industry may be convinced by this research to place added value on homes with energy-efficient features, thus better securing a homeowner's investment. The second factor takes into consideration the results of the days on market analysis. Sampled ENERGY STAR Homes were found to sell 89 days faster than non-certified homes. If this trend is generalized to any home sale, ENERGY STAR homeowners could expect, in a similar market, that their home will sell faster than if it were not ENERGY STAR qualified. This faster sale could carry with it a number of benefits including being able to qualify for financing on a new home faster, eliminating the need to have multiple homes and costs associated with owning two homes, facilitate relocation, and reduce the expenses involved with selling a home.

Implications for Home Builders and Real Estate Agents

The advantage encompassed in building and selling ENERGY STAR Homes is very straightforward for home builders and real estate agents. Findings indicate that ENERGY STAR Homes sell for more and sell faster than the code-built comp homes. In markets similar to the one sampled for this study, home builders should have multiple avenues for recouping additional investments required in building to ENERGY STAR qualification standards. Additionally, real estate agents have good reason to support ENERGY STAR Homes as they can expect these homes to sell faster and at a higher price point. The findings indicate that home builders should be able to sell their product for more than a similar non-certified offering by a competitor. This means higher profits for home builders and larger commissions for their real estate agents. ENERGY STAR Homes also sell significantly faster than non-certified homes, meaning less carrying costs for home builders and less time investment for real estate agents, freeing them to focus on other listings. Moreover, the home builder/real estate agent team may take satisfaction in offering the consumer a product that will provide them a more enjoyable living experience, is more environmentally responsible, is a higher quality product, and one that will ultimately save the consumer money. These less direct, consumer-related benefits could circle back to the home builder or real estate agent by decreasing warranty claims and increasing positive company image.

Implications for the Appraisal and Lending Industries

Lastly, the findings of this investigation have implications for appraisers and lenders. These industry professions often coordinate during the home buying process and hold a great deal of power in determining what home a prospective home buyer will be able to purchase. This relationship between appraisers and lenders is largely due to the mortgage approval process, which requires a home to be appraised prior to approving a loan. The amount of the loan is often changed to reflect what the home has been valued at based on the appraisal. Lenders use a set of standardized criteria for determining if a potential mortgage recipient will be able to pay off the loan. Part of these criteria examine the home buyer's housing cost-to-income ratio, which utilizes a preset percentage designed to capture what a potential home buyer can afford to pay monthly. This preset percentage ignores that energy-efficient homeowners have reduced monthly home operational costs and are subsequently able to larger mortgage amounts. Additionally, if the
benefits of energy-efficient home features are ignored in the appraisal report, the loan amount may not be enough to cover the additional cost of those features, putting more efficient homes outside of financial reach for some home buyers. Therefore, because the appraisal report has not assigned an appropriate value to these features, this larger up-front cost can reduce the chances of securing a loan despite the known financial benefits of energy-efficient certification.

Many studies (Halvorsen \& Pollakowski, 1981; Johnson \& Kaserman, 1983; Longstrenth, 1986; Laquatra, 1986; Dinan \& Miranowski, 1989; Horowitz \& Haeri, 1990; and Nevin \& Watson, 1998) have already shown that homes incorporating energy efficiency features sell for more than less efficient homes. The results of this investigation support those previous findings, suggesting there is evidence that the energy efficiency tied to ENERGY STAR qualification can add to a home's market value. Furthermore, recent market analyses (Carson, 2009; Griffin, 2009; Argeris, 2010; Mosrie, 2011) have demonstrated that homes with energy-efficient building certifications sell for more in today's market. The evidence produced in this study reflects actual home sales data that is independent of any particular home's appraised value. This means that the market already values energy efficiency, even if ignored during the appraisal process. This recurrent theme suggests that value tied to energy efficiency can no longer be ignored and must be considered during the appraisal process.

Valuing energy-efficient home features can alleviate many of the problems facing widespread implementation of building efficiency programs across the country. It would enable builders to be more assured that their additional investment would be recoverable at the time of sale, and it may allow them to secure construction loans that cover this additional investment. Proper valuation will help home buyers in obtaining a mortgage that covers the added upfront expenses of energy-efficient construction, while giving lenders assurance that the collateral against the loan is valued properly.

Summary

This investigation examined the market performance of ENERGY STAR Homes compared to non-ENERGY STAR qualified comparable homes. The evidence produced by this investigation suggests that ENERGY STAR Homes have a competitive market advantage compared to similar code-built homes. It was found that ENERGY STAR homes attained higher sales prices and sold in significantly less time compared with similar conventional homes. This multidimensional advantage is substantial enough to suggest to home builders and home buyers that the additional investment in ENERGY STAR qualification is recoverable and even profitable.

Findings of this study also contain implications for the lending and appraisal industries, providing further evidence that there is value tied to energy-efficient home features as expressed through regular market transactions. This evidence supports a transition to assigning value to energy-efficient features as a standard appraisal practice. While the findings of this study have a high degree of statistical significance in the greater Raleigh, NC housing market, replication of this methodology should be conducted in other markets to further validate the robustness of this statistical analysis. Understanding these real market impacts and assigning appropriate value to energy efficient construction techniques may help facilitate widespread implementation of energy-efficient building certification programs on a national scale. Implications of these results should be capitalized on by many of the housing market's key stakeholders including home buyers, home builders, real estate agents, appraisers, and lenders.

References

2009 ENERGY STAR qualified new homes market indices for states. (2009). [Graphic depicting state market indices of ENERGY STAR implementation and national average]. Features \& Benefits of ENERGY STAR Qualified New Homes. Retrieved from
http://www.energystar.gov/index.cfm?fuseaction=qhmi.showHomesMarketIndex
About the Alliance. (2011). Retrieved from http://ncenergystar.org/about/about-alliance Advanced Energy. (2010). 2010 appraisal industry research. Raleigh, NC: Mitchell, W., Bloise, V., \& Matthews, K.

Argeris, K. (2010). High performance homes sell better in the triangle. Retrieved from http://www.raleighquickappraisals.com/High+Performance+Homes+Sell+Better+in +the+Triangle
Ball, L. F. (2011). Assessment of the green building needs of North Carolina real estate appraisers. (Unpublished doctoral dissertation). Prescott College, Prescott, AZ.
Banerjee, A. \& Solomon, B. D. (2003). Eco-labeling for energy efficieny and sustainability: a meta-evaluation of US programs. Energy Policy, 21(2003), 109-123.
Carson, M. (2009). Certified green homes sales in Atlanta, GA 2009. Retrieved from http://greentothescene.files.wordpress.com/2010/03/atlanta-2009-green-sales-nar.pdf
Corgel, J. B., Goebel, P. R., \& Wade, C. E. (1982). Measuring energy efficiency for the selection and adjustment of comparable sales. The Appraisal Journal, (1), 71-78.
Dinan, T. M., \& Miraniwski, J. A. (1989). Estimating the implicit price of energy efficiency improvements in the residential housing market; a hedonic approach. Journal of Urban Economics, 25(1), 52-67.
Dixon, R. K., McGowan, E., Onysko, G., \& Sheer, R. M. (2010). US energy conservation and efficiency policies: Challenges and opportunities. Energy Policy, 38(2010), 6398-6408.
Features \& benefits of ENERGY STAR qualified new homes. Retrieved from http://www.energystar.gov/index.cfm?c=new_homes.nh_features
Griffin, A. (2009). Certified home performance: assessing the market impact of third party certification on residential properties [White paper]. http://pacenow.org/ documents/seattle_green_real_estate_premium.pdf

Halvorsen, R. \& Pollakowski, H. O. (1981). The effects of fuel prices on house prices. Urban Studies, 18(2), 205-211.

Horowitz, M. J. \& Haeri, H. (1990). Economic efficiency v. energy efficiency: Do model conservation standards make good sense? Energy Economics, 12(4), 122-131.

Johnson, R. C. \& Kaserman, D. L. (1983). Housing market capitalization of energy saving durable good investments. Economic Inquiry, (7), 374-386.
Jones, P. \& Vyas, U. (2008). Energy performance in residential green developments: A Florida case study. Real Estate Issues, 33(11), 65-71.

Laquatra, J. (1986). Housing market capitalization of thermal integrity. Energy Economics (7), 134-138.

Longstreth, M. (1986). Impact of consumers' personal characteristics on hedonic prices of energy-conserving durable good investments. Energy, 11(9), 893-905.

Mosrie, D. (2011). Just the facts Asheville's green housing market. Western North Carolina Green Building Directory, 2011, 82-83.

National Association of Home Builders Research Center Inc. (2005). ZEH preliminary market analysis: General investigation of the residential appraisal industry. Upper Marlboro, MD

Nevin, R. (2010). Energy-efficient housing stimulus that pays for itself. Energy, 38(2010), 4-11.
Nevin, R. \& Watson, G. (1998). Evidence of rational market valuations for home energy efficiency. The Appraisal Journal, (10), 401-409.

Qualified new homes: ENERGY STAR. Retrieved from http://www.energystar.gov/ index.cfm?c= new_homes.hm_index

Rasch, D., \& Guiard, V. (2004). The robustness of parametric statistical methods. Psychology Science, 46(2), 175-208.
Triangle MLS adds green fields. (2009). Retrieved November 30, 2011, from http://trianglegreenhomes.wordpress.com/2009/03/16/triangle-mls-adds-green-fields/
U.S. Energy Information Administration. (2009). [Pie graph depicting the energy consumed by sectors of the economy for 2009]. Annual Energy Reivew 2009. Retrieved from http://www.eia.doe.gov/energyexplained/index.cfm?page=us_energy_use
U.S. Energy Information Administration. (2005). [Pie graph depicting how energy is used in homes for 2005]. Residential Energy Consumption Survey 2005. Retrieved from http://www.eia.doe.gov/energyexplained/index.cfm?page=us_energy_homes
Use of electricity. (2010, November 2). Retrieved from ttp://www.eia.doe.gov/energyexplained/ index.cfm?page=electricity_use

This material is based upon work supported by the U.S. Department of Energy under Award Number DE-EE-0000157 with the North Carolina Energy Office through a subgrant to Appalachian State University.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

112TH CONGRESS 1st Session
 H. R. 2599

To prevent Fannie Mae, Freddie Mac, and other Federal residential and commercial mortgage lending regulators from adopting policies that contravene established State and local property assessed clean energy laws.

IN THE HOUSE OF REPRESENTATIVES

July 20, 2011
Ms. Hayworth (for herself, Mr. Thompson of California, Mr. Daniel E. Lungren of California, Mr. Sensenbrenner, Mr. Sessions, Mr. Flores, Mr. Cole, Mr. Hanna, Mr. Dold, Mr. Manzullo, Mrs. Capps, Ms. Woolsey, Mr. Perlmutter, Ms. Matsui, and Mr. Polis) introduced the following bill; which was referred to the Committee on Financial Services

A BILL

To prevent Fannie Mae, Freddie Mac, and other Federal residential and commercial mortgage lending regulators from adopting policies that contravene established State and local property assessed clean energy laws.

