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Abstract 

 
We explore the impact of geographic disaggregation of house price stress paths on single-family credit risk 

measurement.  Specifically, we focus on the value added of moving from national, to state-level, to core-

based statistical area (CBSA)-level house price paths on estimates of mortgage credit related stress losses.  

To ensure the robustness of our results, we estimate losses across two different loan portfolios and three 

credit models.  We find that CBSA-level paths provide additional insight on localized credit risk and can 

be reliably constructed using quarterly house price indices.  Further, the variation in results across credit 

models suggests an implicit confidence interval around any one stress loss estimate.  Accounting for this 

uncertainty through a model risk add-on could potentially offer a more conservative view of portfolio credit 

risk. 
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                               Geographic Disaggregation of House Price Stress Paths: 

Implications for Single-Family Credit Risk Measurement 
 

 

1. Introduction  

 

Risk managers calculate credit risk for single-family mortgages by running a portfolio of loans through a 

prepayment-default model, which estimates lifetime losses conditional on a macroeconomic scenario.  The 

macroeconomic scenario consists of two primary components – a series of house price paths and interest 

rate projections.  The house price paths are key to estimating credit-related stress losses because defaults 

and hence credit losses only materialize to the extent that house prices decline by more than any equity or 

credit support attached to the mortgage loan.1  House price indices (HPIs) are available at different levels 

of regionalization. This paper explores the implications of incorporating different levels of regionalization 

on the severity of stress loss estimates.  Specifically, we focus on the value added of moving from national, 

to state-level, to core-based statistical area (CBSA)-level house price paths on estimates of mortgage credit 

related stress losses.2   

 

Additional geographic granularity allows for a given macroeconomic scenario to capture variation in house 

price dynamics within most states.  For example, instead of assuming the same house price path across 

Texas, we can craft a macroeconomic scenario with a different price trajectory in a large city like Houston 

versus a smaller city like El Paso.  This additional flexibility allows us to more accurately capture localized 

house price dynamics and the underlying credit risk associated with loans in each area.   

 

We produce a series of regional stress paths by leveraging the scenario construction methodology that Smith 

and Weiher (2012) originally developed, and Smith et al. (2016) further tested, hereafter referred to as the 

Countercyclical Mortgage Asset Stress Test (CMAST).3  CMAST is a framework by which we can develop 

stress scenarios using only historical house prices while preserving the regional level of granularity.  In 

other words, if we input historical state-level HPIs, the CMAST framework will generate state-level house 

 
1 For purposes of single-family credit risk measurement, house price movements are the primary driver of stress 

losses.  Interest rate projections, which determine borrower refinance incentives, are the second major driver.  

Macroeconomic scenarios may include additional projections for other economic variables such as gross domestic 

product (GDP) and unemployment, but these generally have a tertiary effect on losses (Tajik et al., 2015; Jones and 

Sirmans, 2015). 
2 A CBSA is a geographic area consisting of one or more counties that is anchored to an urban center of at least 

50,000 people.  We currently use the Census Bureau delineations the Office of Management and Budget provides in 

Bulletin No. 20-01 (released in March 2020).   
3 The state-level framework has been tested additionally using a theoretically based statistical technique to identify a 

conservative lower bound (Bogin, Bruestle, Doerner, 2017). 
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price stress paths.  Alternately, if we input historical CBSA-level HPIs, the CMAST framework will 

generate CBSA-level house price stress paths.4  This same flexibility is not available in other commonly 

used approaches such as the Federal Reserve’s Comprehensive Capital Analysis and Review (CCAR).5,6 

CMAST is also rules-based and dynamically adjusts to current market conditions, making it particularly 

well suited because of its ability to automatically rescale based upon the granularity of the included inputs.   

 

Using the CMAST framework to generate stress scenarios, we estimate losses across two dissimilar U.S. 

loan portfolios and three credit models. We employ multiple portfolios and models to examine the 

robustness of the results.  We find that the magnitude of stress loss estimates can vary considerably across 

both loan portfolios and credit models, but the rank order of losses with respect to the geographic 

disaggregation of the associated house price stress paths remains the same.  Specifically, we observe the 

lowest level of stress losses when applying the same national house price path to all loans.  Estimated losses 

then monotonically increase as we move to state- and then CBSA-level house price paths.7  We find that 

these CBSA-level paths, which we can reliably construct using quarterly HPIs, provide a more accurate 

measure of localized credit risk.8  In Section 2, we describe why disaggregated stress paths are more likely 

to result in larger stress loss estimates, and subsequently verify this result in our findings. 

 

Finally, examining variation in stress losses across credit models provides an estimate of one component 

of model risk.  This variation suggests an implicit confidence interval around any stress loss estimate 

generated from a single model.  We can account for this additional source of uncertainty through a model 

risk-add on, which could provide a more conservative view of portfolio credit risk   

 

We structure the remainder of the paper as follows.  In the next section we motivate the research.  In the 

third section, we discuss scenario construction, and in the fourth section we describe our loan data.  The 

fifth section introduces the magnitude of loss estimates across geographies.  The sixth section presents 

 
4 The major concern with using more geographically disaggregate HPIs is that the number of transactions underlying 

each index estimate may decrease to the point where there are too few observations to estimate a particular index 

value reliably.  This form of estimation error can be significantly mitigated through more aggressive temporal 

aggregation.  Specifically, instead of estimating a series of monthly indexes, we can move to a series of quarterly 

indexes, which allows us to aggregate three months of sales and refinance data, thus increasing the sample size used 

to estimate each index value. 
5 Additional information on the use of CCAR in stress testing is available in Clark and Ryu (2013). 
6 The analysis we provide in this paper and the mortgage stress test we will describe would be applicable to any 

housing market that is structured similarly to the United States. 
7 This monotonic increase is a result of the non-linearity of the borrower default with respect to house price declines, 

which is described in additional detail in section 2.  
8 In future research, we hope to explore other forms of disaggregation such as constructing house price stress paths 

based upon property characteristics or home price tiers. 
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differences in loss estimates across credit models, which provides a measure of potential model risk.  We 

conclude in the final section.   

