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Abstract 

Accurate and unbiased property value estimates are essential to credit risk 
management.  Along with loan amount, they determine a mortgage’s loan-to-value 
ratio, which captures the degree of homeowner equity and is a key determinant of 
borrower credit risk.  For home purchases, lenders generally require an independent 
appraisal, which, in addition to a home’s sales price, is used to calculate a value for 

the underlying collateral.  A number of empirical studies have shown that property 
appraisals tend to be biased upwards, and over 90 percent of the time, either confirm 
or exceed the associated contract price.  Our data suggest that the percentage 
deviation of the appraised value from the contract price is particularly pervasive in 
rural areas where over 25 percent of rural properties are appraised at more than 
five percent above contract price.  Given this significant upward deviation, we 
examine a host of alternate valuation techniques to more accurately estimate rural 
property values.   
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1 Introduction 

Accurate property value estimates are an essential component of the mortgage underwriting 
process.  Along with the loan amount, they determine a mortgage’s loan-to-value (LTV) ratio, 
which captures the degree of homeowner equity and the credit risk of a loan.  For home 
purchases, lenders generally require an independent appraisal, which, in addition to a home’s 

sales price, is used to determine a value for the underlying collateral.  A number of empirical 
studies have shown that property appraisals tend to be biased upwards, and over 90 percent of 
the time, either confirm or exceed the associated contract price.1  This upward percentage 
deviation of the appraised value from the contract price (hereafter referred to as "the deviation") 
is often particularly pronounced in rural areas where there are fewer comparable sales and more 
heterogeneity across homes.  In fact, our data suggest that more than 25 percent of rural 
appraisals exceed the associated contract price by more than five percent.  Given the extent and 
ubiquity of the deviation in rural areas, we create a series of alternate automated property 
value estimates, using a number of machine learning algorithms, to more accurately value the 
collateral underlying rural purchase-money mortgages.   

Appraisals are performed by experts with specialized knowledge about local 
housing markets, but they can face pressures—either apparent or perceived—to arrive at a value 
estimate at or above the contract price to ensure that a sale goes through.  Since the Great 
Recession, the majority of single-family conforming loans have been sold to or securitized by 
the government sponsored enterprises (GSEs).  For purchase money loans, the GSEs require that 

a borrower’s LTV ratio be calculated as the loan amount over the lesser of the contract price 
and an independent appraisal estimate.  If the appraisal estimate is less than the contract price, a 
borrower may need to increase his or her down payment to stay at their desired LTV range and 
not incur a higher interest rate on the loan.  Alternatively, the contract price could be 
renegotiated.  In either case, additional difficulties may arise for the borrower or seller and thus 

appraised values that are “too low” may increase the chance that the sale could fall through.2 

Property appraisals are most often estimated based upon the recent sales prices of three to 
five comparable properties.3  This leads to a certain degree of subjectivity.  Appraisers have 
a number of different options in terms of what comparable sales they select as reference 
transactions.  Because properties can resemble each other along many different dimensions, the 
1 Cho and Megbolugbe (1996), Horne and Rosenblatt (1996), and Calem et al. (2017) find that between 90 to 95 
percent of appraisals come in at or above contract price.  See Yiu et al. (2006) for a detailed review of the literature.  
Consistent with existing literature, we focus on the percentage deviation of the appraised value from the contract 
price.  For an individual appraisal, it is possible that the appraised value exceeding the contract price is in fact an 
accurate estimate of the real house value.  However, it is highly unlikely to observe such a systematically skewed 
relationship without at least some level of tendency. 
2 Fout and Yao (2016) find that about 32 percent of negative appraisals result in the transaction falling through. 
3 Dotzour (1990) finds that the sales comparison approach tends to provide a more accurate measure of value than the 
cost approach. 
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appraiser has some latitude in terms of what comparable properties he or she chooses.  
Further, when a comparable property has characteristics that differ from the subject 
property (e.g., condition, square footage, number of bedrooms), appraisers will manually make 
adjustments to a comparable sales price to reflect these differences.  Finally, appraisers can 
assign different weights to each comparable based upon the degree of applicability to the 
subject property.  In each of these stages, there is opportunity to push up appraised values so that 
they either confirm or exceed the contract price.  Eriksen et al. (2016) find evidence of 
significant upward deviation at each of these three stages of the appraisal process.  