1 Be it enacted by the Senate and House of Representa-
2 tives of the United States of America in Congress assembled,
3 SECTION 1. SHORT TITLE.
4 This Act may be cited as the "PACE Assessment
5 Protection Act of 2011".

5 property owners remain viable as a potential avenue for
6 States and local governments to achieve the many public
7 benefits associated with energy efficiency, water efficiency,

9 that the power and authority of State and local govern10 ments to exercise their longstanding and traditional pow11 ers to levy taxes for public purposes not be impeded.

12 sec. 3. DEFINITIONS.

13 For purposes of this Act the following definitions 14 apply:
(1) The term "local government" includes counties, cities, boroughs, towns, parishes, villages, districts, and other political subdivisions authorized under State laws to establish PACE programs.
(2) The term "PACE agreement" means an agreement between a local government and a property owner detailing the terms of financing for a PACE improvement.
(3) The term "PACE assessment" means a tax or assessment levied by a local government to provide financing for PACE improvements.
(4) The term "PACE improvements" means qualified clean energy improvements, qualified energy conservation and efficiency improvements, and qualified water conservation and efficiency improvements.
(5) The term "PACE lien" means a lien securing a PACE assessment, which may be senior to the lien of pre-existing purchase money mortgages on the same property subject to the PACE lien.
(6) The term "PACE program" means a program implemented by a local government under State law to provide financing for PACE improvements by levying PACE assessments.
(7) The term "residential property" means a property with up to 4 private residences.
(8) The term "non-residential property" means private property that is-
(A) not used for residential purposes; or
(B) residential property with 5 or more residences.
(9) The term "clean energy improvements" means any system on privately owned property for producing electricity for, or meeting heating, cooling, or water heating needs of the property, using renewable energy sources, combined heat and power sys-
tems, or energy systems using wood biomass (but not construction and demolition waste) or natural gas. Such improvements include solar photovoltaic, solar thermal, wood biomass, wind, and geothermal systems. Such term includes the reasonable costs of a study undertaken by a property owner to analyze the feasibility of installing any of the improvements described in this paragraph and the cost of a warranty or insurance policy for such improvements.
(10) The term "energy conservation and efficiency improvements" means measures to reduce consumption, through conservation or more efficient use, of electricity, fuel oil, natural gas, propane, or other forms of energy by the property, including air sealing, installation of insulation, installation of heating, cooling, or ventilation systems, building modification to increase the use of daylighting, replacement of windows, installation of energy controls or energy recovery systems, installation of building management systems, and installation of efficient lighting equipment, provided that such improvements are permanently affixed to the property. Such term includes the reasonable costs of an audit undertaken by a property owner to identify potential energy savings that could be achieved through instal-
lation of any of the improvements described in this paragraph.
(11) The term "water conservation and efficiency improvements" means measures to reduce consumption, through conservation or more efficient use of water by the property, including installation of low-flow toilets and showerheads, installation of timer or timing system for hot water heaters, and installation of rain catchment systems.
(12) The term "property owner". means the owner of record of real property that is subject to a PACE assessment, whether such property is zoned or used for residential, commercial, industrial, or other uses.
(13) The term "qualified" means, with respect to PACE improvements, that the improvements meet the criteria specified in section 5.
sec. 4. treatment of pace programs by fnma and FHLMC.
(a) Lender Guidance.-The Director of the Federal Housing Finance Agency, acting in the Director's general supervisory capacity, shall direct the Federal National Mortgage Association and the Federal Home Loan Mortgage Corporation to-

5 with respect to residential property, for the following:
(1) Property owner agreements.-
(A) PACE ASSESSMENT.-The property owner shall agree in writing to a PACE assessment, either pursuant to a PACE agreement or by voting in the manner specified by State law. In the case of any property with multiple owners, each owner or the owner's authorized representative shall execute a PACE agreement or vote in the manner specified by State law, as applicable.
(B) Payment schedule.-The property owner shall agree to a payment schedule that identifies the term over which PACE assessment installments will be due, the frequency with which PACE assessment installments will be billed and amount of each installment, and the annual amount due on the PACE assessment. Upon full payment of the amount of the PACE assessment, including all outstanding interest and charges and any penalties that may
become due, the local government shall provide the participating property owner with a written statement certifying that the PACE assessment has been paid in full and the local government shall also satisfy all requirements of State law to extinguish the PACE lien.
(2) Disclosures by local governnient.The local government shall disclose to the participating property owner the costs and risks associated with participating in the PACE program, including risks related to their failure to pay PACE assessments and the risk of enforcement of PACE liens. The local government shall disclose to the property owner the effective interest rate of the PACE assessment, including all program fees. The local government shall clearly and conspicuously provide the property owner the right to rescind his or her decision to enter into a PACE assessment, within 3 days of the original transaction.
(3) Notice to lienholders.-Before entering into a PACE agreement or voting in favor of a PACE assessment, the property owner or the local government shall provide to the holders of any existing mortgages on the property written notice of the terms of the PACE assessment.
(4) Confidentiality.-Any personal financial information provided by a property owner to a local government or an entity administering a PACE program on behalf of a local government shall comply with applicable local, State, and Federal laws governing the privacy of the information.
(c) Requirements Applicable Only to Non-Residentlal Property.-A PACE program shall provide, with respect to non-residential property, for the following:
(1) Authorization by lienholders.-Before entering into a PACE agreement with a local government or voting in favor of PACE assessments in the manner specified by State law, the property owner shall obtain written authorization from the holders of the first mortgage on the property.
(2) PACE agreement.-
(A) Terms.-The local government and the owner of the property to which the PACE assessment applies at the time of commencement of assessment shall enter into a written PACE agreement addressing the terms of the PACE improvement. In the case of any property with multiple owners, the PACE agreement shall be signed by all owners or their legally authorized representative or representatives.
(B) PACE iniprovenents.-The property owner shall contract for PACE improvements, purchase materials to be used in making such improvements, or both, and upon submission of documentation required by the local government, the local government shall disburse funds to the property owner in payment for the PACE improvements or materials used in making such improvements.
(C) Paynent schedule.-The PaCE agreement shall include a payment schedule showing the term over which payments will be due on the assessment, the frequency with which payments will be billed and amount of each payment, and the annual amount due on the assessment. Upon full payment of the amount of the assessment, including all outstanding interest and charges and any penalties that may become due, the local government shall provide the participating property owner with a written statement certifying that the assessment has been paid in full and the local government shall also satisfy all requirements of State law to extinguish the PACE lien.

25 ERS.-Before levying a PACE assessment on a property,

1 the local government shall ensure that all of the following
2 are true with respect to the property:
(1) All property taxes and any other public assessments are current and have been current for 3 years or the property owner's period of ownership, whichever period is shorter.
(2) There are no involuntary liens, such as mechanics liens, on the property in excess of $\$ 1,000$.
(3) No notices of default and not more than one instance of property-based debt delinquency have been recorded during the past 3 years or the property owner's period of ownership, whichever period is shorter.
(4) The property owner has not filed for or declared bankruptcy in the previous 7 years.
(5) The property owner is current on all mortgage debt on the property.
(6) The property owner or owners are the holders of record of the property.
(7) The property title is not subject to power of attorney, easements, or subordination agreements restricting the authority of the property owner to subject the property to a PACE lien.

6 provide PACE financing to a property.
7 (f) Qualifying Improvements and Qualifying
8 Contractors for Residentlal Properties.-PACE
9 improvements for residential properties shall be qualified 10 if they meet the following criteria:
(1) Audit.-For clean energy improvements
(8) The property meets any geographic eligibility requirements established by the PACE program.

The local government may adopt additional criteria, appropriate to PACE programs, for determining whether to and energy conservation and efficiency improvements, an audit or feasibility study performed by a person who has been certified as a building analyst by the Building Performance Institute or as a Home Energy Rating System (HERS) Rater by a Rating Provider accredited by the Residential Energy Services Network (RESNET); or who has obtained other similar independent certification shall have been commissioned by the local government or the property owner and the audit or feasibility study shall-
(A) identify recommended energy conservation, efficiency, and/or clean energy improvements and such recommended improvements must include the improvements proposed to be
financed with the PACE assessment to the extent permitted by law;
(B) estimate the potential cost savings, useful life, benefit-cost ratio, and simple payback or return on investment for each improvement; and
(C) provide the estimated overall difference in annual energy costs with and without the recommended improvements.

State law may provide that the cost of the audit and the cost of a warranty covering the financed improvements may be included in the total amount financed.
(2) Affixed for useful Life.-The local government shall have determined the improvements are intended to be affixed to the property for the entire useful life of the improvements based on the expected useful lives of energy conservation, efficiency, and clean energy measures approved by the Department of Energy.
(3) Qualified contractors.-The improvements must be made by a contractor or contractors, determined by the local government to be qualified to make the PACE improvements. A local government may accept a designation of contractors as
qualified made by an electric or gas utility or another appropriate entity. Any work requiring a license under applicable law shall be performed by an individual holding such license. A local government may elect to provide financing for improvements made by the owner of the property, but shall not permit the value of the owner's labor to be included in the amount financed.
(4) Disbursement of paynents.-A local government must require, prior to disbursement of final payments for the financed improvements, submission by the property owner in a form acceptable to the local government of-
(A) a document signed by the propertyowner requesting disbursement of funds;
(B) a certificate of completion, certifying that improvements have been installed satisfactorily; and
(C) documentation of all costs to be financed and copies of any required permits.
(g) Financing Terms Applicable Only to Residential Property.-A PACE program shall provide, with respect to residential property, for the following:
(1) Amount financed.-PACE improvements shall be financed on terms such that the total energy
and water cost savings realized by the property owner and the property owner's successors during the useful lives of the improvements, as determined by the audit or feasibility study pursuant to subsection (f)(1), are expected to exceed the total cost to the property owner and the property owner's successors of the PACE assessment. In determining the amount that may be financed by a PACE assessment, the total amount of all rebates, grants, and other direct financial assistance received by the owner on account of the PACE improvements shall be deducted from the cost of the PACE improvements.
(2) PACE assessments.-The total amount of PACE assessments for a property shall not exceed 10 percent of the estimated value of the property. A property owner who escrows property taxes with the holder of a mortgage on a property subject to PACE assessment may be required by the holder to escrow amounts due on the PACE assessment, and the mortgage holder shall remit such amounts to the local government in the manner that property taxes are escrowed and remitted.
(3) Owner equity.-As of the effective date of the PACE agreement or the vote required by State
law, the property owner shall have equity in the property of not less than 15 percent of the estimated value of the property calculated without consideration of the amount of the PACE assessment or the value of the PACE improvements.
(4) Term of financing.-The maximum term of financing provided for a PACE improvement may be 20 years. The term shall in no case exceed the weighted average expected useful life of the PACE improvement or improvements. Expected useful lives used for all calculations under this paragraph shall be consistent with the expected useful lives of energy conservation and efficiency and clean energy measures approved by the Department of Energy.
(h) Collection and Enforcenient.-A PaCE program shall provide that-
(1) PACE assessments shall be collected in the manner specified by State law;
(2) notwithstanding any other provision of law, in the event of a transfer of property ownership through foreclosure, the transferring property owner may be obligated to pay only PACE assessment installments that are due (including delinquent amounts), along with any applicable penalties and interest, except that before imposition of any pen-

9 from the loss reserve established for a PACE pro10 gram shall not relieve a participating property owner 11 from the obligation to pay that amount.