 

2. Motivation 

The frequency and amplitude of house price cycles can vary significantly across locations.  During the 

Great Financial Crisis (GFC), inflation-adjusted or real house prices fell by 31.6 percent nationally between 

their peak in Q4 2006 and their trough in Q1 2012.9,10  We observed even larger price decreases in states 

like California, where real house prices fell by 54.0 percent, and Nevada, where real house prices fell by 

64.9 percent.  In contrast, the crisis had a muted effect in states like Texas where real house prices fell just 

12.4 percent.   

 

We also observe substantial variation within states when we examine CBSA-level prices.  For example, 

within California, real house prices fell by 38.7 percent in San Jose, 46.0 percent in San Diego, 47.2 percent 

in Los Angeles, and 58.7 percent in Riverside.  In other words, within the same state, we observed a range 

of house price declines as large as 20 percent.  When measuring credit risk on a portfolio of loans only 

using a state-level house price path, we fail to account for potentially substantial variation within states.11  

 

The additional information contained within CBSA-level house price movements is further evidenced in 

Figure 1, which shows the historical distribution of price declines at the state- and CBSA-levels during the 

GFC.12  The median price decline across CBSA-level paths is 31.1 percent while the median price decline 

across state-level paths is 29.1 percent.  The CBSA-level distribution is also characterized by a fatter right-

hand tail indicating more probability mass associated with large house price declines.  The 95th percentile 

of the CBSA-level distribution is associated with a price decline of 58.1 percent while the 95th percentile 

of the state-level distribution is associated with a price decline of 54.0 percent.  Under the CMAST 

 
9According to the National Bureau of Economic Research, the U.S. economy was in recession from December 2007 

through June 2009.  This period of recession was subsequently followed by an unusually slow economic recovery.  
10 We base the underlying HPIs we use to calculate these declines upon a set of hybrid indices that we discuss in 

Section 3 of the paper.  The HPIs are constructed based upon transactions for single-family properties involving 

conforming, conventional mortgages purchased or securitized by Fannie Mae or Freddie Mac.  The loan sample 

excludes condominiums, cooperatives, multi-unit properties, and planned unit developments.   
11 Gyourko and Voith (1992), Abraham and Hendershott (1996), Fratantoni and Schuh (2003), Gu (2002), and Hill 

(2004) discuss the importance of local house price dynamics in predicting future house price movements. 
12 The state-level data consists of information on all 50 states and the District of Columbia.  The CBSA-level data 

includes state net of CBSA paths, which we construct based upon price declines associated with geographies outside 

of the included CBSA metro areas.  In constructing the HPI distributions, we weigh both the CBSA- and state-level 

data based upon existing housing stock.  
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framework, larger historical CBSA-level house price declines lead to more severe localized stress paths, 

which provide a more accurate measure of credit risk for loans in the affected areas.13   

 

Figure 1: Distribution of House Price Declines During the Last Financial Crisis 

 

 

Everything else held equal, an increase in the severity of the stress path will lead to larger stress loss 

estimates, but the effect is non-linear.  Specifically, as the size of the down shock increases, the magnitude 

of the stress loss estimate increases at an increasing rate.  We can attribute this non-linearity in the loss 

function to the presence of borrower equity at origination.  In addition, the significant transaction costs 

associated with default can also translate into a non-linearity with respect to mark-to-market loan-to-value 

(MTM LTV) in the borrower’s decision to default.14  We show an example of this non-linearity in Table 1, 

which displays state-level stress loss estimates for a synthetic pool of loans under increasingly large house 

price declines.15   

 

 

 
 

 

 
13 Bogin, Doerner, and Larson (2019) construct a credit model and find that mark-to-market loan-to-value ratios 

constructed using city-level HPIs lead to the most accurate modeled estimates of historical loan performance. 
14 Moving costs, penalties that limit future access to credit, and social stigma are all factors contributing to the non-

linearity of the decision to default (Foote, Gerardi, and Willen, 2008; Elul, Souleles, Chomsisengphet, Glennon, and 

Hunt, 2010; and Foote and Willen, 2018). 
15 The synthetic pool of loans consists of 30-year fixed, purchase-only mortgages, each associated with a FICO score 

of 720, an LTV of 80 percent, and an interest rate of 5.00 percent.  The loss estimates represent an average across a 

sample of 10 states characterized by a variety of economic conditions. 
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Table 1: The Non-Linear Relationship between Price Declines and Stress Losses 
 

House Price Decline Stress Loss Estimate 
Change in Stress Loss 

Estimate 

      

10% 1.35% N/A 

20% 1.57% 0.25% points 

30% 2.98% 1.41% points 

40% 6.61% 3.63% points 

 

3. Scenario Construction 

To begin our analysis, we build a series of HPIs measuring historical appreciation at three different levels 

of geographic aggregation – national, state-level, and CBSA-level.  We construct the HPIs using a variant 

of the repeat-sales index Bailey, Muth, and Nourse (1963) first proposed and Case and Shiller (1987, 1989) 

later extended.16  We can estimate a repeat-sales index using purchase only transactions, or a combination 

of purchase and refinance transactions (all transactions).  Because house prices derive from the same 

property repeatedly transacted, the repeat-sales methodology closely approximates a constant quality 

index.17 

 