[Figures 1a and 1b about here] 

Lang and Nakamura (1993), Blackburn and Vermilyea (2007), and Ding (2014) find that 
the deviation is amplified in rural areas, which are often characterized by fewer comparable sales 
and more heterogeneity across homes.  We find a similar result using appraisal data for 
Fannie Mae and Freddie Mac acquisitions from 2012 through 2016.  As illustrated in Figure 1a 
and Figure 1b, both urban and rural areas are subject to the deviation, but such deviation is 
exacerbated in rural areas.  Specifically, we find that approximately 25 percent of properties in 
rural areas compared to 12.7 percent in urban areas are appraised at more than five percent above 
contract price.     

Given observed deviation, several researchers have considered including automated 
property value estimates as an alternate, and potentially unbiased, measure of the underlying 
value of the collateral when calculating credit risk (Lacour-Little and Malpezzi, 2003; Kelly, 
2007; Agarwal et al., 2015; and Calem et al., 2017).  We explore a similar question, but 
concentrate our attention on rural areas.4  Specifically, we estimate a series of AVMs5 
and examine their computational burden and out-of-sample predictive accuracy in rural areas.  
In an effort to explore a wide array of specifications, we include two tree-based approaches to 
help capture non-linear relationships.6  

The paper is structured as follows.  In section two, we discuss the data used to estimate a 
series of AVMs.  In section three, we evaluate several different AVM models and select a 
preferred specification based upon both computation time and out-of-sample predictive 
ability.  We conclude in section four. 

4 Compared to AVM estimates in urban areas, AVM estimates in rural areas may face additional scrutiny due to lack 
of data. 
5 We do not seek to use contemporaneous data and make real-time AVM predictions in this research.  Instead, our 
work is focused on highlighting the pros and cons of machine learning algorithms and comparing their performance 
with more traditional methodologies. 
6 Many other researchers, for example Pace, K., & Hayunga D. (2018) and Villupuram, S., & Johnson, E. (2018), have 
also explored machine learning algorithms in property valuations. 
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2 Data 

Our analysis draws on the Uniform Appraisal Dataset (UAD) from Q4 2012 to Q1 2016.  It 
contains every active appraisal record associated with loan applications submitted to Fannie Mae 
and Freddie Mac during the study period.  The UAD provides us with information on structural 
characteristics, neighborhood attributes, and historical sales prices for rural homes.  

We define rural in the same manner as the Appraisal Institute.7  Specifically, it is defined 
as “Pertaining to the country as opposed to urban or suburban; land under an agricultural use; areas 
that exhibit relatively slow growth with less than 25% development” (The Dictionary of Real 
Estate Appraisal – 4th Edition).  Appraisers use this definition to determine the neighborhood 
characteristics of a subject property when filling out a Uniform Residential Appraisal Report. 

The Enterprises agreed to adopt the Home Valuation Code of Conduct (HVCC), which 
became effective in May 2009.  This strengthened requirements for submitting each appraisal 
associated with a loan application to the Enterprises.  In the Uniform Residential Appraisal Report, 
appraisers are required to document property attributes for subject and comparable properties as 
well as appraisal approaches adopted.  Starting in 2012, the data captured by lenders’ appraisal 
reports conform to the UAD, and are digitized, compiled, and submitted to the Enterprises to 
support loans lenders wish to sell to the Enterprises.  The data consists of about 18 million unique 
appraisal records for subject properties and 2.1 million for purchase-money mortgages.8  Of the 
2.1 million appraisals for purchase-money mortgages, 420,3709 are associated with rural 
properties, and hence form the full sample in our analysis.  