PV Value ${ }^{\text {TM }}$

This spreadsheet tool developed by Sandia National Laboratories and Solar Power Electric ${ }^{\text {TM }}$ is intended to help determine the value of a new or existing photovoltaic (PV) system installed on residential and commercial properties. It is designed to be used by real estate appraisers, mortgage underwriters, credit analysts, real property assessors, insurance claims adjusters and PV industry sales staff. For appraisers, the inputs specific to PV in the Residential Green and Energy Efficient Addendum can be used as inputs to PV Value ${ }^{\text {TM }}$.

Valuing a PV system is done using an income capitalization approach, which considers the present value of projected future energy production along with estimated operating and maintenance costs that are anticipated to occur during the PV module power production warranty timeframe.

Version 1.1 is now available and can be used on both Microsoft Windows and OS X operating systems. It works with both Excel® 2007 and 2010 for Windows, and Excel® 2011 for Mac. After filling out the form below, you can download the tool and user manual describing how to use the tool and changes made for this version. This information will be used to notify you of updates to PV Value ${ }^{T M}$.

Sandia Labs hosted a webinar describing PV Value ${ }^{T M}$ on December 7, 2011, which can be viewed below. The Interstate Renewable Energy Council hosted a webinar about PV Value ${ }^{\text {TM }}$ on April 18, 2012, which can be viewed here.

Updates will be made as necessary, with a new version released on or before July 1, 2013. The current version is 1.1.

Additionally the PV Value ${ }^{\text {TM }}$ tool can be accessed at www.pvvalue.com, a web application that is currently in development for 2013. PV Value ${ }^{\text {TM }}$ is a trademarked name by Jamie Johnson with Solar Power Electric ${ }^{\top \mathrm{M}}$.

PV Value ${ }^{\text {TM }}$ Tool Download

Please complete the form below to download the PV Value ${ }^{T M}$ tool.

Name *

Search

RENEWABLE ENERGY

Wind Energy

Solar Energy
Photovoltaics
Advanced Research \&
Development
Grid Integration
PV Modeling \& Analysis
PV Systems Reliability
Solar Market Transformation
Policy and Regulatory, Codes
and Standards
Utility Operations and Programs
Finance
Permitting, Inspection, and
Interconnection
Installation
Siting

- PV Value ${ }^{\text {m }}$

Past Market Transformation Activities
Solar Resource Assessment
Test and Evaluation
PV Publications
PV Resources
Concentrating Solar Power (CSP)
Sunshine to Petrol
Water Power
Geothermal
Biomass

PV VALUETM INFORMATION

For any questions or to request more information, send an e-mail to: info@pvvalue.com.

RELATED LINKS

Alabama

Zip Code *

User Type *
Residential Appraiser

Submit

PV Value ${ }^{\text {TM }}$ Webinar

Click here to download the video.

For any questions or to request more information, send an e-mail to: info@pvvalue.com.

区 +1	7	Tweet25

Tagged with: Energy • photovoltaic • Photovoltaic Energy Valuation Model • PV • PV Value - PV Value Tool • Renewable Energy • Solar Energy • solar powerECIS in the News

Thermal Pulses for Boeing Test Article September 6, 2012

Molten Salt Test Loop Pump Instalied August 30, 2012

NASA's Solar Tower Test of the 1-Meter Aeroshell August 23, 2012

Air Force Research Laboratory Testing August 17, 2012

Climate Combustion Research Facility CRF EFRC Enabing Capabilities Energy Energy
Efficiency Energy Security Energy Storage Fuel
Cycle Infrastructure Infrastructure Security News
Nuclear Energy Nuclear Energy and Fuel Cycle
Programs Nuclear Energy Safety Office of Science photovoltaic Photovoltaics PV
Renewable Energy Research \&
Capabilities solar Solar Energy solar power Solid-State Lighting SSLS Video Water Power Wind wind energy Wind Power

ECIS	ECIS Resources	Sandia Mission Areas	Sandia National Laboratories	Stay Connected
About ECIS	ECIS News	Defense Systems and		RSS
Energy Security	ECIS Publications	Assessments	Homepage	Contact Us
Climate Security	ECIS Fact Sheets	Homeland Security and Defense	Newsroom	Twitter
Infrastructure Security	ECIS Video Library	Nonproliferation	Careers	Facebook
Enabling Capabilities	ECIS Events	Nuclear Weapons	Doing Business	Linkedin
Key Facilities Partnerships	ECIS Image Library	Science, Technology, and Engineering	Education Contacts	YouTube flickr

A RESOURCE OF THE NATIONAL ACTION PLAN FOR ENERGY EFFICIENCY

The Model Energy Efficiency Program Impact Evaluation Guide is a product of the National Action Plan for Energy Efficiency Leadership Group and does not reflect the views, policies, or otherwise of the federal government. The role of the U.S. Department of Energy and U.S. Environmental Protection Agency is limited to facilitation of the Action Plan.

This document was final as of December 2007 and incorporates minor modifications to the original release.
If this document is referenced, it should be cited as:
National Action Plan for Energy Efficiency (2007). Model Energy Efficiency Program Impact Evaluation Guide. Prepared by Steven R. Schiller, Schiller Consulting, Inc. <www.epa.gov/eeactionplan>

For More Information

Regarding the Model Energy Efficiency Program Impact Evaluation Guide, please contact:

Niko Dietsch
U.S. Environmental Protection Agency

Office of Air and Radiation
Climate Protection Partnerships Division
Tel: (202) 343-9299
E-mail: dietsch.nikolaas@epa.gov
Regarding the National Action Plan for Energy Efficiency, please contact:

Stacy Angel
U.S. Environmental Protection Agency

Office of Air and Radiation
Climate Protection Partnerships Division
Tel: (202) 343-9606
E-mail: angel.stacy@epa.gov

Larry Mansueti
U.S. Department of Energy

Office of Electricity Delivery and Energy Reliability
Tel: (202) 586-2588
E-mail: lawrence.mansueti@hq. doe.gov

5: Calculating Net Energy and Demand Savings

Chapter 5 defines net savings and describes the four key factors that differentiate net and gross savings: free ridership, spillover effects, rebound effects, and electricity transmission and distribution losses. The chapter then provides a detailed description of several approaches for determining net savings, including self-reporting surveys, econometric models, and stipulated net-to-gross ratios. A brief discussion of the criteria for selecting an appropriate net savings evaluation approach is also provided.

5.1 Importance of Net Savings

To keep program benefits from being under- or overstated, it is important to understand and properly reflect the influences of both energy savings and emission avoidance programs. These net savings are the savings "net" of what would have occurred in the absence of the program. Generally speaking, net savings are of most interest for regulated government and utility programs. In these cases, the responsible party (for example, a city council or utility regulator) wants to know if the use of public or ratepayer funded programs are actually having an influence. That is, are the programs of interest providing incremental benefits, or do the benefits result from some other influences? For example, the environmental benefits of energy efficiency programs are usually considered valid only if they are additional to naturally occurring efficiency activities (that is, based on net savings). In contrast, private sector energy efficiency programs such as performance contracts are a case where gross energy savings are the primary concern.

The following sections describe factors that differentiate net and gross impacts and approaches for calculating NTGRs. It is important to understand, though, that calculating net energy and demand savings can be more of an art than a science. Essentially, one is attempting to separate out the influence of a particular energy efficiency program (or portfolio) from all the other influences that determine participant and non-participant behavior and decisions. With the increasing "push" for energy efficiency by utilities and government at the local, state, and national level and by private groups and large companies, it can be quite difficult to separate
out how one particular program among all this activity influences the decision of whether, when, and to what degree to adopt efficiency actions.

5.2 Factors That Account for Differences Between Net and Gross Savings

The three primary factors that differentiate gross and net savings are free ridership, spillover, and rebound. In addition, transmission and distribution losses can also be considered under a NTGR calculation for programs that save electricity from grid-connected power plants. The decision about which of these to include in an NTGR analysis is determined by the objectives of the evaluation. Free ridership is typically the most commonly evaluated NTGR factor, followed by spillover and then rebound analyses.

- Free ridership. Free riders are program participants who would have implemented the program measure or practice in the absence of the program. The program can also affect when a participant implements an efficiency measure (e.g., because of the program a participant installs the equipment sooner than he or she otherwise would have), the level of efficiency of the efficient equipment installed (e.g., a participant says he or she would have installed the same efficient equipment without the program), and the number of units of efficiency equipment installed. Different levels of free ridership introduce the concept of partial or deferred free riders. The subjectivity surrounding free ridership is a significant component of net energy and demand savings uncertainty.

Free Riders

There are three categories of free riders:

- Total free rider-would have installed the same energy efficiency measures at the same time whether or not the program existed.
- Partial or deferred free rider-would have installed less-efficient (but still more efficient than baseline) measures or would have installed the same energy efficiency measure but at a later time and would have installed fewer of the energy efficiency products.
- Non-free rider-would not have installed the baseline energy efficiency measure without the influence of the program.

It should be noted that a participant's free ridership status can vary from one measure to the next and over time.

- Spillover effects. Spillover occurs when there are reductions in energy consumption or demand caused by the presence of the energy efficiency program, but which the program does not directly influence. Customer behavioral changes stemming from participation in programs are a positive program spillover, increasing the program effect. These effects could result from (a) additional energy efficiency actions that program participants take outside the program as a result of having participated; (b) changes in the array of energy-using equipment that manufacturers, dealers, and contractors offer all customers (and they purchase) as a result of program availability; (c) changes in specification practices employed by architects and engineers; and (d) changes in the energy use of non-participants as a result of utility programs, whether direct (e.g., utility program advertising) or indirect (e.g., stocking practices such as (b) above, or changes in consumer buying habits). The term "free driver" is used to describe a non-participant who has adopted a particular efficiency measure or practice as a result of a utility program.

The analysis of spillover and free ridership is complicated by "market noise." When a market is filled with many implementers offering similar programs under different names, with different incentive structures and marketing methods, it is difficult to estimate any particular program's influence. Identification of non-participants may also be difficult, since customers may not be able to discern between the various programs operating in the marketplace and may not accurately recall how programs may have influenced their decision processes or even remember the program in which they participated.

- Rebound effect. Rebound is a change in energyusing behavior that increases the level of service and results from an energy efficiency action. The most common form is "take back," which can occur if consumers increase energy use as a result of a new device's improved efficiency. For example, homeowners may use more air-conditioning with their new efficient air-conditioner because it is cheaper to run than their old air-conditioner. Another example is when insulation is installed for a low-income household and the homeowner can turn the thermostat up to a more comfortable temperature. However, there is a non-energy benefit here associated with increased comfort, health, and safety that some would argue should be considered a co-benefit.