We have sufficient data on historical property transactions to build national and state-level indices reliably 

using purchase-only data.  Unfortunately, in less populated areas, it is difficult to build purchase-only 

indices at the CBSA-level.18  This is because of an insufficient number of transactions in certain periods, 

which leads to small sample sizes, increased estimation error, and more period-to-period volatility in index 

estimates.  To address this concern, we estimate our indices using a hybrid sample—purchase and refinance 

transactions prior to 1991 and then just purchase transactions post-1991.19,20  We also move from a series 

of monthly HPIs to a series of quarterly HPIs.21  This allows us to group transactions across time to abate 

the problem of small sample sizes.22      

 
16 FHFA’s methodology can be found at 

http://www.fhfa.gov/PolicyProgramsResearch/Research/PaperDocuments/1996-03_HPI_TechDescription_N508.pdf 
17 Because of renovations, particularly substantial rehabilitation, and demolition followed by new construction, it is 

possible that the value of a property at the same address transacting on different dates will not reflect pure house 

price appreciation (Bogin and Doerner, 2019). 
18 Traditionally, FHFA has only published quarterly, purchase-only indices for 100 metropolitan statistical areas 

(MSAs).  In contrast, FHFA publishes quarterly, all-transactions indices for over 400 MSAs. 
19 The underlying house price indices used to construct CMAST paths are non-public.  They are distinct from the 

HPIs published by FHFA and publicly available on the Agency’s website. 
20 To ensure comparability across geographies, our national, state, and CBSA-level indices are constructed using this 

same hybrid approach. 
21 Smith and Weiher originally used monthly indices to construct state-level CMAST paths.  
22 Another option for bolstering sample size would be to move to an all-transactions index, but this has problems as 

well.  Specifically, during periods of rapid house price growth, growth in assessed values, which are used in 

 

http://www.fhfa.gov/PolicyProgramsResearch/Research/PaperDocuments/1996-03_HPI_TechDescription_N508.pdf
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After constructing HPIs at the national, state, and CBSA levels, we input them into the CMAST framework.  

CMAST, which is relatively simple in concept, is determined by two factors: (1) where house prices are 

relative to their long-term trend; and (2) the extent to which prices can fall below this trend (depth of 

trough).23  Constructing CMAST house price stress paths only require a historical HPI series for each 

geographic region.  From the HPI series, we observe a current house price level, and generate a long-term 

trend and trough (or a lower bound).  Trend is based on HPI as a function of time, estimated using only data 

from completed HPI cycles, and trough is established as a percentage of trend (e.g., 75 percent) based on 

the lowest level of HPI observed below trend in the historical house price series.  Based upon these two 

components, we construct shock time paths using a 3-4-3 pattern: three years from current HPI to trough, 

four years at trough, and three years for HPI to return to long-term trend.24,25  We base these shock time 

paths on historical house price dynamics.26,27 

 

The very long-term stability of housing expenditures as a percent of GDP supports the CMAST assumption 

that HPI will be cyclically mean reverting, resulting in a stress path for HPI initiated at its current price 

level, dropping to trough, and then reverting back to trend.28  Thus, CMAST is rules based, dynamic, and 

countercyclical by adjusting the severity of the HPI down shock to the extent that current HPI is above or 

below trend, where the stress is increasing as HPI rises above trend, and then decreasing as HPI approaches 

 
refinances, tends to lag growth in purchase prices.  This is largely a function of the backward-looking nature of 

assessments, which generally rely on previous sales in the same area, and which are used as comparable transactions 

(Fisher, 2005). 
23 The CMAST framework also includes a set of national-level interest rate projections which are intended to mirror 

the Federal Reserve’s response to a housing market downturn such as occurred during the GFC.  In future research, 

we would like to explore using the CMAST framework to produce other stressors such as borrower income shocks.  

This alternate source of stress could potentially enter a credit model through debt-to-income shocks. 
24 See Smith et al. (2016) for a thorough analysis of the time path assumption.  The authors conclude that the 3-4-3 

is conservative.  Based upon our review of recent cycles, we find that there is no cause to revisit their time path 

assumption at the time of this writing. 
25 One potential critique of the CMAST trend line is that it doesn’t capture structural breaks.  We acknowledge that 

this a limiting factor, but believe it’s a necessary feature of a truly rules-based approach to house price stress path 

construction.  When present, the impact of structural breaks could potentially be muted by moving to a series of 

more localized CPI deflators which would allow us to at least partially account for changes in regional economic 

conditions.  
26 See Smith and Weiher (2012) for additional details. 
27 FHFA produces CMAST stress paths at both the state and CBSA-level on a quarterly basis.  These CMAST paths 

can be downloaded at https://www.fhfa.gov/DataTools/Downloads/Pages/Countercyclical-Mortgage-Asset-Stress-

Test.aspx. 
28 Abraham and Hendershott (1996) use a variant of this first component, the difference between actual and 

equilibrium price levels, to estimate the magnitude of future price declines absent a change in market fundamentals.  

Wheaton and Torto (1988) consider a similar adjustment mechanism in commercial real estate.  Both these 

approaches assume a mean-reverting process as discussed with respect to the rent-price ratio in Campbell, Davis, 

Gallin, and Martin (2009) and Plazzi, Torous, and Valkanov (2010).    

https://www.fhfa.gov/DataTools/Downloads/Pages/Countercyclical-Mortgage-Asset-Stress-Test.aspx
https://www.fhfa.gov/DataTools/Downloads/Pages/Countercyclical-Mortgage-Asset-Stress-Test.aspx
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the trough.29  The fact that we construct CMAST scenarios using these same rules at each level of 

geographic aggregation ensures that our analysis is a properly controlled test of the impact of different 

levels of house price stress geographic aggregation. 