For purposes of model development, We randomly split our full sample into two 
subsamples – a training dataset and a test dataset.  The training dataset contains 80 percent of our 
observations and is used to estimate or parameterize each of our models.  The test dataset contains 
the remaining 20 percent of observations and is used to measure each model’s out-of-sample 
performance. 

[Table 1 about here] 

Table 1 provides summary statistics for the full sample, and the training and test samples.  
As detailed in Panel A, the average sales price for rural buyers in the full sample is approximately 

7 This definition is consistent with the Enterprises’ guidance. 
8 The same appraisal is often submitted to both Fannie Mae and Freddie Mac. 
9 We apply a series of standard data filters, which include censoring observations associated with extreme/implausible 
values for several structural attributes (i.e., number bedrooms, number of bathrooms, square footage, and age).  To 
further minimize the influence of outliers, we remove observations with sales prices in the top and bottom one percent 
of the price distribution. 
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$220,000.10  The average rural property has approximately 3 bedrooms, 2 bathrooms, and 1,870 
square feet of living area.  Although rural properties may have different values for their land and 
amenities, their basic structural attributes are qualitatively similar to those of the full purchase-
money mortgage sample in the UAD.  The average rural property is approximately 32 years old11 
with a 3.57 (out of 5) appraiser-rated overall condition and a 2.99 (out of 5) quality of construction.  
Among the purchase-money rural mortgages, properties in the following states have the largest 
representation: MI (7.35 percent), TX (6.94 percent), OH (4.93 percent), GA (4.87 percent), and 
PA (4.77 percent).  As shown in Panels B and C, the average properties in the training and the test 
samples are very similar to the representative property in the full sample.  
 
 

3 AVM Techniques and their Out-of-Sample Performance 
 
Using the UAD, we begin our analysis by estimating and exploring the out-of-sample performance 
of a series of AVMs.  There are a number of different approaches to estimating home values.  We 
focus our attention on a subset of techniques that allow us to more fully capture household 
heterogeneity by incorporating information on both structural (e.g., number of bedrooms, number 
of bathrooms, square footage) and neighborhood attributes (e.g., location, proximity to amenities, 
view).  We begin our model12 selection process with a hedonic regression estimated using ordinary 
least squares (OLS).  This is one of the most commonly used techniques for price estimation and 
will serve as a baseline as we evaluate five alternate and more involved estimation techniques.  
 

As mentioned in Section 2, we use the training dataset to train each of our models and 
estimate the parameters and use the test dataset to measure each model’s out-of-sample 
performance.  For each model, we focus our attention on two performance metrics – the R2 and 
the root mean squared error (RMSE).  The R2 statistic is a relative measure of fit for calculating 
the proportion of variance in the dependent variable, which is captured through the model.  The 
RMSE is an absolute measure of fit, which calculates the sample standard deviation of the residuals 
and provides an overall measure of model accuracy. 

 
Table 2 provides model fit statistics for each AVM technique.  As detailed, a standard 

hedonic results in an out-of-sample R2 value of 0.6803 and an RMSE of 0.3188.  The R2 value 
indicates that a standard hedonic is able to explain approximately 68.03 percent of the variation in 
log sales price for single-family homes in rural areas.  These metrics serve as a baseline as we 
explore a series of alternate estimators.  While an overall RMSE and R2 are useful in describing 
average model fit, they fail to provide sufficient information on the success (or lack thereof) of 

                                                        
10 This is about $55,000 lower than the average sales price across all purchase-money mortgages in the UAD.   
11 This is about twice as old as the average property in the full purchase-money mortgage sample in the UAD. 
12 In this paper, we use model and algorithm interchangeably to refer to each specific AVM technique.  
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model fit in the tails of the price distribution.  For instance, a particular model may perform well 
when estimating the value of an average priced home, but fail to explain sufficient variation for 
lower or higher priced units.  To explore how our model fits the tails of the price distribution, we 
calculate separate R2 values for the top and bottom quartiles of the sales price distribution.13 

Due to our relatively small sample size, we also explore a series of shrinkage estimators, 
which introduce a degree of deviation in exchange for a lower variance.  Specifically, 
shrinkage estimators incorporate a penalty function in the estimation process which pushes 
(or shrinks) coefficients values towards zero.  This bias-variance trade-off has been shown to 
lead to smaller mean squared errors when applied to out-of-sample data. 