Rebound effect is part of the general concept of how customer behavior affects technology usage and, thus, efficiency performance. For example, installation of occupancy sensors in small independent hotels would not save energy if hotel staff were already adjusting HVAC manually as part of their ordinary maintenance. In another example, an Energy Management System could be overridden by management decisions. Behavioral issues such as these are becoming of increasing interest in advanced energy efficiency programs.

- Electricity transmission and distribution losses. When an efficiency project reduces electricity consumption at a facility, the amount of electricity that
no longer has to be generated at a power plant is actually greater than the onsite reduction. This is because of electricity transmission and distribution (T\&D) losses between the sites and the power plants. Published electricity grid emission factors do not usually include $T \& D$ losses and most energy savings evaluations only report onsite energy savings. Therefore an evaluator needs to decide whether to include $T \& D$ losses in their net savings calculation.

T\&D losses can range from negligible for a high-voltage customer located close to a power plant to over 10\% for smaller customers located far from power plants. In addition, higher T\&D losses are inevitable during on-peak hours. Thus, some jurisdictions have calculated on-peak, off-peak, and seasonal T\&D loss factors.

If a T\&D loss factor is being considered, it is best to adopt one factor (or perhaps two, one for onpeak and one for off-peak) for the entire grid and not attempt to be too fine-grained. Two options for quantifying T\&D losses are (a) assuming a simple percentage adder for source savings and (b) not including T\&D losses directly, but considering them a counterweight to uncertainty in the site savings calculation. The adder could be a value calculated for the specific T\&D network in question. Potential sources of such data are local regulatory authorities, local utilities, and the regional independent system operator (ISO).

EPA's Conservation Verification Protocol (EPA, 1995) for the Acid Rain Program suggests the following default values for T\&D losses, as a proportional adder to onsite energy savings:

- T\&D savings for residential and commercial cus-tomers-7 percent
- T\&D savings for industrial customers-3.5 percent

This consideration of T\&D issues is often part of a calculation to determine "source" energy (fuel) savings (i.e., how much fuel is not consumed in a power plant because of the end-use efficiency activity).

Source fuel savings are calculated by considering both T\&D losses and power plant fuel efficiencies. It should also be noted that T\&D losses and source energy savings calculations are often considered in the gross energy savings calculation instead of the net energy savings calculation. In either case, savings should be reported with an indication of whether they include T\&D losses and are based on source energy or enduse energy.

Other influences (in addition to free ridership, spillover, rebound, and T\&D losses) that can determine net versus gross savings include:

- The state of the economy (recession, recovery, economic growth).
- Energy prices.
- Changes in facility operations (e.g., office building or hotel occupancy rates, changes in product lines or number of operating shifts in factors, or changes in thermostat settings or number of people living in homes). These are typically addressed in the gross savings analyses.

5.3 Approaches for Determining Net Savings

The following discussion presents the four approaches for determining the NTGR:

- Self-reporting surveys. Information is reported by participants and non-participants without independent verification or review.
- Enhanced self-reporting surveys. The self-reporting surveys are combined with interviews and documentation review and analysis.
- Econometric methods. Statistical models are used to compare participant and non-participant energy and demand patterns.
- Stipulated net-to-gross ratios. Ratios that are multiplied by the gross savings to obtain an estimate

Home > Calculators $>$ Annual Payment Calculator

Annual Payment Calculator

Payment Schedule : total cost per year paid in tax bill

		Amount Financed					
		\$5K	\$10K	\$15K	\$20K	\$30K	\$40K
	10-year	\$761.64	\$1,448.51	\$2,172.76	\$2,897.02	\$4,345.53	\$5,794.04
©	20-yea	\$482.02	\$964.04	\$1,446.06	\$1,928.07	\$2,892.1	\$3,856.

Before you use the calculator, please view our Annual Payment Calculator Instructions.

Calculators

Eligibility Calculator

Annual Payment Calculator
Annual Payment Calculator Instructions

For additional information, please

 contact:Sonoma County Energy Independence
Program
404 Aviation Boulevard, Suite 200
Santa Rosa, California 95403
Phone: (707) 565-6470 Fax: (707) 565-6474
Email: sceip@sonoma-county.org
http://www.sonomacounty energy.org
Home About Press Releases Contact Us Terms of Use
WebLift
Copyright © 2012 Sonome County Energy Independence Program

ENERGY
 INDEPENDENCE

a SONONA COUKTY phogran

Sonoma County Energy Independence Program

Contractor Standards

To ensure that the Sonoma County Energy Independence Program (SCEIP) protects the interests of the County and its residents, individual contractors must meet the following minimum criteria:

Compliance with Program Requirements:

All projects must comply with the requirements set out in the SCEIP Administrative Guidelines, available on line at www. sonomacountyenergy.org.

Liability Insurance:

Contractors shall possess $\$ 1,000,000$ minimum coverage each for Commercial General Liability insurance for the work to be performed, to be maintained in full force and effect during the period of performance.

Workers' Compensation:

Contractor shall, prior to initiating any work on a SCEIP funded project, and at all times during its activities with any such project, obtain and keep in full force and effect California Statutory Workers' Compensation insurance (at or above the minimum limit required by law) for all persons whom the Contractor employs in carrying out its activities for which SCEIP funding is anticipated.

Employee Requirements:

1. Contractors shall not knowingly assign any worker to a Sonoma County customer work-site who has been convicted of a felony within the last 7 years; or who is impaired by illegal drugs or alcohol, excluding any lawfully proscribed medications.
2. Contractors shall use their best efforts to hire Sonoma County workers for all SCEIP funded projects.

Notice to Proceed:

Work may not begin on a SCEIP funded project until at least 3 business days after the Assessment Contract has been signed by the applicant and the County of Sonoma or its representative, and the applicant has received his or her Notice to Proceed.

Payment:

All payments of SCEIP funds shall be made directly to the applicant, not the contractor, on the first day of the month following completion of the project and timely submission of a Request for Disbursement.

Licensing and Certification:

1. Contractors must at all times while working on a SCEIP funded project, be in compliance with all applicable state and local licensing laws and requirements, be in good standing with the Contractors State License Board (CSLB), and possess the license or licenses required by the state of California for the specific improvements they install and any other work they perform as specified in the California Business \& Professions Code, Division 3, Chapter 9, Article 4.
2. Contractors shall obtain a valid business license in any city where they perform work where a business license is required, in accordance with applicable codes and regulation of each city.
3. Home Improvement Salespersons (HIS) must at all times, while soliciting work for a SCEIP funded project, be registered with the Contractors State License Board (CSLB) as an HIS. The HIS may be exempt from registration if the HIS are listed as a part of the CSLB's official personnel records for the contractor's license.

Payment of Subcontractors:

Contractor shall timely pay all subcontractors and vendors any undisputed amounts due, and shall take all steps necessary to prevent mechanics liens from being enforced against SCEIP customers because of Contractor's failure to pay a subcontractor or vendor.

Representations:

Contractor and its representatives, employees and agents must not represent themselves as an agent, representative, contractor, subcontractor, or employee of SCEIP, or claim association or affiliation with SCEIP. Further, Contractor shall not make false claims about performance or savings, nor engage in fraudulent or deceitful conduct in the sale or installation of SCEIP funded projects.

The Sonoma County Energy Independence Program reserves the right to deny funding for any project to be performed by a Contractor that has not agreed to these terms and conditions, or who has failed to abide by these standards. In the discretion of the Program Administrator, a Contractor may be given an opportunity to cure an identified deficiency before being banned from participation in SCEIP funded projects.

Please return with:Copy of Liability InsuranceCopy of Worker's Comp InsuranceCopy of Contractor's LicenseContractor Information Sheet

Sonoma County Energy Independence Program

404 Aviation Boulevard, Suite 200
Santa Rosa, CA 95403-1076
Ph: (707) 565-6470 Fax: (707) 5656474
Email: sceip@sonoma-county.org www.sonomacountyenergy.org

Home >Find a Contractor

Find a Contractor

The contractors listed below can help Sonoma County residents to help plan and complete efficiency and solar projects. Energy Upgrade California ${ }^{\text {TM }}$ Participating Contractors offer utility rebates for whole-house projects (click Energy Upgrade California rebates below for program contractor list). Sonoma County Energy Independence Program (SCEIP) contractors listed below have signed the SCEIP Standards of Conduct (contractor standards), which specifies the minimum criteria for participating in the SCEIP program. For contractors to be listed on this site, they need to be either Energy Upgrade Participating Contractors or have signed the SCEIP Standards of Conduct. Contractors should send questions about their listing credentials to contractors@energyupgradeca.org._This list has been presented in random order.
Search name \square Count: 275 Contractors per page: 5

Energy Upgrade
California
Rebates
\square Advanced
\square Basic

Certifications
\square BPI Accredited
\square BPI Analyst
\square BPI Envelope
\square HERS II Rater

SCEIP Approved
Contractors
\square SCEIP
Contractor

O C S Energy Inc

Address: 1274 Maiden Way Rohnert Park CA 94928
Phone: 707-318-3919
Email address: rich@ocsenergy.com
Web site: www.ocsenergy.com
CLSB: 922087 SCEIP Contractor

Arrow Glass

Address: 16039 Healdsburg Avenue, Unit E Healdsburg CA 95448
Phone: 707-433-4860
Email address: stedenis7@aol.com
CLSB: 646000 SCEIP Contractor

Western Air Systems Certification

Address: 3425 Cimmeron Ct. Rocklin CA 95677
Phone: 877-500-0212
Email address: ralph@westerncertification.com
Web site: westerncertification.com
Certs: HERS II Rater

Stellar Energy GP Inc

Address: 1500 Valley House Drive, Ste 210 Rohnert Park CA 94928
Phone: 707-992-3200
Email address: sarah@stellarenergy.com
Web site: www.stellarenergy.com

Find a Contractor

Selecting a Contractor

To perform due diligence for contractors, the Contractors State License Board has put together a series of guides and checklists to help you through the process -
http://www.cslb.ca.gov/Generallnformation/Librar

In addition, you can check the license history of contractors with the Contractors State License Board -
https://www2.cslb.ca.gov/OnlineServices/CheckL

Abstract

About the Filters

The filters for services are based on the licenses of various contractors. To learn more about the description of contractor licenses http://www.cslb.ca.gov/Resources/GuidesA ndPa

The filters for credentials are based on technical standards of the Building Performance Institute. To learn more about the certifications http://www.bpi.org/professionals_designations.as

Henry Mechanical

Address: 7656 Bell Road Windsor CA 95492
Phone: 707-838-3311
Email address: joe@henrymechanical.com
Web site: www.henrymechanical. com
CLSB: 855174 SCEIP Contractor

IMPORTANT NOTICES REGARDING THIS CONTRACTOR INFORMATION Neither this program nor any other public or private party associated with this resource; (a) endorses or recommends any specific contractor or rater, (b) makes any representation or warranty regarding the qualifications, licensing, products, or workmanship of any contractor or rater, or (c) accepts any liability that may be alleged to arise from the work of any listed contractor or rater on a customer project or from any reliance on any claims, statements or other descriptions regarding a contractor's or rater's certifications, licenses, qualifications or products. Such claims, statements and other descriptions are made solety by the contractor or rater.
Home About Press Releases Terms of Use

Vhat's New

Itroducing SCEIP's new partnership rith the Healdsburg Electric lepartment! SCEIP is roviding rebate administration, valuations, and promotion of energy fficiency programs.