 

Figure 2a illustrates a sample CMAST path for California, Figure 2b illustrates a sample CMAST path for 

San Jose, and Figure 2c illustrates a sample CMAST path for Riverside.  The CMAST path for California 

is associated with an initial house price decline of 32.6 percent.  In contrast to the state-level path, the 

CMAST path for San Jose is associated with a significantly smaller price drop of 18.6 percent.  Alternately, 

the CMAST path for Riverside is associated with a substantially larger price drop of 49.4 percent. 

 

As illustrated in Figures 2a through 2c, if we were to apply a state path to all loans in California, we would 

overstate credit risk in San Jose, but understate it in Riverside.  By using the CBSA-level paths, we leverage 

information on localized house price dynamics to capture credit risk more accurately. 
 

Figure 2a: Real HPI, Trend, Trough, and CMAST Path for California 

   

 

 

 

 

 
29 CMAST stress paths are countercyclical because the trough is invariant to the current cycle peak.  Smith et al. 

(2016) examine this feature of CMAST in depth and find it robust.  The supporting economic logic is that housing 

investors will reenter a depressed housing market once HPI is a certain amount (20 to 25 percent typically) below 

trend regardless of prior cycle peaks.  
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Figure 2b: Real HPI, Trend, Trough, and CMAST Path for San Jose 

 
 

 

Figure 2c: Real HPI, Trend, Trough, and CMAST Path for Riverside 

 

4. Portfolio Data 

We base our analysis upon two different single-family mortgage portfolios containing conforming, 

conventional loans.  The first portfolio consists of mortgage loans the Federal Home Loan Banks acquired 
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under their Acquired Member Assets (AMA) program.30  We drew the AMA sample as of Q4 2019 and it 

consists of approximately 406,000 active loans representing mortgage originations from 1997 to 2019.  The 

second portfolio consists of single-family loans Fannie Mae acquired that were included in 2020 

Connecticut Avenue Security (CAS) issuances, which are part of the Enterprise’s credit risk transfer 

effort.3132  The CAS data represents only 2019 originations and consists of approximately 436,000 loans.33  

Between the two samples, the CAS loans are more representative of nationwide originations, whereas AMA 

loans reflect each Federal Home Loan Bank’s participation in the AMA program, membership, and region 

of activity.  The primary focus of our comparison is AMA and CAS loans originated in 2019, which are 

analyzed as new originations.  Alternately, the full AMA sample represents a seasoned portfolio of loans 

with lower unpaid principal balances (UPBs) and a larger percentage of rate-term refinances. 

 

As we show in Table 2, the average UPB associated with the full sample of AMA loans is $166,888.  When 

we confine the sample to 2019 originations, this figure rises to $236,513.  In contrast, the CAS loans, again 

all 2019 originations, are associated with a slightly higher UPB of $262,551.  The weighted average FICO 

score for the full sample of AMA loans is 760.1.  This score drops to 758.2 when examining just 2019 

originations.  The weighted average FICO associated with the CAS sample is approximately 11.8 points 

lower at 746.3.  The higher credit quality of the AMA loans is partially a function of the AMA program 

requirement that members selling loans to the Federal Home Loan Banks must credit enhance those loans. 

Hence, such members have an incentive to provide loans associated with lower levels of credit risk to lessen 

their credit enhancement obligation. 

 

 

 

 

 
30 The Federal Home Loan Bank AMA programs support member housing finance activity through acquiring high 

quality, conforming residential mortgage loans from FHLBank members.  It structures these programs such that 

members bear a substantial portion of the associated credit risk on acquired loans.  AMA loan-level data is non-

public.  
31 The CAS program is designed to allow investors to share credit risk on Fannie Mae’s single-family conventional 

guaranty book of business.  The CAS loan-level data we examined is publicly available.  Freddie Mac has a similar 

credit risk sharing program called Structured Agency Credit Risk (STACR).  STACR loan-level data is also publicly 

available and very similar in nature to the CAS data.  Given the similarities between Fannie Mae and Freddie Mac 

loan acquisitions we felt there was a limited amount of added value including a STACR, as well as a CAS, dataset in 

our analysis. 
32 The lowest level of geography available in the public CAS data is three-digit ZIP Codes, which are similar in size 

to CBSAs in medium to smaller cities.  The absence of additional geographic granularity precludes the possibility of 

studying the effects of further disaggregation such as five-digit ZIP Code or census tract house price stress paths.  

Further, in order to reliably create indices at this level of geographic detail, we would need to group transactions by 

the year as opposed to the quarter.  This level of frequency can prevent an accurate estimate of trough. 
33 We chose to cut off our data in 2019 to only reflect pre-COVID originations. 
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Table 2: Summary Statistics for AMA and CAS Loans 

 

Field AMA Loan Data CAS Loan Data 

  Full Sample 2019 Originations 2019 Originations 

Observations 406,234 81,729 436,191 

Average UPB $166,888 $236,513 $262,551 

Weighted Average FICO 760.1 758.2 746.3 

Weighted Average LTV 74.23 74.24 83.6 

Weighted Average Coupon 4.07 3.91 4.44 

% Purchase 41.7% 42.8% 70.3% 

% Rate-Term Refinance 51.9% 26.5% 15.1% 

% Cash-Out 6.4% 30.6% 14.7% 

 

One of the most striking differences across the AMA and CAS samples is weighted average LTV.  Among 

AMA loans (both the full sample and just the 2019 originations), the weighted average LTV rounds to 74.2 

percent.  In contrast, the weighted average LTV among CAS loans is 9.4 percentage points higher at 83.6 

percent.  Everything else held equal, the CAS portfolio’s lower weighted average FICO score and 

significantly higher weighted average LTV should lead to larger loss estimates relative to the AMA sample 

(Jones and Sirmans, 2015). 