[Table 2 about here] 

Two of the more popular shrinkage estimators are ridge regression and lasso (least absolute 
shrinkage and selection operator) regression.  Ridge regression includes a penalty function, which 
biases the value of model coefficients towards zero.  Lasso regression goes one step further and 
aides with variable selection by eliminating certain covariates altogether (this is achieved by 
shrinking the associated coefficients all the way to zero).  Consistent with other literature and for 
model simplicity, we choose lambda.1se as the benchmark for all shrinkage estimation models.  
lambda.1se is the largest value of lambda such that the cross-validated error is within one standard 
deviation of the minimum mean cross-validated error, whereas lambda.min is the lambda that 
minimizes the mean cross-validated error.  With the latter, R2 and RMSE for shrinkage estimators 
improve marginally at the cost of making models more complicated.  As detailed in the bottom 
row in Table 2, in our benchmark specification for shrinkage estimators, the ridge regression 
performs marginally worse than our baseline estimator with an out-of-sample R2 value of 0.6761 
and an RMSE of 0.3209.  The additional flexibility garnered through variable selection improves 
model fit statistics for the lasso regression, but increases in accuracy are relative minor.  The lasso 
regression is associated with an out-of-sample R2 value of 0.6795 and an RMSE of 0.3192 (the 
fifth bottom row in Table 2)14.  While these fit statistics are marginally better than our baseline 
hedonic model, the added accuracy may not be worth the increase in model complexity.  

Next, we test elastic net, which is a hybrid estimator that combines features of both the 
ridge and lasso regressions.  Specifically, elastic net combines the ridge and lasso penalties into a 
single function and has been shown to outperform both precursor models on data with highly 

13 As detailed, R2 are actually higher in the tails of the price distribution.  While this result may seem counterintuitive,
it is simply a reflection of the proportional nature of the statistic.  Both the residual sum of squares and total sum of 
squares increase as we move away from the middle of the price distribution, but the total sum of squares increases at 
a faster rate.  In other words, absolute fit (as captured by RMSE) is deteriorating, but proportional fit (or the percentage 
of explained variation) is actually increasing.  
14 If using lambda.min, then the out-of-sample R2 value is 0.6803 and the RMSE is 0.3188. 
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correlated predictors.  However, as detailed in Table 2, we find the performance of elastic net lies 
between those of lasso and ridge, evidenced by both R2  and RMSE.      

 
While our linear estimators have yet to significantly improve upon a standard hedonic, 

machine learning tree-based models may provide more “value-added” by mapping non-linear 
relationships.  The first tree-based model we test is random forest.  Random forest involves 
building a number of decision trees on a series of bootstrapped training samples.  In an effort to 
decorrelate the individual trees, whenever a split is considered, potential candidate variables are 
drawn from a random sample of m predictors where m<p and p is the full set of predictors.15  This 
ultimately results in a composite estimate characterized by low variance because it is based upon 
the average of many uncorrelated decision trees.  As detailed in Table 2, random forest 
significantly improves upon our baseline estimator with an out-of-sample R2 value of 0.7224 and 
an RMSE of 0.2971.   

 
Though the random forest estimator increases explanatory power by approximately 6.1 

percent relative to our baseline model, this improved model fit comes at the cost of significant 
computational time.  Required CPU time is over 48 hours versus the minutes it takes to re-estimate 
a standard hedonic regression.  The processing time is calculated including both the time for 
training and for out-of-sample estimation with the following specifics: 1) as shown in Table 1, our 
training dataset contains 336,216 observations and our test dataset contains 84,154 observations; 
2)  each model contains 115 explanatory variables except that for random forest we further break 
down the data by state (to increase efficiency) and estimate for each state the same specification 
netting out the 49 state FEs;  3) processing time for all algorithms are based on the same dual-core 
CPU @ 2.6GHz with 8GB memory and 1600 Max RAM speed. For most algorithms, training 
takes up over 90 percent of the time.  To the extent that one has a more powerful CPU, the 
processing time will reduce accordingly.   