News Articles

Read articles on SCEIP and Energy Upgrade California from the media.

WINDSOR EFFICIENCY PAYS

Attention Windsor Homeowners! Upgrades that PAY YOU to Save!

The new Windsor Efficiency PAYS® program provides water and energy saving upgrades for Windsor residential properties. These upgrades provide immediate utility bill savings with no upfront cost or debt. Homeowners and renters enjoy savings from high efficiency toilets, showerheads, clothes washers, drought-resistant landscaping and more.

A Short Story on How Energy Upgrade California Can Help Youl

This is the story of how Bill and Mary learned to make their house greener and earn a rebate through the Energy Upgrade California.

Program Activity To Date

Our program provides financing strategies for home and businesses, enabling owners to apply whole house energy improvements which improve the property value, stimulate the economy, and create jobs for our community. Here are the results of our program to date

PROJECTS FUNDED

Residential	Commercial
1679	56
Total Contracts Funded	$\$ 57,682,572$
Jobs Created/Retained	706

Percent of Projects Completed by

Federal Energy Management Program

HOME	ABOUT THE PROGRAM	PROGRAM AREAS	 REGULATIONS	INFORMATION RESOURCES	PROJECT FUNDING

EERE Home | Programs \& Offices I Consumer Information

Federal Energy Management Program		
		SEARCH
Search Help +		
TECHNOLOGIES	SERVICES	NEWS \& EVENTS
ESite Mas	Printable Vers	cl share

EERE " Eederal Energy Management Program " Technologies

Energy-Efficient Products
Federal Requirements
Covered Product Categories

Product Designation Process

Low Standby Power
Energy \& Cost Savings Calculators

Model Acquisitions Language
Working Group
Resources
Technology Deployment
Renewable Energy

Energy and Cost Savings Calculators for Energy-Efficient Products

The energy and cost calculators below allow Federal agencies to enter their own input values (e.g., utility rates, hours of use, etc.) to estimate energy and cost savings for energy-efficient products. Some are Web-based tools; others are Excel spreadsheets provided by ENERGY STAR® for download.

Lighting

- Compact Fluorescent Lamps
- Exit Signs

Commercial and Industrial Equipment

- Commercial Unitary Air Conditioners
- Air-Cooled Chillers
- Water-Cooled Chillers
- Commercial Heat Pumps
- Boilers

Food Service Equipment

- Dishwashers
- Freezers (ia
- Eryers
- Griddles [io
- Hot Food Holding Cabinets ras
- Ovens
- Refrigerators iv
- Steam Cookers
- Ice Machines

Office Equipment

- Computers. Monitors. and Imaging Equipment

Additional Resources

Additional resources are available to calculate energy savings, including FEMP Building Life-Cycle Cost (BLCC) software for detailed life-cycle cost analysis and MotorMaster+ software for identifying "premium" efficiency motors.

Appliances

- Dishwashers
- Clothes Washers
- Eamily-Size Clothes Washers

Residential Equipment

- Central Air Conditioners
- Air Source Heat Pumps ivi
- Gas Furnaces
- Electric/Gas Water Heaters

Plumbing

- Condensing Water Heaters (a)
- Eaucets/Showerheads
- Urinals

Renewable Energy Installations

- Solar Hot Water

CALCULATOR SURVEY

Calculate your energy and cost savings using FEMP's energy calculators!
What calculator would you like to be updated or created next? Select your top choice:

- Commercial boilers

O Industrial luminaires (aka high-bay light fixtures)
O Commercial gas water heaters
O Other (please specify)

Estimating the Cost and Energy Efficiency

 of a Solar Water Heater

Solar water heaters are more efficient the gas or electric heaters. I Cham creat ENERGY STAR

WHAT DOES
 THIS MEAN FOR ME?

- Solar water heaters cost more to purchase and install but may save you money in the long run.
- Estimate the annual operating costs and compare several solar water heaters to determine whether it is worth investing in a more efficient system.

Solar water heating systems usually cost more to purchase and install than conventional water heating systems. However, a solar water heater can usually save you money in the long run.

How much money you save depends on the following:

- The amount of hot water you use
- Your system's performance
- Your geographic location and solar resource
- Available financing and incentives
- The cost of conventional fuels (natural gas, oil, and electricity)
- The cost of the fuel you use for your backup water heating system, if you have one.

On average, if you install a solar water heater, your water heating bills should drop $50 \%-80 \%$. Also, because the sun is free, you're protected from future fuel shortages and price hikes.

If you're building a new home or refinancing, the economics are even more attractive. Including the price of a solar water heater in a new 30-year mortgage usually amounts to between $\$ 13$ and $\$ 20$ per month. The federal income tax deduction for mortgage interest attributable to the solar system reduces that by about $\$ 3-\$ 5$ per month. So if your fuel savings are more than $\$ 15$ per month, the solar investment is profitable immediately. On a monthly basis, you're saving more than you're paying.

DETERMINING ENERGY EFFICIENCY OF A SOLAR WATER HEATER

Use the solar energy factor (SEF) and solar fraction(SF) to determine a solar water heater's energy efficiency.

The solar energy factor is defined as the energy delivered by the system divided by the electrical or gas energy put into the system. The higher the number, the more energy efficient. Solar energy factors range from 1.0 to 11 . Systems with solar energy factors of 2 or 3 are the most common.

Pursuant ${ }^{\text {Tweet }}$

RELATED ARTICLES

Selecting a New Water Heater

Estimating
Costs and Efficiency of Storage,
Demand, and
Heat Pump
Water Heaters

Tankless or
Demand-Type
Water Heaters

Another solar water heater performance metric is the solar fraction. The solar fraction is the portion of the total conventional hot water heating load (delivered energy and tank standby losses). The higher the solar fraction, the greater the solar contribution to water heating, which reduces the energy required by the backup water heater. The solar fraction varies from 0 to 1.0 Typical solar factors are 0.5-0.75.

Don't choose a solar water heating system based solely on its energy efficiency. When selecting a solar water heater, it's also important to consider size and overall cost.

CALCULATING ANNUAL OPERATING COST

Before purchasing a solar water heating system, estimate the annual operating costs and compare several systems. This will help you determine the energy savings and payback period of investing in a more energy-efficient system, which will probably have a higher purchase price.

Before you can choose and compare the costs of various systems, you need to know the system size required for your home.

To estimate the annual operating cost of a solar water heating system, you need the following:

- The system's solar energy factor (SEF)
- The auxiliary tank fuel type (gas or electric) and costs (your local utility can provide current rates).

Then, use the following calculations.

With a gas auxiliary tank system:

You need to know the unit cost of fuel by Btu (British thermal unit) or therm. (1 therm $=100,000$ Btu)
$365 \times 41,045 \div$ SEF \times Fuel Cost $(B t u)=$ estimated annual cost of operation

OR
$365 \times 0.4105 \div$ SEF \times Fuel Cost (therm) $=$ estimated annual operating cost

Example: Assuming the SEF is 1.1 and the gas costs $\$ 1.10 /$ therm

$$
365 \times 0.4105 \div 1.1 \times \$ 1.10=\$ 149.83
$$

The energy usage per day in the above equations is based on the DOE test procedure for hot water heaters, which assumes an incoming water temperature of $58^{\circ} \mathrm{F}$, hot water temperature of $135^{\circ} \mathrm{F}$, and total hot water production of 64.3 gallons per day, which is the average usage for a household of three people.

With an electric auxiliary tank system:

You need to know or convert the unit cost of electricity by kilowatt-hour (kWh).
$365 \times 12.03 \mathrm{kWh} /$ day \div SEF \times Electricity Cost $(\mathrm{kWh})=$ estimated annual operating cost

Example: Assuming the SEF is 2.0 and the electricity costs $\$ 0.08 / \mathrm{kWh}$
$365 \times 12.03 \div 2.0 \times \$ 0.08=\$ 175.64$

COMPARING COSTS AND DETERMINING PAYBACK

Once you know the purchase and annual operating costs of the solar water heating systems you want to compare, you can find the costs associated with conventional water heating systems and compare the two.

Use the table and calculations below to compare two solar water heating systems and determine the cost savings and payback of the more energy-efficient system model.

System Model A

System Model B (higher SEF)

Additional cost of more efficient model (Model B)	Price of System Model B
	- Price of System Model A
	$=$ SAdditional Cost of Model B
Estimated annua operating cost savings (System Model B)	System Model B Annual Operating Cost
- System Model A Annual Operating Cost	

Example:

Comparison of two solar water heating system models with electric backup systems and electricity costs of $\$ 0.08 / \mathrm{kWh}$.

System Models	System Price	SEF	Estimated Annual Operating Cost
System Model A	\$1,060	2.0	\$176
System Model B	\$1,145	2.9	\$121
Additional cost of more efficient model (Model B)			\$1,145-\$1,060 $=\$ 85$
Estimated annuad operating cost savings (Model B)			\$176-\$120 = \$56 per year
Payback period for Model B			\$85/\$56 per year $=1.5$ years

OTHER COSTS

When comparing solar water heating systems, you should also consider installation and maintenance costs. Some systems might cost more to install and maintain.

Consult the manufacturer(s) and a qualified contractor to help estimate these costs. These costs will vary among system types and sometimes even from model to model.

LEARN MORE

- Solar Water Heaters
- Siting Your Solar Water Heating System
- Building Codes and Regulations for Solar Water Heating
- Heat Exchangers for Solar Water Heating Systems
- Heat-Transfer Fluids for Solar Water Heating Systems
- Solar Water Heating System Maintenance and Repair

EXTERNAL RESOURCES

Find ENERGY STAR® Solar Water Heaters
Find State and Local Incentives - Database of State Incentives for Renewables and Efficiency

Efficient Water Heating - American Council for an Energy -Efficient Economy

REFERENCES

Heat Your Water with the Sun (PDF). U.S. Department of Energy
Directory of SRCC Certified Solar Water Heating System Ratings. Solar Rating \& Certification Corporation

Pursuant Tethe DOJ Administrative Manual Section 15740, the site you are
U.S. DEPARTMENT OF

ENERGY
Careers \& Internships Contact Us Email Updates

1000 Independence Ave. SW
Washington DC 20585
202-586-5000

POPULAR TOPICS	ABOUT THIS SITE
Savings	Web Policies
Heating \& Cooing	Privacy
Industrial Heating \&	No Fear Act
Cooling	Information Quality
Solar	Open Gov
Home Weathenzation	
Appliances \&	
Electronics	

ENERGY	FEDERAL
DEPARTMENT	GOVERNMENT
Budget \&	The White House
Performance	USA gov
Directives,	
Delegations \&	
Requirements	
FOIA	
Inspector General	
Privacy Program	
Small Business	

feDERAL

The White House
USA gov

Solar Energy Resource Center
 New Orleans Solar Calculator

The City of New Orleans and its partners provide this New Orleans Solar Calculator website as a public service to assist persons in estimating solar potential and the potential value of installing solar panels at locations in the City. The accuracy of any information contained in or calculated from this website is not warranted by the City or its partners. Additionally, the parties specifically do not represent, promise or guarantee that you will achieve the outcomes estimated by this site or that the estimated savings will be obtained. You should verify all information and values you obtain from this website.