 

We also observe a significant difference in the percentage of purchase loans across the two samples.  Among 

the AMA portfolio, the percent of purchase loans is 41.7 percent in the full sample and 42.8 percent among 

2019 originations.  Alternately, the CAS portfolio is made up of 70.3 percent purchase loans.  The AMA 

portfolio is made up of 6.4 percent cash-out loans in the full sample and 30.6 percent cash-out loans among 

2019 originations.  In contrast, the CAS portfolio is made up of 14.7 percent cash-out loans.  Generally, 

cash-out loans perform worse than purchase or rate-term refinances (Jones and Sirmans, 2015; Kim, Cho, 

and Ryu, 2018), but, ultimately, the impact of loan purpose on losses depends on the loan performance data 

used to calibrate the credit model. 

 

The other striking difference across the two loan portfolios is the geographic concentration of loans.  Among 

the full sample of the AMA loans, the top three most represented states are Ohio at 11.88 percent, Indiana 

at 8.08 percent, and Kansas at 6.43 percent.34  We see a slight shift when we focus on 2019 originations 

where the top three most represented states are Wisconsin at 12.09 percent, Ohio at 8.02 percent, and Illinois 

at 7.07 percent.  Among the CAS portfolio, the top three most represented states are California at 11.51 

percent, Texas at 7.67 percent, and Florida at 7.34 percent.   

 
34 We calculate measures of geographic concentration based upon sample loan count.  
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Table 3 details the severity of the three-year peak-to-trough CMAST state-level house price stress path in 

each aforementioned state.  As detailed in the table, the most represented states in the CAS pool are where 

HPI has risen excessively above trend, translating into larger CMAST house price declines than the most 

represented states in either the AMA full sample or the AMA 2019 originations.  Ex ante, this pronounced 

difference in severity suggests that portfolio-level estimated stress losses for the CAS sample are likely to 

exceed portfolio-level estimated stress losses for either AMA sample.         
 

Table 3: Severity of Q4 2019 CMAST House Price Decline Among States with the Largest 

Geographic Concentration of Loans 
 

Geographic Concentration CMAST State-Level Paths 

  Initial House Price Decline 

AMA Loans Full Sample     

Ohio (11.88%) 25.8% 

Indiana (8.08%) 25.5% 

Kansas (6.43%) 30.2% 

AMA Loans 2019 Originations     

Wisconsin (12.09%) 17.5% 

Ohio (8.02%) 25.8% 

Illinois (7.07%) 8.6% 

CAS Loans     

California (11.51%) 29.3% 

Texas (7.67%) 41.3% 

Florida (7.34%) 38.6% 

 

5. Results 

We produce results using three commonly used and market-tested credit models (denoted as Models A, B, 

and C).35,36 We present stress loss estimates for the AMA and CAS portfolios in Table 4. Each row 

represents a particular loan portfolio-credit model combination, and, as we move from left to right, we 

observe loss estimates under increasingly geographically granular stress paths.  The same pattern of losses 

emerges across all rows.  Loss estimates are lowest when applying a national house price stress path.  As 

we move to state-level house price stress paths, loss estimates increase.  Moving to CBSA-level house price 

paths leads to even larger loss estimates although the change is muted relative to the increase observed 

when moving from a national to a state-level house price path. 
 

 
35 For loans with origination LTVs greater than 80, we adjust for mortgage insurance. 
36 The use of three models serves as a robustness check on the effects of stress testing at different levels of 

geographic disaggregation.   
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Table 4: Portfolio-Level Stress Loss Results 

Portfolios analyzed as of Q4 2019 
      

Portfolio/Credit Model 
National CMAST 

Path 

State-Level CMAST 

Paths 
CBSA-Level CMAST Paths 

CAS Loans - 2019 

Originations 
    

Top 50 

CBSAs 
Top 100 CBSAs 

Model A 1.03% 1.68% 1.91% 1.97% 

Model B 2.12% 2.67% 2.86% 2.91% 

Model C 1.59% 2.13% 2.45% 2.54% 

AMA Loans - 2019 

Originations 
    

Top 50 

CBSAs 
Top 100 CBSAs 

Model A 0.81% 0.99% 1.21% 1.27% 

Model B 1.11% 1.31% 1.36% 1.40% 

Model C 1.36% 1.49% 1.65% 1.66% 

AMA Loans - Full Sample     
Top 50 

CBSAs 
Top 100 CBSAs 

Model A 0.64% 0.78% 0.81% 0.85% 

Model B 0.72% 0.79% 0.82% 0.85% 

Model C 0.98% 1.02% 1.11% 1.12% 

 

We include two sets of CBSA-level paths.  The first includes house price stress paths for the top 50 CBSAs 

by housing stock.37  All loans outside of these CBSAs receive a state net of CBSA (or balance of state) 

path, which we construct using housing transactions outside of all included metro areas.38  The second set 

of paths includes house price stress paths for the top 100 CBSAs by housing stock.  Again, all loans outside 

of these CBSAs receive balance of state paths.  Moving from the top 50 to the top 100 CBSAs generally 

increases losses, but the change is minor compared to the increase in loss estimates when moving from a 

national path to state-level paths or from state-level paths to the top 50 CBSAs.  Focusing on the AMA full 

sample, we see increases of one basis point (bp) to four bps depending on the credit model.  It is important 

to note that while this is a small increase, it represents a portfolio-level aggregate.  If we were to focus on 

the stress loss estimates associated with a state with multiple CBSAs (with a cohort in the top 50 and another 

in the top 100), we are likely to observe a larger differential.  For instance, focusing on AMA loans 

originated in the state of California, we see an increase in the associated stress loss estimate of 14 bps when 

moving from the top 50 to the top 100 CBSAs.39 

 