 
Another drawback of random forest is that it may suffer from significant overfitting.  We 

show the baseline out-of-sample and in-sample fitting in Table 3.  In-sample R2 is calculated using 
the training dataset.  Without surprise, random forest suffers greatly from overfitting while other 
algorithms do not.  

 
[Table 3 about here] 

 
We next explore a second tree-based model called boosting.  Boosting involves 

sequentially growing a set of decision trees.  The first tree is fitted to the outcome variable, which 
results in a set of residuals.  The second tree is fitted to these first-stage residuals and then added 
back into the initially fitted function, 𝑓.  This new function produces an updated set of residuals 

                                                        
15 Oftentimes, m is set equal to the square root of p. 
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and the process repeats.  With each iteration, the boosting approach slowly improves 𝑓 in high 
variance areas.  A shrinkage parameter, 𝜆, controls the rate at which the boosting approach learns, 
while the degree of model complexity is controlled by d, which determines the number of splits in 
each tree.  Interestingly, the boosting approach does not improve upon the random forest results, 
evidenced by a lower R2.  The boosting model results in an out-of-sample R2 value of 0.6755 and 
an RMSE of 0.3212 (see Table 2).  These fit statistics are virtually the same as our standard 
hedonic, which suggests that boosting may not be worth its added computational burden 
(approximately 24 hours of CPU time), at least when it comes to home price valuation in rural 
areas. 

After obtaining a baseline OLS fit and examining the initial performance of several 
alternative algorithms, we explore additional ways of improving the accuracy of our estimates.  
One of the most straightforward ways to improve accuracy is to increase the sample size of the 
training dataset.  However, adding more rural data does not seem to be a viable option here due to 
data scarcity.  Therefore, as an alternative, we add a sample of urban data to the existing rural 
training sample with a one-to-one or one-to-two ratio of number of observations.  Table 4 shows 
the results.  In addition to the baseline model specification, the models employing two mixed 
samples always include an additional rural dummy, which has a significant negative impact on the 
sales price.   

For random forest, we expect the additional data to help overcome our overfitting problem 
since a larger sample will lead to smaller distinctions between individual trees within the forest.  
Not surprisingly, results show that random forest outperforms other algorithms with an even bigger 
gap.  In other words, though the urban data introduces some noise, random forest does not seem to 
be sensitive to such noise and its out-of-sample fit improves significantly, as detailed in Table 
4 comparing the baseline R2 to the one in the adjacent column.  At some point however, the trade-
off between bias and variance reaches a point where the cost of additional noise from 
including more urban sales outweighs the benefit of lower variance due to the increased sample 
size.  Hence, the out-of-sample performance for mixing with a one-to-one ratio is not significantly 
better than with a two-to-one ratio.   

[Table 4 about here] 

While this effort helps with random forest, it does not help with any other algorithms we 
explore in this paper.  One possible explanation is that our estimations from other algorithms are 
already quite precise, so the marginal cost of additional noise outweighs the marginal benefit 
of increased sample size when we mix rural and urban samples with a two-to-one ratio.  However, 
some may argue that it is not a fair comparison since random forest automatically considers the 
interactions between the urban variable and other existing variables while others algorithms do not 
once the urban data is added.  Therefore, we add two-way interaction terms of the urban dummy 
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with every other existing variable in the OLS regression.  Though this is not a full approximation 
of random forest since it does not consider multi-way interactions, it still gives us an idea of to 
what degree this effort improves the OLS performance.  Comparing the fourth and the third rows 
in Table 4, we conclude that though it helps a little to include the additional interaction terms, this 
effort does not get us anywhere close to the performance of random forest. 
 