The New Orleans Solar Calculator can help you estimate:
Solar Energy Potential on Your Rooftop

1. How much solar energy potential is available on your roof
2. How much a solar energy system may cost you
3. How much you can save on your electricity bill if you install a solar energy system
4. How much your solar energy system may reduce greenhouse gas emissions
5. About nearby solar energy installation companies
6. About the solar energy facilities other New Orleans customers have already installed

In addition, our map can help you find a local solar professional, and locate existing solar energy facilities in New Orleans.

Date	March 2012
Topic	Educating Customers Financing \& Incentives Performance of Solar Technologies
Audience	Homeowners Installers Local Governments Non-Profits Small Businesses State Governments Utility Representatives Workforce Educators
Resource Type	Tools
Resource Source	City of New Orleans
Locations	New Orleans, Louisiana

Resource link

New Orleans Solar Calculator

[^0]: ${ }^{1}$ The Attorney General submits these comments pursuant to her independent authority under the State Constitution, common law, and statutes to represent the public interest. These comments are made on behalf of the Attorney General and not on behalf of any other agency or office.
 ${ }^{2}$ See, e.g., A.B. 811, 2007-08 Leg. Sess. (Ca. 2008), available at http://www.leginfo.ca.gov/cgibin/postquery?bill number=ab $811 \& s e s s=0708 \& h o u s e=B \& a u t h o r=l$ levine and attached as

[^1]: ${ }^{3}$ In California and in most states with PACE laws, PACE assessments have lien priority, meaning that they are paid before any private mortgage, in the same manner as all other taxes and assessments.
 ${ }^{4}$ Our previous comment letter is available on the FHFA's website at http://www.fhfa.gov/webfiles/23503/95 Kamala D Harris_AttnyGnrl California.pdf.
 ${ }^{5}$ We understand that a number of local governments, including Sonoma County, Placer County, and the City of Palm Desert have submitted or will submit comments supporting Alternative 3. See also suggested form letter on the PACENow website at http://salsa3.salsalabs.com/o/50696/p/dia/action/public/?action KEY=8250.

[^2]: ${ }^{6}$ In its Advance Notice, the Agency stated that it would prepare an Environmental Impact Statement (EIS) in compliance with NEPA. 77 Fed. Reg. 3958 (Jan. 26, 2012). To date, the Agency has not released any environmental documents related to the PACE rulemaking. We note that if the Agency issues a rule flatly prohibiting the Enterprises from purchasing mortgages for properties participating in PACE, such action would constitute a major federal action significantly affecting the quality of the human environment and thus would require an EIS. If the Agency issues a rule that would accommodate PACE, depending on the scope and effect of that rule, a Finding of No Significant Impact might well suffice.

[^3]: ${ }^{7}$ Available at www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf.

[^4]: ${ }^{13}$ Ben Hoen, Ryan Wiser, Peter Cappers and Mark Thayer, Lawrence Berkeley National Laboratory, Environmental Energy Technologies Division, An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California (Apr. 2011), available at http://eetd.lbl.gov/ea/emp/reports/lbnl-4476e.pdf. The authors note that, in addition, homeowners with PV benefit from electricity cost savings after PV system installation and prior to home sale.
 ${ }^{14}$ Bryan Bloom, Mary Ellen C. Nobe, and Michael D. Nobe, Valuing Green Home Designs: A Study of ENERGY STAR© Homes, 3 The Journal of Sustainable Real Estate (Apr. 2011), available at http://www.costar.com/uploadedFiles/JOSRE/JournalPdfs/06.109 126.pdf; Ann Griffin, Earth Advantage Institute, with Ben Kaufman, GreenWorks Realty and Sterling Hamilton, Hamilton Investments, LLC, Certified Home Performance: Assessing the Market Impacts of Third Party Certification on Residential Properties (May 2009), available at http://www.earthadvantage.org/assets/uploads/Final_report from_web from greenresourcecoun cil.org_site.pdf; The Earth Advantage Institute (EAI), Certified Homes Outperform NonCertified Homes for Fourth Year (June 8, 2011), available at http://www.earthadvantage.org/resources/library/research/certified-homes-outperform-non-certified-homes-for-fourth-year/; North Carolina Energy Efficiency Alliance, Market Impacts of ENERGY STAR® Qualification for New Homes (2011), available at http://ncenergystar.org/sites/ncenergystar.org/files/NCEEA ENERGY STAR Market Impact Study.pdf.
 ${ }^{15}$ Nils Kok, Maastricht University, Netherlands / University of California, Berkeley, and Matthew E. Kahn, University of California, Los Angeles, The Value of Green Labels in the

[^5]: 18 "Rebound is a change in energy-using behavior that increases the level of service that results from an energy efficiency action. The most common form is 'take back,' which can occur if consumers increase energy use as a result of a new device's improved efficiency." Steven R. Schiller, Schiller Consulting, Inc., Model Energy Efficiency Program Impact Evaluation Guide (Nov. 2007), prepared for U.S. EPA, at p. 5-2, available at http://www.epa.gov/cleanenergy/documents/suca/evaluation_guide.pdf.
 ${ }^{19}$ See, e.g., 77 Fed. Reg. 32308, 32339 (May 31, 2012) (electing not to use a rebound effect in establishing final rule for residential clothes washers); 76 Fed. Reg. 70548, 70583 (Nov. 14, 2011) (electing to use a residential rebound effect of 8.5% in establishing final rule for fluorescent lamp ballasts); 76 Fed. Reg. 37408, 37468-69 (June 27, 2011) (electing to use a rebound effect of 20% in establishing final rule for residential furnaces and residential central air conditioners and heat pumps).
 ${ }^{20}$ Since Sonoma County established its PACE program in March of 2009, the program has provided over $\$ 57$ million in financing to support a total of 1,673 residential and 55 commercial projects. Sonoma County reports that 86% of the PACE projects were installed by local

[^6]: 22 "Tax burden" is defined as the sum of all taxes and assessments levied annually (including PACE assessments) divided by the property's assessed value as reflected in the official property records. For the group of 18,348 Non-PACE Timely properties and for the group of 394 NonPACE Default properties, the average tax burden was approximately 1.16%.
 ${ }^{23}$ For the 390 PACE Timely properties, the average tax burden was 1.69%.
 ${ }^{24}$ The LTV ratio is defined as the total of all loans at the time of sale (e.g. first and second mortgages) divided by the home sale price, expressed as a percentage. Assessments, which are not loans, are not included in the LTV calculation. As noted, assessments were accounted for in the tax burden calculation.

[^7]: ${ }^{25}$ Where $\mathrm{L}=$ amount owned on all mortgages and $\mathrm{V}=$ home value, Alternative 2 would require that $\mathrm{L}+0.1(\mathrm{~V})=.65(\mathrm{~V})$, which means that $\mathrm{L} \div \mathrm{V}=.55$, yielding a required effective equity of .45 or 45%.

[^8]: ${ }^{26}$ We are not aware of any evidence to suggest that foreclosures are common in operating California PACE programs or that default rates for properties in such programs are higher than for non-participating properties. As set out in Section III, the expert's Sonoma County case study established that in that program, default rates are lower for PACE participants, and defaults are caused by factors unrelated to PACE.
 ${ }^{27}$ See http://www.gpo.gov/fdsys/pkg/BILLS-112hr2599ih/pdf/BILLS-112hr2599ih.pdf. H.R. 2599 remains in committee.

[^9]: ${ }^{28}$ Sonoma County's PACE program, for example, maintains a list of approved contractors. See http://www.sonomacountyenergy.org/lower.php?url=find-a-contractor. Contractors must sign a "Standards of Conduct" document. The document provides that the County "reserves the right to deny funding for any project to be performed by a Contractor that has not agreed to these terms and conditions, or who has failed to abide by these standards." A contractor may also be "banned from participation in [PACE] funded projects" for non-compliance. See http://drivecms.com/uploads/sonomacountyenergy.org/Contractor_Standards.pdf. Thus, FHFA's assertion that the Advance Notice's "comments confirm the current absence of adequate consumer protection" (77 Fed. Reg. 36103) is not consistent with the evidence.
 ${ }^{29}$ Alternative 3 requires the "consent of the mortgage holder" for first-lien PACE obligations. 77 Fed. Reg. 36018. In a final rule adopting Alternative 3's approach, FHFA should clarify how

[^10]: ${ }^{40}$ See, e.g., comments of DOE (Mar. 28, 2012) (stating that "DOE has an interest in working with FHFA on developing solutions for investments in residential energy efficiency that are compatible with a stable and strong housing market in America" and "strongly urg[ing] FHFA to partner with relevant stakeholders, including DOE"); comments of CEC (Mar. 28, 2012) (stating that the CEC "look[s] forward to working with FHFA to facilitate access by homeowners to PACE financing")

[^11]: ${ }^{1}$ Results obtained by using Sonoma County's annual payment calculator, available at http://sonomacountyenergy.org/lower.php?url=calculator.
 ${ }^{2}$ See California Urban Strategies Council, Californio Foreclosure Timeline, available at http://www.urbanstrategies.org/foreclosure/Timeline/ForeclosureProcessTimelineandInterventions 7 $1107 . \mathrm{pdf}$.

[^12]: *NOTICE: The Appraisal Institute publishes this form for use by appraisers where the appraiser deems use of the form appropriate. Depending on the assignment, the appraiser may need to provide additional data, analysis and work product not called for in this form. The Appraisal Institute plays no role in completing the form and disclaims any responsibility for the data, analysis or any other work product provided by the individual appraiser(s)

[^13]: *NOTICE: The Appraisal Institute publishes this form for use by appraisers where the appraiser deems use of the form appropriate. Depending on the assignment, the appraiser may need to provide additional data, analysis and work product not called for in this form. The Appraisal Institute plays no role in completing the form and disclaims any responsibility for the data, analysis or any other work product provided by the individual appraiser(s).

[^14]: * Includes single-family, multi-family, commercial, agricultural, and all other land uses.
 ** Excludes the single SCEIP property in default that has a non-residential land-use (agricultural).

[^15]: pro.realquest.com/jsp/report.jsp?\&client=\&action=confirm\&type=getreportcs\&reportoptions=83be5126-...

[^16]: pro.realquest.com/jsp/report.jsp?\&.client=\&action=confirm\&type=getreportcs\&reportoptions=83be5126-...

[^17]: pro.realquest.com/jsp/report.jsp?\&client=\&action=confirm\&type=getreportcs\&reportoptions=83be5126-...