 
37 Housing stock is calculated based upon 2019 county-level data, which we then aggregate to the CBSA-level.  We 

include a list of the top CBSAs by housing stock in Appendix A.  
38 We invoke the same general methodology that FHFA uses in its public indexes to construct our balance of state 

paths. 
39 California has six CBSAs in the top 50 and an additional three CBSAs in the top 100. 
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Next, we explore stress loss estimates across individual geographies.  For purposes of exposition, we focus 

on CAS and AMA 2019 originations run through Model C.40  As we show in Table 5, we observe significant 

variation in stress loss results within California, Florida, and Texas.  For AMA loans in California, stress 

losses range from a low of 0.67 percent in San Jose to a high of 3.67 percent in Riverside.  In contrast, for 

AMA loans, we estimate state-level stress losses at 1.08 percent.  For CAS loans in California, stress losses 

range from a low of 1.38 percent in San Jose to a high of 4.14 percent in Riverside.  Alternately, for CAS 

loans, we estimate state-level stress losses at 1.71 percent.  The results across both portfolios again indicate 

that state-level results can understate risk for loans in certain regions (e.g., Sacramento, Riverside), while 

at the same time overstating risk in other regions (e.g., San Jose).  Without this additional level of 

geographic disaggregation, we lose information on these complexities.  We observe a similar dynamic in 

both Florida and Texas. 

Table 5: Region-Level Stress Loss Results 

Portfolios analyzed as of Q4 2019     

Region 

CAS Loans - 2019 

Originations 

AMA Loans - 2019 

Originations 

      

California 1.71% 1.08% 

Los Angeles-Long Beach-Anaheim 2.15% 1.44% 

Riverside-San Bernardino-Ontario 4.14% 3.67% 

Sacramento-Roseville-Folsom 3.05% 2.46% 

San Diego-Chula Vista-Carlsbad 1.57% 1.54% 

San Francisco-Oakland-Berkeley 2.02% 1.10% 

San Jose-Sunnyvale-Santa Clara 1.38% 0.67% 

      

Florida 4.39% 3.55% 

Jacksonville 3.39% 3.18% 

Miami-Fort Lauderdale-Pompano Beach 5.13% 3.90% 

Orlando-Kissimmee-Sanford 5.59% 5.45% 

Tampa-St. Petersburg-Clearwater 5.18% 4.08% 

      

Texas 3.98% 3.12% 

Austin-Round Rock-Georgetown 4.60% 3.88% 

Dallas-Fort Worth-Arlington 4.16% 3.44% 

Houston-The Woodlands-Sugar Land 5.58% 4.10% 

San Antonio-New Braunfels 4.77% 4.06% 

 
 

 
40 We chose to focus on results from Model C because the underlying behavioral model was subject to several in-

depth sensitivity analyses.  Model A and B yield comparable results. 
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6. Model Risk 

A dual benefit of incorporating results from three different credit models is the ability to explore several 

facets of model risk. We must acknowledge that the results reflect a snapshot in time and the rank order of 

results may vary as different portfolios are examined and models are updated.  The primary intent of this 

analysis is to provide a calibration of potential model risk or the extent to which stress loss estimates can 

vary across credit models.   
 

We focus our analysis on stress loss estimates associated with AMA loans.41  For this use case, we define 

model risk as the difference in loss estimates across models when holding constant both the pool of loans 

and the included CMAST stress path.  Table 6 illustrates the variation in loss estimates across these fixed 

portfolios and CMAST stress path combinations. 

 
 

Table 6: Portfolio-Level Model Risk 

Portfolios analyzed as of Q4 2019       

Portfolio/Credit Model 
National CMAST 

Path 

State-Level 

CMAST Paths 
CBSA-Level CMAST Paths 

AMA Loans - Full Sample     Top 50 CBSAs Top 100 CBSAs 

Model A 0.64% 0.78% 0.81% 0.85% 

Model B 0.72% 0.79% 0.82% 0.85% 

Model C 0.98% 1.02% 1.11% 1.12% 

Range 0.64% to 0.98% 0.78% to 1.02% 0.81% to 1.11% 0.85% to 1.12% 

AMA Loans - 2019 

Originations 
    Top 50 CBSAs Top 100 CBSAs 

Model A 0.81% 0.99% 1.21% 1.27% 

Model B 1.11% 1.31% 1.36% 1.40% 

Model C 1.36% 1.49% 1.65% 1.66% 

Range 0.81% to 1.36% 0.99% to 1.49% 1.21% to 1.65% 1.27% to 1.66% 

 

As detailed, the range of loss estimates is wider when examining AMA 2019 originations.  This is because, 

under the CMAST framework, the stress shock on loans is maximized at origination and then declines with 

loan age.  This leads to larger loss estimates and more opportunity for variation across models.42 Looking 

down each column of Table 6, we see the same rank order of losses.  For the AMA portfolio, Model A 

 
41 We focus on the AMA sample because it allows us to compare model performance across both new and seasoned 

loans. 
42 See Smith and Weiher (2012) for additional details. 
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produces the smallest loss estimates, followed closely by Model B, with Model C producing the largest loss 

estimates.43   

 

While the range in loss estimates is relatively constrained in absolute terms (conditional on the same 

portfolio and macroeconomic stress path, variation across models never exceeds 55 bps), we observe large 

proportional differences across models.  The average percentage difference between Model A and Model 

B results is 11.70 percent.  Alternately, the average percentage difference between Model A and Model C 

is 34.32 percent.  To measure model risk extent more accurately, we next condition our analysis on a series 

of loan and borrower attributes using a regression framework.   