A caveat that is worth mentioning lies in the uniqueness and the richness of our appraisal 
data.  Consider the public records data where many property attributes are not available, results 
derived employing the appraisal data, where such attributes are nicely populated, may not be easily 
generalized.  To proxy the public records data, we limit our variables to basic house characteristics 
only—number of bedrooms and bathrooms, age of the house, number of stories, state, and year of 
the most recent sale.  Results are shown in the rightmost columns in the R2 and the RMSE sections 
in Table 5.  When limiting the number of the explanatory variables, while the performance rank 
maintains, the gap almost closes between random forest and other algorithms.  In general, the 
richness of the data has the largest beneficial impact on the random forest algorithm.  In addition, 
we employ a different sample—the urban sample—with the same specification as the baseline to 
test whether our results are robust to the uniqueness of the rural sample (Table 5 Columns 
“Urban”).  We find that the performance rank maintains while the gap between random forest and 
others prevails, which suggests that our results hold in general.  However, given that random forest 
may perform even better with other samples, it is still encouraged to consider the trade-off between 
algorithms based on the specific sample employed.  

  
[Table 5 about here] 

 
As a summary, Figure 2 illustrates our baseline result comparing actual versus predicted 

values for each of the aforementioned models.  As illustrated, all but random forest result in similar 
out-of-sample fits.  It is important to note that these results may not extrapolate to urban samples 
where neighborhoods are much more compact and there are more similarities among nearby 
properties. 

 
[Figure 2 about here] 

 
While random forest has the best out-of-sample predictive accuracy, it is computationally 

burdensome and may not be replicable without access to a powerful server.  In addition, it can 
potentially suffer from significant overfitting.  Therefore, we would encourage researchers to 
consider a standard hedonic estimator in credit modeling amid those concerns. 
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4 Conclusion 

A number of empirical studies have shown that property appraisals tend to be biased upwards, 
and may overstate the true value of the underlying collateral.16  This upward deviation is often 
exacerbated in rural areas where there are fewer comparable sales and more heterogeneity across 
homes.  Based on our data, approximately 25 percent of rural appraisals exceed the associated 
contract price by five percent or more.  Given the extent of upward deviation in rural appraisals, 
we explore a wide array of AVM techniques in search of an estimator, potentially unbiased, to 
more accurately value the collateral underlying rural purchase-money mortgages.  Our tree-
based random forest estimator performs the best in terms of out-of-sample fit, but is also the 
most computationally burdensome.  In the face of computing constraints or lack of a 
powerful server, we believe that a standard hedonic offers an excellent alternative.   

16 Michealy and Womack (1999), White (2010), and Bolton, Feixas, and Shapiro (2007) have examined similar 
market pressures and their varied impact on other financial sectors. 
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Tables and Figures 

Figure 1a.  Distribution of Appraised Value Relative to Contract Price for Rural Areas 

Figure 1b.  Distribution of Appraised Value Relative to Contract Price for Urban Areas 
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Figure 2.  AVM Out-of-Sample Performance Metrics: Predicted vs. Actual 
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Table 1: Summary Statistics for Rural Purchase-Money Mortgages 

Variables Mean SD P25 P75 
Panel A: Full Sample 

Sales Price ($) 219,555 129,047 130,000 275,000 
Number of Bedrooms 1.9027 0.6532 1.1 2.1 
Number of Bathrooms 3.0330 0.7721 3 3 
Square Footage 1,869.55 712.1829 1,360 2,239 
Age of the House (Years) 32.2496 30.2857 11 44 
Overall Condition (1-5) 3.5662 0.6140 3 4 
Quality of Construction (1-5) 2.9921 0.8461 3 4 
Number of Observations 420,370 
Panel B: Training Sample (80%) 