[^18]: pro.realquest.com/jsp/report.jsp?\&client=\&action=confirm\&type=getreportcs\&reportoptions=83be5126-...

[^19]: pro.realquest.com/jsp/report.jsp?\&client=\&action=confirm\&type=getreportcs\&reportoptions=83be5126-...

[^20]: pro.realquest.com/jsp/report.jsp?\&client=\&action=confirm\&type=getreportcs\&reportoptions=83be5126-...

[^21]: pro.realquest.com/jsp/report.jsp?\&.client=\&action=confirm\&type=getreportcs\&reportoptions=83be5126-...

[^22]: \#\#\#
 The Federal Housing Finance Agency regulates Fannie Mae, Freddie Mac and the 12 Federal Home Loan Banks. These government-sponsored enterprises provide more than $\$ 5.9$ trillion in funding for the U.S. mortgage markets and financial institutions.

[^23]: ${ }^{1}$ The budget for this residential property analysis did not make it possible to retain residential appraisers in either of these two areas. The sample size of homes in these areas was very small (less than 12 homes per area) and therefore not statistically significant.

[^24]: ${ }^{2}$ In 2007 and 2008, RMLS also provided the option of classifying a certified home as other. In 2008, RMLS discontinued this option, recognizing that the open-ended nature of such a response would make year-to-year comparisons impossible.

[^25]: ${ }^{3}$ See Reference section and articles by Chappell, Corps, Muldavin, and Nicolay.

[^26]: ${ }^{4}$ Built Green® is a registered trademark of the Home Builders Association of Metro Denver, Colorado, used by the Washington State Built Green programs with permission.

[^27]: ${ }^{1}$ All references to the size of PV systems in this paper, unless otherwise noted, are reported in terms of direct current (DC) watts under standard test conditions (STC). This convention was used to conform to the most-common reporting conventions used outside of California. In California, PV systems sizes are often referred to using the California Energy Commission Alternating Current (CEC-AC) rating convention, which is approximately a multiple of 0.83 of the DC-STC convention, but depends on a variety of factors including inverter efficiency and realistic operating efficiencies for panels. A discussion of the differences between these two conventions and how conversions can be made between them is offered in Appendix A of Barbose et al., 2010.

[^28]: ${ }^{2}$ Many California electric utilities provide service under tiered residential rates that charge progressively higher prices for energy as more of it is used.

[^29]: ${ }^{3}$ Due to the limited sample of PV home sales in many individual years, the results presented in this report reflect average impacts over the entire 2000-09 period (after controlling for housing market fluctuations).

[^30]: ${ }^{4}$ The CEC and CPUC have both been collecting data on PV systems installed on homes in the utility service areas of investor owned utilities (e.g., PG\&E, SCE, SDG\&E) for which they have provided incentives, as have some of California's publicly owned utilities (e.g., SMUD) that offer similar incentives. The CEC began administering its incentive program in 1998, and provided rebates to systems of various sizes for both residential and commercial customers. The CPUC began its program in 2001, initially focusing on commercial systems over 30 kW in size. In January 2007, however, the CEC began concentrating its efforts on new residential construction through its New Solar Home Partnership program, and the CPUC took over the administration of residential retrofit systems through the California Solar Initiative program. Separately, SMUD has operated a long-standing residential solar rebate program, but of smaller size than the efforts of the CEC and CPUC.

[^31]: ${ }^{5}$ More information about this product can be obtained from http://www.corelogic.com/. Note that Core Logic, Inc. was formerly known as First American Core Logic.
 ${ }^{6}$ In some cases the same subdivisions were referred to using slightly different names (e.g., "Maple Tree Estates" \& "Maple Trees Estates"). Therefore, an iterative process of matching based on the names, the zip code, and the census tract were used to create "common" subdivision names, which were then used in the models, as discussed later.

[^32]: ${ }^{7}$ The inflation adjustment instrument used for this analysis is the Fiserv Case-Shiller Index. This index is a weighted repeat sales index, accumulated quarterly at, optimally, the zip code level over three home price tiers (e.g., low, middle and high prices). More information can be found at: http://www.caseshiller.fiserv.com/indexes.aspx ${ }^{8}$ More information about this product can be obtained from http://www.sammdata.com/
 ${ }^{9}$ More information about this product can be obtained from http://www.ceres.ca.gov/
 ${ }^{10}$ Examples of "erroneous" data might include a year built or sale date that is in the future (e.g., "2109" or "Jan 1, 2015 ", respectively), or large groups of homes that were listed at the same price in the same year in the same block group that were thought to be "bulk" sales and therefore not valid for our purposes.

[^33]: ${ }^{11}$ An alternative screen was tested that limited the data to homes under $\$ 1$ million (leaving 90% of the data) and $\$ 600,000$ (leaving 75%), with no significant change to the results.
 ${ }^{12}$ An alternative screen that incorporated the number of stories for the home along with the number of square feet in calculating the "footprint", and therefore allowed smaller parcels to be used, was also explored, with no significant change in results.
 ${ }^{13}$ This screen was intended to help ensure that homes that had significant improvements since the most recent sale, which would be reflected in a higher assessed value than would otherwise be the maximum allowable under California property tax law, were removed from the dataset. The screen was not applied to homes that sold in 2009, however, because, in those cases, assessed values often had not been updated to reflect the most recent sale.
 ${ }^{14}$ This final screen was intended to remove homes that had unusually large appreciation or deprecations between sales, after adjusting for inflation, which could indicate that the underlying home characteristics between the two sales changed (e.g., an addition was added, the condition of the home dramatically worsened, etc.), or the data were erroneous.

[^34]: ${ }^{15}$ The adjusted values, which are based on a housing price index, demonstrate the large-scale price collapse in the California housing market post 2005; that is, there has been significant housing price depreciation.
 ${ }^{16}$ Age of PV system at the time of sale is determined by comparing the sale date and ideally an "installation date", which corresponds to the date the system was operational, but, in some cases, the only date obtained was the "incentive application date", which might precede the installation date by more than one year. For this reason the age of the system reported for this research is lower than the actual age.

[^35]: ${ }^{17}$ As will be discussed later, each of the "base" models is coupled with a set of two or three robustness models. The "other" models are presented without "robustness" models.

[^36]: ${ }^{18}$ Other home and site characteristics were also tested, such as the condition of the home, the number of bathrooms, the number of fireplaces, and if the home had a garage and/or a pool. Because these home and site characteristics were not available for all home transactions (and thus reduced the sample of homes available), did not add substantial explanatory power to the model, and did not affect the results substantively, they were not included in the model results presented in this paper.
 ${ }^{19}$ For a portion of the dataset, a common subdivision name was identified, which, arguably, serves as a better proxy for neighborhood than block group. Unfortunately, not all homes fell within a subdivision. Nonetheless, a separate combined subdivision-block group fixed effect was tested and will be discussed later.
 ${ }^{20}$ Census block groups generally contain between 600 and 3,000 people, and the median household size in California is roughly 3.
 ${ }^{21}$ Spatial Autocorrelation - a correlation between neighbors' selling prices - can produce unstable coefficient estimates, yielding unreliable significance tests in hedonic models if not accounted for. One reason for this spatial autocorrelation is omitted variables, such as neighborhood characteristics (e.g., distance to the central business district), which affect all properties within the same area similarly. Having micro-spatial controls, such as block groups or subdivisions, helps control for such autocorrelation.

[^37]: ${ }^{22}$ A number of models were tested both with and without these temporal controls and with a variety of different temporal controls (e.g., monthly) and temporal/spatial controls (e.g., quarter and tract interactions). The quarterly dummy variables were the most parsimonious, and none of the other approaches impacted the results substantively.

[^38]: ${ }^{23}$ Ideally, the energy bill savings associated with individual PV systems could be entered into the model directly, but these data were not available. Moreover, estimating the savings accurately on a system-by-system basis was not possible because of the myriad of different rate structures in California, the idiosyncratic nature of energy use at the household level, and variations in PV system designs and orientations.

[^39]: ${ }^{24}$ Subdivisions are often geographically smaller than block groups, and therefore more accurately control for geographical influences such as distance to central business district. Moreover, homes in the same subdivision are often built at similar times using similar materials and therefore serve as a control for a variety of house specific characteristics that are not controlled for elsewhere in the model. For example, all homes in a subdivision will often be built using the same building code with similar appliances being installed, both of which might control for the underlying energy efficiency (EE) characteristics of the home. For homes not situated in a subdivision, the block group delineation was used, and therefore these fixed effects are referred to as "combined subdivision-block group" delineations.
 ${ }^{25}$ The procedure used, as described in the referenced paper, is coarsened exact matching (cem) in Stata, available at: http://ideas.repec.org/c/boc/bocode/s457127.html. The matching procedure creates statistically matched sets of PV and non-PV homes in each block group, based on a set of covariates, which, for this research, include the number of square feet, acres, and baths, as well as the age of the home, its elevation, and the date at which it sold. Because this matching process excludes non-PV homes that are without a statistically similar PV match (and vice versa), a large percentage of homes (approximately 80% non-PV and $20 \% \mathrm{PV}$) are not included in the resulting dataset.

[^40]: ${ }^{26}$ New and existing homes were determined in an iterative process. For PV homes, the type of home was often specified by the data provider. It was also discovered that virtually all of the new PV homes (as specified by the PV data providers) had ages, at the time of sale, between negative one and two years, inclusive, whereas the existing PV homes (as specified by the PV data providers) had ages greater than two years in virtually every case. The small percentage (3\%) of PV homes that did not fit these criteria were excluded from the models. For non-PV homes, no data specifying the home type were available, therefore, groupings were created following the age at sale criteria used for PV homes (e.g., ages between negative one and two years apply to new non-PV homes).

[^41]: ${ }^{27}$ Support for this assumption comes from two sources. Although surveys (e.g., CPUC, 2010) indicate that PV homeowners install energy efficient "measures" with greater frequency than non-PV homeowners, the differences are relatively small and largely focus on lighting and appliances. The former is not expected to substantially impact sales prices, while the latter could. The surveys also indicate that PV homeowners tend to install other larger EE measures, such as building shell, water heating and cooling improvements, with greater frequency than non-PV homes. Additionally, it might also be hypothesized that PV homeowners may be more-likely to have newer roofs (perhaps installed at the time of PV installation). Dastrop et al. (2010), however, investigated whether home improvements that might require a permit affect PV home sales premium estimates, and found they did not. It should be noted that the PV Only model, discussed previously, directly addresses the concern of omitted variable bias for this analysis.

[^42]: ${ }^{28}$ This is the classic model form derived from a quasi-experiment, where the installation of PV is the treatment. An alternative specification would look at the incremental effect of PV system size holding the starting differences between PV and non-PV homes as well as the time-trend in non-PV homes constant. This model form was not evaluated in the current analysis effort, but could be considered grounds for future research in this area.
 ${ }^{29}$ Ideally a matched dataset could be utilized, for reasons described earlier, but because the matching procedure severely limited the size of the dataset, the resulting dataset was too small to be useful.