 

Table 7 shows results for a linear regression model that we calibrate using loan-level loss estimates.  We 

generate the loss estimates by applying the top 50 CBSA paths to AMA 2019 originations and running the 

loans through Models A, B, and C.   

 
 

Table 7. Stress Loss Estimates Across Credit Models 
 

LHS: Stress Loss Estimate 
Full 

Sample 
Purchase Rate-Term Cash-Out 

Model A 
-0.0048 *** -0.0025 *** -0.0054 *** -0.0085 *** 

(0.0001) (0.0002) (0.0002) (0.0002) 

Model B 
-0.0015 *** 0.0056 *** -0.0086 *** -0.0061 *** 

(0.0001) (0.0002) (0.0002) (0.0002) 

          

Loan Attributes and Borrower Characteristics X X X X 

State FE X X X X 

          

N 184,706 90,015 44,819 49,872 

RMSE 0.0215 0.0244 0.0142 0.0200 

Adjusted R2 0.3342 0.3358 0.3790 0.3396 

The omitted category in the regression is Model C.  We provide standard errors in parentheses; * p<0.1, ** p<0.05, and 

*** p<0.01.   

 

The first column (Full Sample) of Table 7 shows results across purchase, rate-term refinance, and cash-out 

loans.44  Controls include state-level fixed effects, indicator variables for mortgage purpose and mortgage 

amount, and continuous variables for LTV ratio, credit score, and mortgage interest rate.45  The coefficient 

 
43 It is important to note that the rank order of losses may change as we evaluate alternate portfolios.  Similarly, we 

may see a different ordering as each of models is updated to better reflect new market conditions.   
44 Full Sample represents all 2019 AMA originations.  We then stack Loss estimates for each credit model. 
45 We explore different functional forms for LTV and credit score including bringing the variables in as linear terms, 

quadratics, and splines.  The results are qualitatively similar across specifications.    
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estimate attached to the Model A indicator equals -0.0048 and is statistically significant at the one percent 

level.  It indicates that, conditional on a suite of controls, Model A produces loss estimates 48 bps lower 

than Model C.  The coefficient attached to the Model B indicator equals -0.0015 and is also statistically 

significant at the one percent level.  It indicates that, conditional on the same set of controls, Model B 

produces loss estimates 15 bps lower than Model C.   

 

The second column (Purchase) of Table 7 applies the same specification, but only to purchase loans.  

Interestingly, the coefficient attached to the Model B indicator switches signs while remaining statistically 

significant at the one percent level.  It indicates that, when evaluating only purchase loans, Model B 

produces loss estimates 56 bps higher than Model C.  In contrast, we find the same negative relationship 

between losses generated from Model A and losses generated from Model C as observed in the full sample.  

This suggests that for portfolios skewed towards a larger percentage of purchase loans, Model B may 

produce the largest loss estimates across all three credit models.   

 

In columns 3 and 4, we limit our analysis to rate-term refinances and cash-out refinances, respectively.  

When evaluating only rate-term refinances, the rank order of losses changes (relative to the full sample 

results) with Model B now generating the smallest loss estimates (86 bps lower than Model C) followed by 

Model A (54 bps lower than Model C).  In contrast, when evaluating only cash-out refinances, we return to 

the same rank order of losses as estimated using the full sample.46,47 

 

The results from Table 7 show a significant degree of variation in loss estimates across credit models 

depending on loan purpose.  This suggests that portfolio composition plays a large role in determining the 

extent to which loss estimates differ across models.  More broadly, variation in loss estimates across credit 

models suggests an additional source of uncertainty when measuring credit risk.  This uncertainty can 

potentially be accounted for through a model risk add-on, which should be updated periodically and would 

provide a more conservative measure of portfolio credit risk.     

 

 
46 We get qualitatively similar results when running the full sample with a series of interaction terms between credit 

model and loan purpose.  
47 As an additional exercise, we also explore variation in loss estimates across credit models for judicial versus non-

judicial states.  In non-judicial states, the difference in loss estimates across models shrinks.  Specifically, when 

confining our analysis to non-judicial states, the coefficient attached to the Model A indicator is equal to -0.0015 

(statistically significant at the one percent level) and the coefficient attached to the Model B indicator is equal to 

0.0005 (statistically significant at the five percent level).  In contrast, when confining our analysis to judicial states, 

the coefficient attached to the Model A indicator is equal to -0.0083 (statistically significant at the one percent level) 

and the coefficient attached to the Model B indicator is equal to -0.0035 (statistically significant at the one percent 

level). 
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7. Conclusions  

Leveraging the CMAST framework, we examine how portfolio losses vary across stress paths constructed 

at three different levels of geographic aggregation.  We explore results across two loan portfolios and three 

credit models and find that, while the magnitude of stress loss estimates varies across both loan portfolios 

and credit models, the rank order of losses with respect to the geographic disaggregation of the associated 

house price stress paths remains the same.  Specifically, we observe the lowest level of stress losses when 

applying the same national house price path to all loans.  Estimated losses then monotonically increase as 

we apply more geographically disaggregated house price paths.   