Sales Price ($) 219,428 128,909 130,000 275,000 
Number of Bedrooms 1.9018 0.6537 1.1 2.1 
Number of Bathrooms 3.0326 0.7724 3 3 
Square Footage 1,869.165 712.2785 1,360 2,239 
Age of the House (Years) 32.2350 30.2350 11 44 
Overall Condition (1-5) 3.5665 0.6143 3 4 
Quality of Construction (1-5) 2.9933 0.8450 3 4 
Number of Observations 336,216 
Panel C: Test Sample (20%) 

Sales Price ($) 220,066 129,593 130,900 276,000 
Number of Bedrooms 1.9062 0.6513 1.1 2.1 
Number of Bathrooms 3.0346 0.7706 3 3 
Square Footage 1,871.09 711.8031 1,363 2,240 
Age of the House (Years) 32.3078 30.4878 11 44 
Overall Condition (1-5) 3.5649 0.6126 3 4 
Quality of Construction (1-5) 2.9873 0.8505 3 4 
Number of Observations 84,154 
Notes: This table reports the summary statistics of the attributes and conditions of the house and 
the transaction price.  Each observation corresponds to a single appraisal record in the sample. 
The top five states in our sample are Michigan (7.35%), Texas (6.94%), Ohio (4.93%), Georgia 
(4.87%), and Pennsylvania (4.77%). 
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Table 2: AVM Out-of-Sample Performance Metrics: Model Fit Statistics 

Specifications 
R2 RMSE 

Baseline P25 P75 Baseline P25 P75 
Tree-Based 
Estimators 

Random Forest 0.7224 0.7700 0.8193 0.2971 0.3749 0.3215 
Boosting 0.6755 0.7273 0.7772 0.3212 0.4082 0.3569 

Standard 
Hedonic OLS 0.6803 0.7452 0.7729 0.3188 0.3946 0.3603 

Shrinkage 
Estimators 
lambda.1se 

Elastic Net 0.6788 0.7404 0.7699 0.3196 0.3983 0.3627 
Lasso 0.6795 0.7422 0.7713 0.3192 0.3969 0.3616 
Ridge 0.6761 0.7335 0.7654 0.3209 0.4036 0.3662 

Shrinkage 
Estimators 
lambda.min 

Elastic Net 0.6803 0.7447 0.7727 0.3188 0.3950 0.3605 
Lasso 0.6803 0.7448 0.7727 0.3188 0.3949 0.3605 
Ridge 0.6765 0.7344 0.7660 0.3207 0.4029 0.3658 

Notes: This table reports the out-of-sample performance (measured by R2 and RMSE) for different model 
specifications employing all records (All) in the test dataset and the subsamples associated with the sales price 
in the top (P75) and the bottom quartile (P25) of the sales price distribution.  In terms of shrinkage estimators, 
for model simplicity, we choose by default lambda.1se, the largest value of lambda such that the cross-
validated error is within one standard deviation of the minimum mean cross-validated error.  Alternatively, if 
lambda.min—the lambda that minimize the mean cross-validated error—is chosen, R2 and RMSE for 
shrinkage estimators improve marginally (for example, from 0.6688 to 0.6700 for Elastic Net) and the model 
fit for Lasso and Elastic Net become equally good as for OLS and Boosting. 

 
 

Table 3: AVM In-sample vs Out-of-sample Performance Metrics 

Specifications 
Baseline  

R2 RMSE 
Out-of-sample In-sample Out-of-sample In-sample 

Tree-Based 
Estimators 

Random Forest 0.7224 0.9436 0.2971 0.1337 
Boosting 0.6755 0.6749 0.3212 0.3211 

Standard 
Hedonic OLS 0.6803 0.6801 0.3188 0.3185 

Shrinkage 
Estimators 
lambda.1se 

(Benchmark) 

Elastic Net 0.6788 0.6786 0.3196 0.3192 
Lasso 0.6795 0.6793 0.3192 0.3189 

Ridge 0.6761 0.6759 0.3209 0.3206 

Shrinkage 
Estimators 
lambda.min 

Elastic Net 0.6803 0.6801 0.3188 0.3185 
Lasso 0.6803 0.6801 0.3188 0.3185 
Ridge 0.6765 0.6763 0.3207 0.3204 