[^43]: ${ }^{30}$ As was discussed earlier, a screen for this eventuality (using adjaar) is incorporated in our data cleaning. This test therefore serves as an additional check of robustness of the results.

[^44]: ${ }^{31}$ Neither this nor the following model is coupled with robustness models in this paper.
 ${ }^{32} \mathrm{PV}$ system size is also somewhat correlated with house size as a result of the tendency for increasing energy use and larger roof areas on larger homes. If this correlation was particularly strong then coefficient estimates could be imprecise. The correlation between PV house size and PV system size in the full sample of our data, however, is rather weak, at only 0.14 . Clearly, many factors other than house size impact the sizing of PV systems.
 ${ }^{33}$ In all of the previous models the number of square feet is contained in the vector of characteristics represented by X_{i}, but in this model it is separated out for clarity.

[^45]: ${ }^{34}$ For simplicity, this paper does not present the results for the quarter and block group (nor combined subdivisionblock group) fixed effects, which consist of more than 900 coefficients. These are available upon request from the authors.
 ${ }^{35}$ All models were estimated with Stata SE Version 11.1 using the "areg" procedure with White's correction for standard errors (White, 1980). It should also be noted that all Durbin-Watson (Durbin and Watson, 1951) test statistics were within the acceptable range (Gujarati, 2003), there was little multicollinearity associated with the variables of interest, and all results were robust to the removal of any cases with a Cook's Distance greater than $4 / n$ (Cook, 1977) and/or standardized residuals greater than four.
 ${ }^{36}$ As mentioned in footnote 22, a variety of approaches were tested to control for market conditions, such as spatial temporal fixed effects (e.g., census block / year quarter) both with and without adjusted sale prices. The models presented here were the most parsimonious. As importantly, the results were robust to the various specifications, which, in turn, provides additional confidence that the effects presented are not biased by the fluctuating market conditions that have impacted the housing market for some years.
 ${ }^{37}$ In some models, where there is little variation between the cases on the covariate (e.g., acres), the results are nonsignificant at the 10% level.

[^46]: ${ }^{38}$ To be exact, the conversion is a bit more complicated. For example, for the fixed effect model the conversion is actually $(\operatorname{EXP}(\operatorname{LN}(480,862)+0.036)-480,862) / 3.12 / 1000$, but the differences are de minimis, and therefore are not used herein.

[^47]: ${ }^{39}$ Although not investigated here, one possible reason for sales price premiums that are above net installed costs is that buyers of PV homes may in some cases price in the opportunity cost of avoiding having to do the PV installation themselves, which might be perceived as complex. Moreover, a PV system installation that occurs after the purchase of the home would likely be financed outside the first mortgage and would therefore loose valuable finance and tax benefits, thereby making the purchase of a PV home potentially more attractive that installing a PV system later, even if at the same cost.
 ${ }^{40}$ Though we identified a higher number of PV homes that sold in the San Diego metropolitan area in our dataset, the home and site characteristics provided to us from the real estate data provider did not contain information on the year of the sale and therefore were not usable for the purpose of our analysis.
 ${ }^{41}$ In a different model, Dastrop et al. (2010) estimated an effect size of $\$ 2.4 /$ watt but, for reasons not addressed here, this estimate is not believed to be as robust.

[^48]: ${ }^{42}$ A small number of "affordable homes" $(n=7)$ are included in the new PV homes subset, which, as a group, appear to have a slight downward yet inconsequential effect on the overall sales premium results, and therefore were not investigated further herein. If the number of affordable homes with PV was significant in future research, those effects would best be controlled for directly.

[^49]: ${ }^{43}$ The $1,425 \mathrm{kWh}(\mathrm{AC})$ estimate is based on a combination of a 19% capacity factor (based on AC kWh and CECAC kW) from CPUC (2010), and an 0.86 conversion factor between CEC-AC kW and DC kW (Barbose et al., 2010).

[^50]: ${ }^{44} 3^{\text {rd }}$ party owned PV systems would not be expected to command the same sort of premium as was discovered here. Although the level of penetration of $3^{\text {rd }}$ party owners in our data was not significant (below 10%), and therefore would likely have not influenced our results in a substantive way, any future research, using more recent data, must account for their inclusion specifically.

[^51]: ${ }^{1}$ http://rredc.nrel.gov/solar/calculators/PVWATTS/version1/
 ${ }^{2}$ http://www.nrel.gov/rredc/pvwatts/version2.html
 ${ }^{3}$ http://maps.nrel.gov/node/10/

[^52]: ${ }^{4}$ http://www.eia.doe.gov/cneaf/electricity/epa/average price state.xls http://www.eia.gov/electricity/monthly/excel/epmxlfile5 6 b.xls

[^53]: ${ }^{1}$ There are some industry-initiated case studies on the financial performance of green homes. An example is a study by the Earth Advantage Institute, which documents for a sample of existing homes in Oregon that those with a sustainable certification sell for 30 percent more than homes without such a designation, based on sales data provided by the Portland Regional Multiple Listing Service. However, the sources of the economic premiums are diverse, not quantified, and not based on rigorous econometric estimations.

[^54]: ${ }^{2}$ For the commercial real estate market, a series of papers that study investor and tenant demand for green office space in the U.S. show that buildings with an Energy Star label-indicating that a building belongs to the top 25 percent of the most energy-efficient buildings-or a LEED label have rents that are two to three percent higher as compared to regular office buildings. Transaction prices for energy-efficient office buildings are higher by 13 to 16 percent. Further analyses show that the cross-sectional variation in these premiums has a strong relation to real energy consumption, indicating that tenants and investors in the commercial property sector capitalize energy savings in their investment decisions (Piet Eichholtz et al., 2010; in press).

[^55]: ${ }^{3}$ In model (2), we replace the zip-code-fixed effects for county fixed effects, as data on Prius registrations, electricity prices and the clustering of green homes is measured at the zip code level. To further control for the quality of the neighborhood and the availability of local public goods, we include a set of demographic variables from the Census bureau, plus distance to the central business district (CBD) and distance to the closest public transportation hub.
 4 This is comparable to private investors' preference for socially responsible investments (Jeroen Derwall et al., 2011).
 ${ }^{5}$ See Matthew E. Kahn (2007) for a discussion of Prius registrations as proxy for environmentalism.

[^56]: ${ }^{6}$ Under the initial rating system, which lasted until 2006, buildings could receive an Energy Star certification if improvements were made in several key areas of the home, including high-performance windows, tight constructions and ducts, and efficient heating and cooling equipment. An independent third-party verification by a certified Home Energy Rater was required. Homes qualified under Energy Star Version 1 had to meet a predefined energy efficiency score ("HERS") of 86, equating more than 30 percent energy savings as compared to a home built to the 1992 building code. From January 2006 until the end of 2011, homes were qualified under Energy Star Version 2. This version was developed in response to increased mandatory requirements in the national building codes and local regulations, as well as technological progress in construction practices. The updated guidelines included a visual inspection of the insulation installation, a requirement for appropriately sized HVAC systems, and a stronger promotion of incorporating efficient lighting and appliances into qualified homes. An additional "thermal bypass checklist" (TBC) became mandatory in 2007. As of 2012, Energy Star Version 3 has been in place, including further requirements for energy efficiency measures and strict enforcement of checklist completion.

[^57]: ${ }^{7}$ For more information on the rating procedures and measurements for LEED for Homes, see: http://www.usgbc.org/DisplayPage.aspx?CMSPageID=147.

[^58]: ${ }^{8}$ DataQuick maintains an extensive micro database of approximately 120 million properties and 250 million property transactions. The data has been extensively used in previous academic studies. See, for example, Raphael W. Bostic and Kwan Ok Lee (2008) and Fernando Ferreira et al. (2010).
 ${ }^{9}$ We were not able to match the remaining 2,105 certified properties to the DataQuick files. Reasons for the missing observations include, for example, properties that were still under construction, and incomplete information on certified properties.

[^59]: ${ }^{10}$ We calculate the Toyota Prius share of registered vehicles from zip code totals of year 2007 automobile registration data (purchased from R.L. Polk).
 ${ }^{11}$ Data retrieved from http://www.ncdc.noaa.gov/cdo-web/.
 ${ }^{12}$ Data retrieved from http://www.energy.ca.gov/maps/serviceareas/electric_service_areas.html. We thank the California Energy Commission for providing a list containing each zip code in California and the corresponding local electric utility provider.
 ${ }^{13}$ DataQuick classifies the presence and type of view from the property. A "good" view includes the presence of a canyon, water, park, bluff, river, lake or creek

[^60]: ${ }^{14}$ We replace the original "birth year" of a home with the renovation date in the analysis, so that vintage better reflects the
 "true" state of the home. This may explain the low economic significance of the renovation indicator.

[^61]: ${ }^{15}$ The fundamental energy efficiency requirement is identical across the three different labeling schemes, and the mechanisms for verification are almost entirely similar. The three labels require design for 15 percent energy savings beyond building code requirements and all schemes require various on-site verifications to confirm the delivered home was built to that standard. GreenPoint Rated and LEED offer the highest number of credits for exceeding that minimum requirement. Energy Star rated homes are thus not necessarily better energy performers as compared to the other rating schemes.
 ${ }^{16}$ The Energy Star label is recognized by more than 80 percent of U.S. households, and 44 percent of households report they knowingly purchased an Energy Star labeled product in the past 12 months (see http://www.cee1.org/eval/00-new-eval-es. php3). Energy Star is one of the most widely recognized brands in the U.S. While similar data is not available for GreenPoint Rated or LEED, both were introduced as building labels much more recently, and do not benefit from near ubiquitous cobranding in consumer products.

[^62]: ${ }^{17}$ Quite clearly, this paper mostly deals with labeled developer homes rather than existing homes that went through the labeling process. As noted in Section 2, this raises the possibility of a "developer effect" in explaining the price variation between green and conventional homes. More information on the identity of developers of labeled and non-labeled homes would allow us to further disentangle this effect, but we have information on the developers of green homes only. About one third of the homes in the labeled sample have been constructed by KB Homes. Regressions that exclude homes constructed by KB Homes lead to similar results, with the green premium decreasing to about 6 percent.

[^63]: ${ }^{18}$ While we do not have household level data on electricity consumption, the "rebound effect" would predict that such homeowners might respond to the relatively lower price of achieving "cooling" by lowering their thermostat. In such a case, the actual energy performance of the buildings would not necessarily be lower, because of this behavioral response.

[^64]: ${ }^{19}$ Source: Gabel Associates, LLC. (2008). "Codes and Standards: Title 24 Energy-Efficient Local Ordinances."

[^65]: ${ }^{20}$ At the time of writing, the City and County of San Francisco's Office of the Assessor-Recorder is beginning to record and publish the presence or absence of green labels in the county property database. Their stated objective is to increase the incentive to make green upgrades in new and existing properties by using transparency to increase market actors' ability to act upon label information.

[^66]: NCEEA
 397 Rivers Street
 ASU Box 32122
 Boone, NC 28608-2122

[^67]: NCEEA
 397 Rivers Street
 ASU Box 32122
 Boone, NC 28608-2122