 

From a policy perspective, these results suggest that moving to CBSA-level stress paths could improve 

credit risk measurement.  We can reliably produce CBSA-level house price indices by moving them to a 

quarterly frequency.  These CBSA-level results provide a more accurate measure of localized risk and allow 

for more informed risk management.  From a model risk perspective, it is important to understand the extent 

to which stress loss estimates can vary across credit models, even when evaluating the same portfolio using 

the same macroeconomic scenario.  This variation suggests an implicit confidence interval around any stress 

loss estimate generated from a single model, and accounting for this uncertainty through a model risk add-

on could potentially offer a more conservative and fulsome view of portfolio credit risk. 
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Appendix A 

 

Top 100 CBSAs by Housing Stock 

 

 
 

 

 

Ranking CBSA Code CBSA Name

1 35620 New York-Newark-Jersey City, NY-NJ-PA

2 31080 Los Angeles-Long Beach-Anaheim, CA

3 16980 Chicago-Naperville-Elgin, IL-IN-WI

4 19100 Dallas-Fort Worth-Arlington, TX

5 26420 Houston-The Woodlands-Sugar Land, TX

6 33100 Miami-Fort Lauderdale-Pompano Beach, FL

7 37980 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD

8 47900 Washington-Arlington-Alexandria, DC-VA-MD-WV

9 12060 Atlanta-Sandy Springs-Alpharetta, GA

10 14460 Boston-Cambridge-Newton, MA-NH

11 38060 Phoenix-Mesa-Chandler, AZ

12 19820 Detroit-Warren-Dearborn, MI

13 41860 San Francisco-Oakland-Berkeley, CA

14 42660 Seattle-Tacoma-Bellevue, WA

15 40140 Riverside-San Bernardino-Ontario, CA

16 33460 Minneapolis-St. Paul-Bloomington, MN-WI

17 45300 Tampa-St. Petersburg-Clearwater, FL

18 41180 St. Louis, MO-IL

19 41740 San Diego-Chula Vista-Carlsbad, CA

20 19740 Denver-Aurora-Lakewood, CO

21 12580 Baltimore-Columbia-Towson, MD

22 38300 Pittsburgh, PA

23 16740 Charlotte-Concord-Gastonia, NC-SC

24 36740 Orlando-Kissimmee-Sanford, FL

25 38900 Portland-Vancouver-Hillsboro, OR-WA

26 17460 Cleveland-Elyria, OH

27 17140 Cincinnati, OH-KY-IN

28 28140 Kansas City, MO-KS

29 29820 Las Vegas-Henderson-Paradise, NV

30 40900 Sacramento-Roseville-Folsom, CA

31 41700 San Antonio-New Braunfels, TX

32 12420 Austin-Round Rock-Georgetown, TX

33 18140 Columbus, OH

34 26900 Indianapolis-Carmel-Anderson, IN

35 34980 Nashville-Davidson--Murfreesboro--Franklin, TN
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Ranking CBSA Code CBSA Name

36 47260 Virginia Beach-Norfolk-Newport News, VA-NC

37 39300 Providence-Warwick, RI-MA

38 41940 San Jose-Sunnyvale-Santa Clara, CA

39 33340 Milwaukee-Waukesha, WI

40 27260 Jacksonville, FL

41 36420 Oklahoma City, OK

42 32820 Memphis, TN-MS-AR

43 39580 Raleigh-Cary, NC

44 35380 New Orleans-Metairie, LA

45 31140 Louisville/Jefferson County, KY-IN

46 15380 Buffalo-Cheektowaga, NY

47 40060 Richmond, VA

48 25540 Hartford-East Hartford-Middletown, CT

49 13820 Birmingham-Hoover, AL

50 40380 Rochester, NY

51 46060 Tucson, AZ

52 35840 North Port-Sarasota-Bradenton, FL

53 46140 Tulsa, OK

54 41620 Salt Lake City, UT

55 24340 Grand Rapids-Kentwood, MI

56 10580 Albany-Schenectady-Troy, NY

57 15980 Cape Coral-Fort Myers, FL

58 24860 Greenville-Anderson, SC

59 10740 Albuquerque, NM

60 36540 Omaha-Council Bluffs, NE-IA

61 28940 Knoxville, TN

62 49340 Worcester, MA-CT

63 14860 Bridgeport-Stamford-Norwalk, CT

64 12940 Baton Rouge, LA

65 19430 Dayton-Kettering, OH

66 35300 New Haven-Milford, CT

67 17900 Columbia, SC

68 46520 Urban Honolulu, HI

69 10900 Allentown-Bethlehem-Easton, PA-NJ

70 16700 Charleston-North Charleston, SC
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Ranking CBSA Code CBSA Name

71 24660 Greensboro-High Point, NC

72 23420 Fresno, CA

73 30780 Little Rock-North Little Rock-Conway, AR

74 19660 Deltona-Daytona Beach-Ormond Beach, FL

75 10420 Akron, OH

76 34820 Myrtle Beach-Conway-North Myrtle Beach, SC-NC

77 29460 Lakeland-Winter Haven, FL

78 45780 Toledo, OH

79 49180 Winston-Salem, NC

80 21340 El Paso, TX

81 12540 Bakersfield, CA

82 19780 Des Moines-West Des Moines, IA

83 45060 Syracuse, NY

84 17820 Colorado Springs, CO

85 31540 Madison, WI

86 44140 Springfield, MA

87 37100 Oxnard-Thousand Oaks-Ventura, CA

88 14260 Boise City, ID

89 32580 McAllen-Edinburg-Mission, TX

90 37340 Palm Bay-Melbourne-Titusville, FL

91 20500 Durham-Chapel Hill, NC

92 38860 Portland-South Portland, ME

93 48620 Wichita, KS

94 39100 Poughkeepsie-Newburgh-Middletown, NY

95 42540 Scranton--Wilkes-Barre, PA

96 12260 Augusta-Richmond County, GA-SC

97 49660 Youngstown-Warren-Boardman, OH-PA

98 41540 Salisbury, MD-DE

99 25420 Harrisburg-Carlisle, PA

100 27140 Jackson, MS