Notes: This table reports the in-sample performance (measured by R2 and RMSE) in comparison to the 
out-of-sample performance.  In-sample and out-of-sample statistics are calculated employing the training 
and the test dataset respectively.  Random Forest, though outperforming other, suffers from overfitting. 
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Table 4: AVM Out-of-Sample Performance Metrics: Baseline vs Mixed samples 

Specifications 
R2 RMSE 

Baseline 1:0.5 1:1 Baseline 1:0.5 1:1 
Tree-Based 
Estimators 

Random Forest 0.7224 0.8992 0.8971 0.2971 0.1790 0.1808 
Boosting 0.6755 0.6519 0.6436 0.3212 0.3327 0.3366 

Standard 
Hedonic OLS 0.6803 0.6677 0.6539 0.3188 0.3250 0.3317 

Standard 
Hedonic 

OLS w/ 
interactions 0.6803 0.6762 0.6717 0.3188 0.3208 0.3231 

Shrinkage 
Estimators 
lambda.1se 

(Benchmark)

Elastic Net 0.6788 0.6667 0.6531 0.3196 0.3255 0.3321 
Lasso 0.6795 0.6661 0.6525 0.3192 0.3258 0.3324 

Ridge 0.6761 0.6613 0.6481 0.3209 0.3281 0.3345 

Shrinkage 
Estimators 

lambda.min 

Elastic Net 0.6803 0.6676 0.6539 0.3188 0.3251 0.3317 
Lasso 0.6803 0.6676 0.6539 0.3188 0.3251 0.3317 
Ridge 0.6765 0.6624 0.6486 0.3207 0.3276 0.3342 

Notes: This table reports the out-of-sample performance (measured by R2 and RMSE) for different model 
specifications employing all records (All) in the test dataset.  The ratios (1:0.5 and 1:1) illustrate how the 
sample is constructed.  For example, ratio 1:0.5 means that for two rural records in the training dataset we 
mix one urban record in the sample.  In addition to baseline model specification, the models employing two 
mixed samples always include an additional rural dummy, which significant negative impact on the sales 
price.  Both R2 and RMSE are calculated only for the records in the baseline test dataset so that all columns 
are easily comparable.   

Table 5: AVM Out-of-Sample Performance Metrics: Generalization 

Specifications 
R2 RMSE 

Baseline Urban Fewer 
Variables Baseline Urban Fewer 

Variables 
Tree-Based 
Estimators 

Random Forest 0.7224 0.8921 0.4865 0.2971 0.1887 0.4041 
Boosting 0.6755 0.6373 0.4699 0.3212 0.3459 0.4106 

Standard 
Hedonic OLS 0.6803 0.6381 0.4714 0.3188 0.3456 0.4100 

Shrinkage 
Estimators 
lambda.1se 

(Benchmark)

Elastic Net 0.6788 0.6366 0.4696 0.3196 0.3463 0.4106 
Lasso 0.6795 0.6374 0.4695 0.3192 0.3459 0.4107 

Ridge 0.6761 0.6311 0.4686 0.3209 0.3489 0.4111 

Shrinkage 
Estimators 

lambda.min 

Elastic Net 0.6803 0.6380 0.4714 0.3188 0.3456 0.4100 
Lasso 0.6803 0.6380 0.4714 0.3188 0.3456 0.4100 
Ridge 0.6765 0.6326 0.4703 0.3207 0.3482 0.4104 

Notes: This table reports the out-of-sample performance (measured by R2 and RMSE) separately employing the 
rural and the urban sample.  Columns “Fewer Variables” present results estimated from models with basic house 
characteristics only—number of bedrooms and bathrooms, age of the house, number of stories, state and year of 
the most recent sale.  Columns “Urban” contain results estimated using the urban sample with the baseline 
specification.  All R2 and RMSE are calculated only for the records in the baseline test dataset and the urban test 
dataset with the same number of observations so that all columns are easily comparable.   




